Articles | Volume 11, issue 2
https://doi.org/10.5194/tc-11-891-2017
https://doi.org/10.5194/tc-11-891-2017
Research article
 | 
07 Apr 2017
Research article |  | 07 Apr 2017

Determination of snowmaking efficiency on a ski slope from observations and modelling of snowmaking events and seasonal snow accumulation

Pierre Spandre, Hugues François, Emmanuel Thibert, Samuel Morin, and Emmanuelle George-Marcelpoil

Related authors

Winter tourism under climate change in the Pyrenees and the French Alps: relevance of snowmaking as a technical adaptation
Pierre Spandre, Hugues François, Deborah Verfaillie, Marc Pons, Matthieu Vernay, Matthieu Lafaysse, Emmanuelle George, and Samuel Morin
The Cryosphere, 13, 1325–1347, https://doi.org/10.5194/tc-13-1325-2019,https://doi.org/10.5194/tc-13-1325-2019, 2019
Short summary

Related subject area

Seasonal Snow
An examination of changes in autumn Eurasian snow cover and its relationship with the winter Arctic Oscillation using 20th Century Reanalysis version 3
Gareth J. Marshall
The Cryosphere, 19, 663–683, https://doi.org/10.5194/tc-19-663-2025,https://doi.org/10.5194/tc-19-663-2025, 2025
Short summary
Historical snow measurements in the central and southern Apennine Mountains: climatology, variability, and trend
Vincenzo Capozzi, Francesco Serrapica, Armando Rocco, Clizia Annella, and Giorgio Budillon
The Cryosphere, 19, 565–595, https://doi.org/10.5194/tc-19-565-2025,https://doi.org/10.5194/tc-19-565-2025, 2025
Short summary
Benchmarking of snow water equivalent (SWE) products based on outcomes of the SnowPEx+ Intercomparison Project
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
The Cryosphere, 19, 201–218, https://doi.org/10.5194/tc-19-201-2025,https://doi.org/10.5194/tc-19-201-2025, 2025
Short summary
Snow depth sensitivity to mean temperature, precipitation, and elevation in the Austrian and Swiss Alps
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024,https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Use of multiple reference data sources to cross-validate gridded snow water equivalent products over North America
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024,https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary

Cited articles

Armstrong, R. and Brun, E.: Snow and climate: physical processes, surface energy exchange and modeling, Polar Res., 29, 461–462, https://doi.org/10.3402/polar.v29i3.6091, 2008.
Bergstrom, K. and Ekeland, A.: Effect of trail design and grooming on the incidence of injuries at alpine ski areas, Brit. J. Sport. Med., 38, 264–268, https://doi.org/10.1136/bjsm.2002.000270, 2004.
Bevington, P. R. and Robinson, D. K.: Data reduction and error analysis, McGraw-Hill, 3rd Edn., available at: http://experimentationlab.berkeley.edu/sites/default/files/pdfs/Bevington.pdf (last access: 4 April 2017), 2003.
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, 1992.
Damm, A., Koeberl, J., and Prettenthaler, F.: Does artificial snow production pay under future climate conditions? – A case study for a vulnerable ski area in Austria, Tourism Manage., 43, 8–21, https://doi.org/10.1016/j.tourman.2014.01.009, 2014.
Download
Short summary
The production of machine-made snow is generalized in ski resorts and represents the most common adaptation method to mitigate effects of climate variability and its projected changes. However, the actual snow mass that can be recovered from a given water mass used for snowmaking remains poorly known. All results were consistent with 60 % (±10 %) of the water mass found as snow within the edge of the ski slope, with most of the lost fraction of water being due to site-dependent characteristics.
Share