Articles | Volume 11, issue 2
https://doi.org/10.5194/tc-11-741-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-741-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland
Monika Wittmann
CORRESPONDING AUTHOR
Institute of Earth Sciences, University of Iceland, Reykjavik,
Iceland
Christine Dorothea Groot Zwaaftink
NILU – Norwegian Institute for Air Research, Kjeller,
Norway
Louise Steffensen Schmidt
Institute of Earth Sciences, University of Iceland, Reykjavik,
Iceland
Sverrir Guðmundsson
Institute of Earth Sciences, University of Iceland, Reykjavik,
Iceland
Keilir, Institute of Technology, Reykjanesbær, Iceland
Finnur Pálsson
Institute of Earth Sciences, University of Iceland, Reykjavik,
Iceland
Olafur Arnalds
Agricultural University of Iceland, Hvanneyri, Iceland
Helgi Björnsson
Institute of Earth Sciences, University of Iceland, Reykjavik,
Iceland
Throstur Thorsteinsson
Institute of Earth Sciences, University of Iceland, Reykjavik,
Iceland
Andreas Stohl
NILU – Norwegian Institute for Air Research, Kjeller,
Norway
Related authors
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Katharina Baier, Lucie Bakels, and Andreas Stohl
EGUsphere, https://doi.org/10.5194/egusphere-2024-2801, https://doi.org/10.5194/egusphere-2024-2801, 2024
Short summary
Short summary
As extremely dry and warm conditions over the Amazon basin can cause huge damages, we study the role of atmospheric transport into the western Amazon for such events. We show that the physical processes depend on the climate variability El Niño Southern Oscillation (ENSO). While warm and dry air from the Atlantic Ocean is transported to the western Amazon for extreme events during the warm ENSO phase, we expect continental regions to have a stronger impact for the other extreme events we found.
Greta Hoe Wells, Þorsteinn Sæmundsson, Finnur Pálsson, Guðfinna Aðalgeirsdóttir, Eyjólfur Magnússon, Reginald L. Hermanns, and Snævarr Guðmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2002, https://doi.org/10.5194/egusphere-2024-2002, 2024
Short summary
Short summary
Glacier retreat elevates the risk of landslides released into proglacial lakes, which can trigger glacial lake outburst floods (GLOFs). This study maps proglacial lake evolution and GLOF hazard scenarios at Fjallsjökull glacier, Iceland. Lake volume increased from 1945–2021 and is estimated to triple over the next century. Three slopes are prone to landslides that may trigger GLOFs. Results will mitigate flood hazard at this popular tourism site and advance GLOF research in Iceland and globally.
Aude Vincent, Clémence Daigre, Ophélie Fischer, Guðfinna Aðalgeirsdóttir, Sophie Violette, Jane Hart, Snævarr Guðmundsson, and Finnur Pálsson
Hydrol. Earth Syst. Sci., 28, 3475–3494, https://doi.org/10.5194/hess-28-3475-2024, https://doi.org/10.5194/hess-28-3475-2024, 2024
Short summary
Short summary
We studied groundwater near outlet glaciers of the main Icelandic ice cap. We acquired new data in the field. Two distinct groundwater compartments and their characteristics are identified. We demonstrate the glacial melt recharge impact on the groundwater dynamic. Knowing groundwater systems in a glacial context is crucial to forecast the evolution under climate change of water resources and of potential flood and landslide hazards.
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
EGUsphere, https://doi.org/10.5194/egusphere-2024-1381, https://doi.org/10.5194/egusphere-2024-1381, 2024
Short summary
Short summary
A record of ammonium covering the years 1750 to 2008 was extracted from a 182-meter-long ice core drilled in 2009 at Mt. Elbrus in the Caucasus, Russia. Changes in ammonia emissions in southeastern Europe during the pre-industrial and industrial periods were investigated. The level of ammonium in 1750 indicates a significant contribution of natural sources to the ammonia budget, contrasting with present-day conditions, where agricultural emissions outweigh those from biogenic sources in Europe.
Coline Bouchayer, Ugo Nanni, Pierre-Marie Lefeuvre, John Hult, Louise Steffensen Schmidt, Jack Kohler, François Renard, and Thomas V. Schuler
The Cryosphere, 18, 2939–2968, https://doi.org/10.5194/tc-18-2939-2024, https://doi.org/10.5194/tc-18-2939-2024, 2024
Short summary
Short summary
We explore the interplay between surface runoff and subglacial conditions. We focus on Kongsvegen glacier in Svalbard. We drilled 350 m down to the glacier base to measure water pressure, till strength, seismic noise, and glacier surface velocity. In the low-melt season, the drainage system adapted gradually, while the high-melt season led to a transient response, exceeding drainage capacity and enhancing sliding. Our findings contribute to discussions on subglacial hydro-mechanical processes.
Alexander H. Jarosch, Eyjólfur Magnússon, Krista Hannesdóttir, Joaquín M. C. Belart, and Finnur Pálsson
The Cryosphere, 18, 2443–2454, https://doi.org/10.5194/tc-18-2443-2024, https://doi.org/10.5194/tc-18-2443-2024, 2024
Short summary
Short summary
Geothermally active regions beneath glaciers not only influence local ice flow as well as the mass balance of glaciers but also control changes of subglacial water reservoirs and possible subsequent glacier lake outburst floods. In Iceland, such outburst floods impose danger to people and infrastructure and are therefore monitored. We present a novel computer-simulation-supported method to estimate the activity of such geothermal areas and to monitor its evolution.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Andri Gunnarsson, Sigurdur M. Gardarsson, and Finnur Pálsson
The Cryosphere, 17, 3955–3986, https://doi.org/10.5194/tc-17-3955-2023, https://doi.org/10.5194/tc-17-3955-2023, 2023
Short summary
Short summary
A model was developed with the possibility of utilizing satellite-derived daily surface albedo driven by high-resolution climate data to estimate the surface energy balance (SEB) for all Icelandic glaciers for the period 2000–2021.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl
Geosci. Model Dev., 16, 2181–2192, https://doi.org/10.5194/gmd-16-2181-2023, https://doi.org/10.5194/gmd-16-2181-2023, 2023
Short summary
Short summary
We use neural-network-based single-image super-resolution to improve the upscaling of meteorological wind fields to be used for particle dispersion models. This deep-learning-based methodology improves the standard linear interpolation typically used in particle dispersion models. The improvement of wind fields leads to substantial improvement in the computed trajectories of the particles.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Martin Vojta, Andreas Plach, Rona L. Thompson, and Andreas Stohl
Geosci. Model Dev., 15, 8295–8323, https://doi.org/10.5194/gmd-15-8295-2022, https://doi.org/10.5194/gmd-15-8295-2022, 2022
Short summary
Short summary
In light of recent global warming, we aim to improve methods for modeling greenhouse gas emissions in order to support the successful implementation of the Paris Agreement. In this study, we investigate certain aspects of a Bayesian inversion method that uses computer simulations and atmospheric observations to improve estimates of greenhouse gas emissions. We explore method limitations, discuss problems, and suggest improvements.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Chao Yue, Louise Steffensen Schmidt, Liyun Zhao, Michael Wolovick, and John C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-318, https://doi.org/10.5194/tc-2021-318, 2021
Revised manuscript not accepted
Short summary
Short summary
We use the ice sheet model PISM to estimate Vatnajökull mass balance under solar geoengineering. We find that Stratospheric aerosol injection at the rate of 5 Tg yr−1 reduces ice cap mass loss by 4 percentage points relative to the RCP4.5 scenario. Dynamic mass loss is a significant component of mass balance, but insensitive to climate forcing.
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Adrien Berchet, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine D. Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, https://doi.org/10.5194/gmd-14-5331-2021, 2021
Short summary
Short summary
We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source Python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
Eyjólfur Magnússon, Finnur Pálsson, Magnús T. Gudmundsson, Thórdís Högnadóttir, Cristian Rossi, Thorsteinn Thorsteinsson, Benedikt G. Ófeigsson, Erik Sturkell, and Tómas Jóhannesson
The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021, https://doi.org/10.5194/tc-15-3731-2021, 2021
Short summary
Short summary
We present a unique insight into the shape and development of a subglacial lake over a 7-year period, using repeated radar survey. The lake collects geothermal meltwater, which is released in semi-regular floods, often referred to as jökulhlaups. The applicability of our survey approach to monitor the water stored in the lake for a better assessment of the potential hazard of jökulhlaups is demonstrated by comparison with independent measurements of released water volume during two jökulhlaups.
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Harald Flentje, Angela Marinoni, Marco Pandolfi, Jesus Yus-Dìez, Natalia Prats, Jean P. Putaud, Karine Sellegri, Mar Sorribas, Konstantinos Eleftheriadis, Stergios Vratolis, Alfred Wiedensohler, and Andreas Stohl
Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021, https://doi.org/10.5194/acp-21-2675-2021, 2021
Short summary
Short summary
Following the transmission of SARS-CoV-2 to Europe, social distancing rules were introduced to prevent further spread. We investigate the impacts of the European lockdowns on black carbon (BC) emissions by means of in situ observations and inverse modelling. BC emissions declined by 23 kt in Europe during the lockdowns as compared with previous years and by 11 % as compared to the period prior to lockdowns. Residential combustion prevailed in Eastern Europe, as confirmed by remote sensing data.
Andri Gunnarsson, Sigurdur M. Gardarsson, Finnur Pálsson, Tómas Jóhannesson, and Óli G. B. Sveinsson
The Cryosphere, 15, 547–570, https://doi.org/10.5194/tc-15-547-2021, https://doi.org/10.5194/tc-15-547-2021, 2021
Short summary
Short summary
Surface albedo quantifies the fraction of the sunlight reflected by the surface of the Earth. During the melt season in the Northern Hemisphere solar energy absorbed by snow- and ice-covered surfaces is mainly controlled by surface albedo. For Icelandic glaciers, air temperature and surface albedo are the dominating factors governing annual variability of glacier surface melt. Satellite data from the MODIS sensor are used to create a data set spanning the glacier melt season.
Ondřej Tichý, Lukáš Ulrych, Václav Šmídl, Nikolaos Evangeliou, and Andreas Stohl
Geosci. Model Dev., 13, 5917–5934, https://doi.org/10.5194/gmd-13-5917-2020, https://doi.org/10.5194/gmd-13-5917-2020, 2020
Short summary
Short summary
We study the estimation of the temporal profile of an atmospheric release using formalization as a linear inverse problem. The problem is typically ill-posed, so all state-of-the-art methods need some form of regularization using additional information. We provide a sensitivity study on the prior source term and regularization parameters for the shape of the source term with a demonstration on the ETEX experimental release and the Cs-134 and Cs-137 dataset from the Chernobyl accident.
Clarissa Baldo, Paola Formenti, Sophie Nowak, Servanne Chevaillier, Mathieu Cazaunau, Edouard Pangui, Claudia Di Biagio, Jean-Francois Doussin, Konstantin Ignatyev, Pavla Dagsson-Waldhauserova, Olafur Arnalds, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 20, 13521–13539, https://doi.org/10.5194/acp-20-13521-2020, https://doi.org/10.5194/acp-20-13521-2020, 2020
Short summary
Short summary
We showed that Icelandic dust has a fundamentally different chemical and mineralogical composition from low-latitude dust. In particular, magnetite is as high as 1 %–2 % of the total dust mass. Our results suggest that Icelandic dust may have an important impact on the radiation balance in the subpolar and polar regions.
Arve Kylling, Hamidreza Ardeshiri, Massimo Cassiani, Anna Solvejg Dinger, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Kerstin Stebel, and Andreas Stohl
Atmos. Meas. Tech., 13, 3303–3318, https://doi.org/10.5194/amt-13-3303-2020, https://doi.org/10.5194/amt-13-3303-2020, 2020
Short summary
Short summary
Atmospheric turbulence and its effect on tracer dispersion in particular may be measured by cameras sensitive to the absorption of ultraviolet (UV) sunlight by sulfur dioxide (SO2). Using large eddy simulation and 3D Monte Carlo radiative transfer modelling of a SO2 plume, we demonstrate that UV camera images of SO2 plumes may be used to derive plume statistics of relevance for the study of atmospheric turbulent dispersion.
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Short summary
We present the latest release of the Lagrangian transport model FLEXPART, which simulates the transport, diffusion, dry and wet deposition, radioactive decay, and 1st-order chemical reactions of atmospheric tracers. The model has been recently updated both technically and in the representation of physicochemical processes. We describe the changes, document the most recent input and output files, provide working examples, and introduce testing capabilities.
Jens Mühle, Cathy M. Trudinger, Luke M. Western, Matthew Rigby, Martin K. Vollmer, Sunyoung Park, Alistair J. Manning, Daniel Say, Anita Ganesan, L. Paul Steele, Diane J. Ivy, Tim Arnold, Shanlan Li, Andreas Stohl, Christina M. Harth, Peter K. Salameh, Archie McCulloch, Simon O'Doherty, Mi-Kyung Park, Chun Ok Jo, Dickon Young, Kieran M. Stanley, Paul B. Krummel, Blagoj Mitrevski, Ove Hermansen, Chris Lunder, Nikolaos Evangeliou, Bo Yao, Jooil Kim, Benjamin Hmiel, Christo Buizert, Vasilii V. Petrenko, Jgor Arduini, Michela Maione, David M. Etheridge, Eleni Michalopoulou, Mike Czerniak, Jeffrey P. Severinghaus, Stefan Reimann, Peter G. Simmonds, Paul J. Fraser, Ronald G. Prinn, and Ray F. Weiss
Atmos. Chem. Phys., 19, 10335–10359, https://doi.org/10.5194/acp-19-10335-2019, https://doi.org/10.5194/acp-19-10335-2019, 2019
Short summary
Short summary
We discuss atmospheric concentrations and emissions of the strong greenhouse gas perfluorocyclobutane. A large fraction of recent emissions stem from China, India, and Russia, probably as a by-product from the production of fluoropolymers and fluorochemicals. Most historic emissions likely stem from developed countries. Total emissions are higher than what is being reported. Clearly, more measurements and better reporting are needed to understand emissions of this and other greenhouse gases.
Matthias Hunziker, Olafur Arnalds, and Nikolaus J. Kuhn
SOIL, 5, 223–238, https://doi.org/10.5194/soil-5-223-2019, https://doi.org/10.5194/soil-5-223-2019, 2019
Short summary
Short summary
Afforestation on severely degraded volcanic soils/landscapes is an important process concerning ecological restoration in Iceland. These landscapes have a high potential to act as carbon sinks. We tested the soil (0–30 cm) of different stages of afforested (mountain birch) landscapes and analysed the quantity and quality of the soil organic carbon. There is an increase in the total SOC stock during the encroachment. The increase is mostly because of POM SOC. Such soils demand SOC quality tests.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Nikolaos Evangeliou, Arve Kylling, Sabine Eckhardt, Viktor Myroniuk, Kerstin Stebel, Ronan Paugam, Sergiy Zibtsev, and Andreas Stohl
Atmos. Chem. Phys., 19, 1393–1411, https://doi.org/10.5194/acp-19-1393-2019, https://doi.org/10.5194/acp-19-1393-2019, 2019
Short summary
Short summary
We simulated the peatland fires that burned in Greenland in summer 2017. Using satellite data, we estimated that the total burned area was 2345 ha, the fuel amount consumed 117 kt C and the emissions of BC, OC and BrC 23.5, 731 and 141 t, respectively. About 30 % of the emissions were deposited on snow or ice surfaces. This caused a maximum albedo change of 0.007 and a surface radiative forcing of 0.03–0.04 W m−2, with local maxima of up to 0.63–0.77 W m−2. Overall, the fires had a small impact.
Stephen M. Platt, Sabine Eckhardt, Benedicte Ferré, Rebecca E. Fisher, Ove Hermansen, Pär Jansson, David Lowry, Euan G. Nisbet, Ignacio Pisso, Norbert Schmidbauer, Anna Silyakova, Andreas Stohl, Tove M. Svendby, Sunil Vadakkepuliyambatta, Jürgen Mienert, and Cathrine Lund Myhre
Atmos. Chem. Phys., 18, 17207–17224, https://doi.org/10.5194/acp-18-17207-2018, https://doi.org/10.5194/acp-18-17207-2018, 2018
Short summary
Short summary
We measured atmospheric mixing ratios of methane over the Arctic Ocean around Svalbard and compared observed variations to inventories for anthropogenic, wetland, and biomass burning methane emissions and an atmospheric transport model. With knowledge of where variations were expected due to the aforementioned land-based emissions, we were able to identify and quantify a methane source from the ocean north of Svalbard, likely from sub-sea hydrocarbon seeps and/or gas hydrate decomposition.
Anna Solvejg Dinger, Kerstin Stebel, Massimo Cassiani, Hamidreza Ardeshiri, Cirilo Bernardo, Arve Kylling, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Jan Wasseng, and Andreas Stohl
Atmos. Meas. Tech., 11, 6169–6188, https://doi.org/10.5194/amt-11-6169-2018, https://doi.org/10.5194/amt-11-6169-2018, 2018
Short summary
Short summary
This study presents an artificial release experiment aimed to improve the understanding of turbulence in the atmospheric boundary layer. A new set of image processing methods was developed to analyse the turbulent dispersion of sulfur dioxide (SO2) puffs. For this a tomographic setup of six SO2 cameras was used to image artificially released SO2 gas.
Christine D. Groot Zwaaftink, Stephan Henne, Rona L. Thompson, Edward J. Dlugokencky, Toshinobu Machida, Jean-Daniel Paris, Motoki Sasakawa, Arjo Segers, Colm Sweeney, and Andreas Stohl
Geosci. Model Dev., 11, 4469–4487, https://doi.org/10.5194/gmd-11-4469-2018, https://doi.org/10.5194/gmd-11-4469-2018, 2018
Short summary
Short summary
A Lagrangian particle dispersion model is used to simulate global fields of methane, constrained by observations through nudging. We show that this rather simple and computationally inexpensive method can give results similar to or as good as a computationally expensive Eulerian chemistry transport model with a data assimilation scheme. The three-dimensional methane fields are of interest to applications such as inverse modelling and satellite retrievals.
Nikolaos Evangeliou, Rona L. Thompson, Sabine Eckhardt, and Andreas Stohl
Atmos. Chem. Phys., 18, 15307–15327, https://doi.org/10.5194/acp-18-15307-2018, https://doi.org/10.5194/acp-18-15307-2018, 2018
Short summary
Short summary
We present BC inversions at high northern latitudes in 2013–2015. The emissions were high close to the gas flaring regions in Russia and in western Canada. The posterior emissions of BC at latitudes > 50° N were estimated as 560 ± 171 kt yr-1, smaller than in bottom-up inventories. Posterior concentrations over the Arctic compared with independent observations from flight and ship campaigns showed small biases. Seasonal maxima were estimated in summer months due to biomass burning, mainly in Europe.
Lauren M. Zamora, Ralph A. Kahn, Klaus B. Huebert, Andreas Stohl, and Sabine Eckhardt
Atmos. Chem. Phys., 18, 14949–14964, https://doi.org/10.5194/acp-18-14949-2018, https://doi.org/10.5194/acp-18-14949-2018, 2018
Short summary
Short summary
We use satellite data and model output to estimate how airborne particles (aerosols) affect cloud ice particles and droplets over the Arctic Ocean. Aerosols from sources like smoke and pollution can change cloud cover, precipitation frequency, and the portion of liquid- vs. ice-containing clouds, which in turn can impact the surface energy budget. By improving our understanding these aerosol–cloud interactions, this work can help climate predictions for the rapidly changing Arctic.
Giri Gopalan, Birgir Hrafnkelsson, Guðfinna Aðalgeirsdóttir, Alexander H. Jarosch, and Finnur Pálsson
The Cryosphere, 12, 2229–2248, https://doi.org/10.5194/tc-12-2229-2018, https://doi.org/10.5194/tc-12-2229-2018, 2018
Short summary
Short summary
Geophysical systems can often contain scientific parameters whose values are uncertain, complex underlying dynamics, and field measurements with errors. These components are naturally modeled together within what is known as a Bayesian hierarchical model (BHM). This paper constructs such a model for shallow glaciers based on an approximation of the underlying dynamics. The evaluation of this model is aided by the use of exact analytical solutions from the literature.
Nikolaos Evangeliou, Vladimir P. Shevchenko, Karl Espen Yttri, Sabine Eckhardt, Espen Sollum, Oleg S. Pokrovsky, Vasily O. Kobelev, Vladimir B. Korobov, Andrey A. Lobanov, Dina P. Starodymova, Sergey N. Vorobiev, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 18, 963–977, https://doi.org/10.5194/acp-18-963-2018, https://doi.org/10.5194/acp-18-963-2018, 2018
Short summary
Short summary
We present EC measurements from an uncertain region in terms of emissions (Russia). Its origin is quantified with a Lagrangian model that uses a recently developed feature that allows backward estimation of the specific source locations that contribute to the deposited mass. In NW European Russia transportation and domestic combustion from Finland was important. A systematic underestimation was found in W Siberia at places where gas flaring was important, implying miscalculation or sources.
Bastien Sauvage, Alain Fontaine, Sabine Eckhardt, Antoine Auby, Damien Boulanger, Hervé Petetin, Ronan Paugam, Gilles Athier, Jean-Marc Cousin, Sabine Darras, Philippe Nédélec, Andreas Stohl, Solène Turquety, Jean-Pierre Cammas, and Valérie Thouret
Atmos. Chem. Phys., 17, 15271–15292, https://doi.org/10.5194/acp-17-15271-2017, https://doi.org/10.5194/acp-17-15271-2017, 2017
Short summary
Short summary
We provide the scientific community with a SOFT-IO tool based on the coupling of Lagrangian modeling with emission inventories and aircraft CO measurements, which is able to calculate the contribution of the sources and geographical origins of CO measurements, with good performances. Calculated CO added-value products will help scientists in interpreting large IAGOS CO data set. SOFT-IO could further be applied to other CO data sets or used to help validate emission inventories.
Sabine Eckhardt, Massimo Cassiani, Nikolaos Evangeliou, Espen Sollum, Ignacio Pisso, and Andreas Stohl
Geosci. Model Dev., 10, 4605–4618, https://doi.org/10.5194/gmd-10-4605-2017, https://doi.org/10.5194/gmd-10-4605-2017, 2017
Short summary
Short summary
We extend the backward modelling technique in the existing model FLEXPART to substances deposited at the Earth’s surface by wet scavenging and dry deposition. This means that for existing measurements of a substance in snow, ice cores or rain samples the source regions can be determined. This will help the interpretation of the measurement as well as gaining information of emission strength at the source of the deposited substance.
Ondřej Tichý, Václav Šmídl, Radek Hofman, Kateřina Šindelářová, Miroslav Hýža, and Andreas Stohl
Atmos. Chem. Phys., 17, 12677–12696, https://doi.org/10.5194/acp-17-12677-2017, https://doi.org/10.5194/acp-17-12677-2017, 2017
Short summary
Short summary
In the fall of 2011, iodine-131 (131I) was detected at several radionuclide monitoring stations in central Europe. We estimate the source location and emission variation using only the available 131I measurements. Subsequently, we use the IAEA report about the source term for validation of our results. We find that our algorithm could successfully locate the actual release site. The findings are also in agreement with the values reported by the IAEA.
Franz Conen, Sabine Eckhardt, Hans Gundersen, Andreas Stohl, and Karl Espen Yttri
Atmos. Chem. Phys., 17, 11065–11073, https://doi.org/10.5194/acp-17-11065-2017, https://doi.org/10.5194/acp-17-11065-2017, 2017
Short summary
Short summary
Observation of ice nuclei active at −8 °C show that rainfall drives their abundance throughout all seasons and that they are equally distributed amongst coarse and fine fraction of PM10. Concurrent measurements of fungal spore markers suggest that some fraction of INP-8 may consist of fungal spores during the warm part of the year. Snow cover suppresses the aerosolisation of ice nuclei. Changes in snow cover and rainfall may affect atmospheric concentrations of ice nuclei in future.
Christine D. Groot Zwaaftink, Ólafur Arnalds, Pavla Dagsson-Waldhauserova, Sabine Eckhardt, Joseph M. Prospero, and Andreas Stohl
Atmos. Chem. Phys., 17, 10865–10878, https://doi.org/10.5194/acp-17-10865-2017, https://doi.org/10.5194/acp-17-10865-2017, 2017
Short summary
Short summary
How much dust do Icelandic sources emit and where is this dust deposited? We modelled dust emission and transport from Icelandic sources over 27 years with FLEXPART. Results show that Icelandic dust sources can have emission rates similar to parts of the Sahara and considerable amounts of dust are deposited in the ocean and on glaciers.
Nikolaos Evangeliou, Thomas Hamburger, Anne Cozic, Yves Balkanski, and Andreas Stohl
Atmos. Chem. Phys., 17, 8805–8824, https://doi.org/10.5194/acp-17-8805-2017, https://doi.org/10.5194/acp-17-8805-2017, 2017
Short summary
Short summary
This is the first paper that attempts to assess the source term of the Chernobyl accident using not only activity concentrations but also deposition measurements. This is done by using the FLEXPART model combined with a Bayesian inversion algorithm. Our results show that the altitude of the injection during the first days of the accident might have reached up to 3 km, in contrast to what has been already reported (2.2 km maximum), in order the model to better match observations.
Louise Steffensen Schmidt, Guðfinna Aðalgeirsdóttir, Sverrir Guðmundsson, Peter L. Langen, Finnur Pálsson, Ruth Mottram, Simon Gascoin, and Helgi Björnsson
The Cryosphere, 11, 1665–1684, https://doi.org/10.5194/tc-11-1665-2017, https://doi.org/10.5194/tc-11-1665-2017, 2017
Short summary
Short summary
The regional climate model HIRHAM5 is evaluated over Vatnajökull, Iceland, using automatic weather stations and mass balance observations from 1995 to 2014. From this we asses whether the model can be used to reconstruct the mass balance of the glacier. We find that the simulated energy balance is underestimated overall, but it has been improved by using a new albedo scheme. The specific mass balance is reconstructed back to 1980, thus expanding on the observational records of the mass balance.
Joaquín M. C. Belart, Etienne Berthier, Eyjólfur Magnússon, Leif S. Anderson, Finnur Pálsson, Thorsteinn Thorsteinsson, Ian M. Howat, Guðfinna Aðalgeirsdóttir, Tómas Jóhannesson, and Alexander H. Jarosch
The Cryosphere, 11, 1501–1517, https://doi.org/10.5194/tc-11-1501-2017, https://doi.org/10.5194/tc-11-1501-2017, 2017
Short summary
Short summary
Sub-meter satellite stereo images (Pléiades and WorldView2) are used to accurately measure snow accumulation and winter mass balance of Drangajökull ice cap. This is done by creating and comparing accurate digital elevation models. A glacier-wide geodetic mass balance of 3.33 ± 0.23 m w.e. is derived between October 2014 and May 2015. This method could be easily transposable to remote glaciated areas where seasonal mass balance measurements (especially winter accumulation) are lacking.
Lauren M. Zamora, Ralph A. Kahn, Sabine Eckhardt, Allison McComiskey, Patricia Sawamura, Richard Moore, and Andreas Stohl
Atmos. Chem. Phys., 17, 7311–7332, https://doi.org/10.5194/acp-17-7311-2017, https://doi.org/10.5194/acp-17-7311-2017, 2017
Short summary
Short summary
Clouds have a major but uncertain effect on Arctic surface temperatures. Here, we used remote sensing observations to better understand aerosol effects on one type of Arctic cloud. By modifying a variety of cloud properties, aerosols in this type of cloud indirectly reduced the net warming effect of these clouds on the surface by ~ 10 % of the clean-background cloud effect, not including changes in cloud fraction. This work will improve our ability to predict future Arctic surface temperatures.
Henrik Grythe, Nina I. Kristiansen, Christine D. Groot Zwaaftink, Sabine Eckhardt, Johan Ström, Peter Tunved, Radovan Krejci, and Andreas Stohl
Geosci. Model Dev., 10, 1447–1466, https://doi.org/10.5194/gmd-10-1447-2017, https://doi.org/10.5194/gmd-10-1447-2017, 2017
Short summary
Short summary
A new and more physically based treatment of how removal by precipitation is calculated by FLEXPART is introduced to take into account more aspects of aerosol diversity. Also new is the definition of clouds and cloud properties. Results from simulations show good agreement with observed atmospheric concentrations for distinctly different aerosols. Atmospheric lifetimes were found to vary from a few hours (large aerosol particles) up to a month (small non-soluble particles)
Rona L. Thompson, Motoki Sasakawa, Toshinobu Machida, Tuula Aalto, Doug Worthy, Jost V. Lavric, Cathrine Lund Myhre, and Andreas Stohl
Atmos. Chem. Phys., 17, 3553–3572, https://doi.org/10.5194/acp-17-3553-2017, https://doi.org/10.5194/acp-17-3553-2017, 2017
Short summary
Short summary
Methane (CH4) fluxes were estimated for the high northern latitudes for 2005–2013 based on observations of atmospheric CH4 mixing ratios. Methane fluxes were found to be higher than prior estimates in northern Eurasia and Canada, especially in the Western Siberian Lowlands and the Canadian province Alberta. Significant inter-annual variations in the fluxes were found as well as a small positive trend. In Canada, the trend may be related to an increase in soil temperature over the study period.
Ondřej Tichý, Václav Šmídl, Radek Hofman, and Andreas Stohl
Geosci. Model Dev., 9, 4297–4311, https://doi.org/10.5194/gmd-9-4297-2016, https://doi.org/10.5194/gmd-9-4297-2016, 2016
Short summary
Short summary
Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. We formulate a probabilistic model, where a full Bayesian estimation allows estimation of all tuning parameters from the measurements. The proposed algorithm is tested and compared with the state-of-the-art method on data from the European Tracer Experiment (ETEX), where advantages of the new method are demonstrated.
Xiao Lu, Lin Zhang, Xu Yue, Jiachen Zhang, Daniel A. Jaffe, Andreas Stohl, Yuanhong Zhao, and Jingyuan Shao
Atmos. Chem. Phys., 16, 14687–14702, https://doi.org/10.5194/acp-16-14687-2016, https://doi.org/10.5194/acp-16-14687-2016, 2016
Short summary
Short summary
Increasing wildfire activities in the mountainous western US may present a challenge for the region to attain a recently revised ozone air quality standard in summer. We quantify the wildfire influence on the ozone variability, trends, and number of high ozone days over this region in summers 1989–2010 using a Lagrangian dispersion model and statistical regression models.
Massimo Cassiani, Andreas Stohl, Dirk Olivié, Øyvind Seland, Ingo Bethke, Ignacio Pisso, and Trond Iversen
Geosci. Model Dev., 9, 4029–4048, https://doi.org/10.5194/gmd-9-4029-2016, https://doi.org/10.5194/gmd-9-4029-2016, 2016
Short summary
Short summary
FLEXPART is a community model used by many scientists. Here, an alternative FLEXPART model version has been developed, tailored to use with the output data generated by the Norwegian Earth System Model (NorESM1-M). The model provides an advanced tool to analyse and diagnose atmospheric transport properties of the climate model NorESM. To validate the model, several tests were performed that offered the possibility to investigate some aspects of offline global dispersion modelling.
N. I. Kristiansen, A. Stohl, D. J. L. Olivié, B. Croft, O. A. Søvde, H. Klein, T. Christoudias, D. Kunkel, S. J. Leadbetter, Y. H. Lee, K. Zhang, K. Tsigaridis, T. Bergman, N. Evangeliou, H. Wang, P.-L. Ma, R. C. Easter, P. J. Rasch, X. Liu, G. Pitari, G. Di Genova, S. Y. Zhao, Y. Balkanski, S. E. Bauer, G. S. Faluvegi, H. Kokkola, R. V. Martin, J. R. Pierce, M. Schulz, D. Shindell, H. Tost, and H. Zhang
Atmos. Chem. Phys., 16, 3525–3561, https://doi.org/10.5194/acp-16-3525-2016, https://doi.org/10.5194/acp-16-3525-2016, 2016
Short summary
Short summary
Processes affecting aerosol removal from the atmosphere are not fully understood. In this study we investigate to what extent atmospheric transport models can reproduce observed loss of aerosols. We compare measurements of radioactive isotopes, that attached to ambient sulfate aerosols during the 2011 Fukushima nuclear accident, to 19 models using identical emissions. Results indicate aerosol removal that is too fast in most models, and apply to aerosols that have undergone long-range transport.
Xuekun Fang, Min Shao, Andreas Stohl, Qiang Zhang, Junyu Zheng, Hai Guo, Chen Wang, Ming Wang, Jiamin Ou, Rona L. Thompson, and Ronald G. Prinn
Atmos. Chem. Phys., 16, 3369–3382, https://doi.org/10.5194/acp-16-3369-2016, https://doi.org/10.5194/acp-16-3369-2016, 2016
Short summary
Short summary
This is the first study reporting top-down estimates of benzene and toluene emissions in southern China using atmospheric measurement data from a rural site in the area, an atmospheric transport model and an inverse modeling method. This study shows in detail the temporal and spatial differences between the inversion estimate and four different bottom-up emission inventories (RCP, REAS, MEIC; Yin et al., 2015). We propose that more observations are urgently needed in future.
J. I. Peltoniemi, M. Gritsevich, T. Hakala, P. Dagsson-Waldhauserová, Ó. Arnalds, K. Anttila, H.-R. Hannula, N. Kivekäs, H. Lihavainen, O. Meinander, J. Svensson, A. Virkkula, and G. de Leeuw
The Cryosphere, 9, 2323–2337, https://doi.org/10.5194/tc-9-2323-2015, https://doi.org/10.5194/tc-9-2323-2015, 2015
Short summary
Short summary
Light-absorbing impurities change the reflectance of snow in different ways. Some particles are heated by the Sun and they sink out of sight. During the process, snow may look darker than pure snow when observed by nadir, but at larger view zenith angles the snow may look as white as clean snow. Thus an observer on the ground may overestimate the albedo, while a satellite underestimates the albedo. Climate studies need to examine how the contaminants behave in snow, not only their total amounts.
A. Stohl, B. Aamaas, M. Amann, L. H. Baker, N. Bellouin, T. K. Berntsen, O. Boucher, R. Cherian, W. Collins, N. Daskalakis, M. Dusinska, S. Eckhardt, J. S. Fuglestvedt, M. Harju, C. Heyes, Ø. Hodnebrog, J. Hao, U. Im, M. Kanakidou, Z. Klimont, K. Kupiainen, K. S. Law, M. T. Lund, R. Maas, C. R. MacIntosh, G. Myhre, S. Myriokefalitakis, D. Olivié, J. Quaas, B. Quennehen, J.-C. Raut, S. T. Rumbold, B. H. Samset, M. Schulz, Ø. Seland, K. P. Shine, R. B. Skeie, S. Wang, K. E. Yttri, and T. Zhu
Atmos. Chem. Phys., 15, 10529–10566, https://doi.org/10.5194/acp-15-10529-2015, https://doi.org/10.5194/acp-15-10529-2015, 2015
Short summary
Short summary
This paper presents a summary of the findings of the ECLIPSE EU project. The project has investigated the climate and air quality impacts of short-lived climate pollutants (especially methane, ozone, aerosols) and has designed a global mitigation strategy that maximizes co-benefits between air quality and climate policy. Transient climate model simulations allowed quantifying the impacts on temperature (e.g., reduction in global warming by 0.22K for the decade 2041-2050) and precipitation.
M. Beekmann, A. S. H. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis, H. A. C. Denier van der Gon, M. Crippa, F. Freutel, L. Poulain, V. Ghersi, E. Rodriguez, S. Beirle, P. Zotter, S.-L. von der Weiden-Reinmüller, M. Bressi, C. Fountoukis, H. Petetin, S. Szidat, J. Schneider, A. Rosso, I. El Haddad, A. Megaritis, Q. J. Zhang, V. Michoud, J. G. Slowik, S. Moukhtar, P. Kolmonen, A. Stohl, S. Eckhardt, A. Borbon, V. Gros, N. Marchand, J. L. Jaffrezo, A. Schwarzenboeck, A. Colomb, A. Wiedensohler, S. Borrmann, M. Lawrence, A. Baklanov, and U. Baltensperger
Atmos. Chem. Phys., 15, 9577–9591, https://doi.org/10.5194/acp-15-9577-2015, https://doi.org/10.5194/acp-15-9577-2015, 2015
Short summary
Short summary
A detailed characterization of air quality in the Paris (France) agglomeration, a megacity, during two summer and winter intensive campaigns and from additional 1-year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported into the megacity from upwind regions. Unexpectedly, a major part of organic PM is of modern origin (woodburning and cooking activities, secondary formation from biogenic VOC).
S. Eckhardt, B. Quennehen, D. J. L. Olivié, T. K. Berntsen, R. Cherian, J. H. Christensen, W. Collins, S. Crepinsek, N. Daskalakis, M. Flanner, A. Herber, C. Heyes, Ø. Hodnebrog, L. Huang, M. Kanakidou, Z. Klimont, J. Langner, K. S. Law, M. T. Lund, R. Mahmood, A. Massling, S. Myriokefalitakis, I. E. Nielsen, J. K. Nøjgaard, J. Quaas, P. K. Quinn, J.-C. Raut, S. T. Rumbold, M. Schulz, S. Sharma, R. B. Skeie, H. Skov, T. Uttal, K. von Salzen, and A. Stohl
Atmos. Chem. Phys., 15, 9413–9433, https://doi.org/10.5194/acp-15-9413-2015, https://doi.org/10.5194/acp-15-9413-2015, 2015
Short summary
Short summary
The concentrations of sulfate, black carbon and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality. In this study, we evaluate sulfate and BC concentrations from different updated models and emissions against a comprehensive pan-Arctic measurement data set. We find that the models improved but still struggle to get the maximum concentrations.
L. J. Kramer, D. Helmig, J. F. Burkhart, A. Stohl, S. Oltmans, and R. E. Honrath
Atmos. Chem. Phys., 15, 6827–6849, https://doi.org/10.5194/acp-15-6827-2015, https://doi.org/10.5194/acp-15-6827-2015, 2015
H. Hannesdóttir, H. Björnsson, F. Pálsson, G. Aðalgeirsdóttir, and Sv. Guðmundsson
The Cryosphere, 9, 565–585, https://doi.org/10.5194/tc-9-565-2015, https://doi.org/10.5194/tc-9-565-2015, 2015
P. Dagsson-Waldhauserova, O. Arnalds, and H. Olafsson
Atmos. Chem. Phys., 14, 13411–13422, https://doi.org/10.5194/acp-14-13411-2014, https://doi.org/10.5194/acp-14-13411-2014, 2014
Short summary
Short summary
Iceland is an active dust source in the high-latitude cold region. Dust day frequency in Iceland is comparable to dust studies from the active parts of China, Mongolia, and Iran. About 50% of annual dust events in the southern part of Iceland take place at sub-zero temperatures or in winter, when dust may be mixed with snow. The Arctic dust events (NE Iceland) are warm, occurring during summer/autumn while the sub-Arctic dust events (S Iceland) are mainly cold, occurring during winter/spring.
O. Arnalds, H. Olafsson, and P. Dagsson-Waldhauserova
Biogeosciences, 11, 6623–6632, https://doi.org/10.5194/bg-11-6623-2014, https://doi.org/10.5194/bg-11-6623-2014, 2014
Short summary
Short summary
Iceland is one of the largest dust sources on Earth. Based on two separate methods, we estimate dust emissions to range between 30 and 40 million tons annually. Ocean deposition ranges between 5.5 and 13.8 million tons. Calculated iron deposition in oceans around Iceland ranges between 0.56 to 1.4 million tons, which are distributed over wide areas. Iron is a limiting nutrient for primary production in these waters, and dust is likely to affect oceanic Fe levels around Iceland.
M. Martinez-Camara, B. Béjar Haro, A. Stohl, and M. Vetterli
Geosci. Model Dev., 7, 2303–2311, https://doi.org/10.5194/gmd-7-2303-2014, https://doi.org/10.5194/gmd-7-2303-2014, 2014
T. Trickl, H. Vogelmann, H. Giehl, H.-E. Scheel, M. Sprenger, and A. Stohl
Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, https://doi.org/10.5194/acp-14-9941-2014, 2014
M. Maione, F. Graziosi, J. Arduini, F. Furlani, U. Giostra, D. R. Blake, P. Bonasoni, X. Fang, S. A. Montzka, S. J. O'Doherty, S. Reimann, A. Stohl, and M. K. Vollmer
Atmos. Chem. Phys., 14, 9755–9770, https://doi.org/10.5194/acp-14-9755-2014, https://doi.org/10.5194/acp-14-9755-2014, 2014
K. E. Yttri, C. Lund Myhre, S. Eckhardt, M. Fiebig, C. Dye, D. Hirdman, J. Ström, Z. Klimont, and A. Stohl
Atmos. Chem. Phys., 14, 6427–6442, https://doi.org/10.5194/acp-14-6427-2014, https://doi.org/10.5194/acp-14-6427-2014, 2014
H. Grythe, J. Ström, R. Krejci, P. Quinn, and A. Stohl
Atmos. Chem. Phys., 14, 1277–1297, https://doi.org/10.5194/acp-14-1277-2014, https://doi.org/10.5194/acp-14-1277-2014, 2014
J. Brioude, D. Arnold, A. Stohl, M. Cassiani, D. Morton, P. Seibert, W. Angevine, S. Evan, A. Dingwell, J. D. Fast, R. C. Easter, I. Pisso, J. Burkhart, and G. Wotawa
Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, https://doi.org/10.5194/gmd-6-1889-2013, 2013
M. Cassiani, A. Stohl, and S. Eckhardt
Atmos. Chem. Phys., 13, 9975–9996, https://doi.org/10.5194/acp-13-9975-2013, https://doi.org/10.5194/acp-13-9975-2013, 2013
A. Stohl, Z. Klimont, S. Eckhardt, K. Kupiainen, V. P. Shevchenko, V. M. Kopeikin, and A. N. Novigatsky
Atmos. Chem. Phys., 13, 8833–8855, https://doi.org/10.5194/acp-13-8833-2013, https://doi.org/10.5194/acp-13-8833-2013, 2013
S. Eckhardt, O. Hermansen, H. Grythe, M. Fiebig, K. Stebel, M. Cassiani, A. Baecklund, and A. Stohl
Atmos. Chem. Phys., 13, 8401–8409, https://doi.org/10.5194/acp-13-8401-2013, https://doi.org/10.5194/acp-13-8401-2013, 2013
M. Laborde, M. Crippa, T. Tritscher, Z. Jurányi, P. F. Decarlo, B. Temime-Roussel, N. Marchand, S. Eckhardt, A. Stohl, U. Baltensperger, A. S. H. Prévôt, E. Weingartner, and M. Gysel
Atmos. Chem. Phys., 13, 5831–5856, https://doi.org/10.5194/acp-13-5831-2013, https://doi.org/10.5194/acp-13-5831-2013, 2013
F. Freutel, J. Schneider, F. Drewnick, S.-L. von der Weiden-Reinmüller, M. Crippa, A. S. H. Prévôt, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, R. Sarda-Estève, J. F. Burkhart, S. Eckhardt, A. Stohl, V. Gros, A. Colomb, V. Michoud, J. F. Doussin, A. Borbon, M. Haeffelin, Y. Morille, M. Beekmann, and S. Borrmann
Atmos. Chem. Phys., 13, 933–959, https://doi.org/10.5194/acp-13-933-2013, https://doi.org/10.5194/acp-13-933-2013, 2013
Related subject area
Atmospheric Interactions
Extending the Center for Western Weather and Water Extremes (CW3E) atmospheric river scale to the polar regions
Identifying airborne snow metamorphism with stable water isotopes
Seasonal snow–atmosphere modeling: let's do it
On the importance to consider the cloud dependence in parameterizing the albedo of snow on sea ice
Dynamic and thermodynamic processes related to sea-ice surface melt advance in the Laptev Sea and East Siberian Sea
Understanding the drivers of near-surface winds in Adélie Land, East Antarctica
Understanding snow saltation parameterizations: lessons from theory, experiments and numerical simulations
Brief communication: Significant biases in ERA5 output for the McMurdo Dry Valleys region, Antarctica
Effects of Arctic sea-ice concentration on turbulent surface fluxes in four atmospheric reanalyses
A novel framework to investigate wind-driven snow redistribution over an Alpine glacier: combination of high-resolution terrestrial laser scans and large-eddy simulations
Control of the temperature signal in Antarctic proxies by snowfall dynamics
From atmospheric water isotopes measurement to firn core interpretation in Adélie Land: a case study for isotope-enabled atmospheric models in Antarctica
Atmospheric drivers of melt-related ice speed-up events on the Russell Glacier in southwest Greenland
Amundsen Sea Embayment accumulation variability measured with GNSS-IR
Attributing near-surface atmospheric trends in the Fram Strait region to regional sea ice conditions
Foehn winds at Pine Island Glacier and their role in ice changes
Black carbon concentrations and modeled smoke deposition fluxes to the bare-ice dark zone of the Greenland Ice Sheet
Dynamics of the snow grain size in a windy coastal area of Antarctica from continuous in situ spectral-albedo measurements
Forcing and impact of the Northern Hemisphere continental snow cover in 1979–2014
Climatology and surface impacts of atmospheric rivers on West Antarctica
Multi-annual temperature evolution and implications for cave ice development in a sag-type ice cave in the Austrian Alps
Estimating a mean transport velocity in the marginal ice zone using ice–ocean prediction systems
The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse
On the energy budget of a low-Arctic snowpack
The role of sublimation as a driver of climate signals in the water isotope content of surface snow: laboratory and field experimental results
Continuous monitoring of surface water vapour isotopic compositions at Neumayer Station III, East Antarctica
The distribution and evolution of supraglacial lakes on 79° N Glacier (north-eastern Greenland) and interannual climatic controls
Synoptic control on snow avalanche activity in central Spitsbergen
Mapping the aerodynamic roughness of the Greenland Ice Sheet surface using ICESat-2: evaluation over the K-transect
Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf
Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy
Spatio-temporal flow variations driving heat exchange processes at a mountain glacier
Measurements and modeling of snow albedo at Alerce Glacier, Argentina: effects of volcanic ash, snow grain size, and cloudiness
The influence of föhn winds on annual and seasonal surface melt on the Larsen C Ice Shelf, Antarctica
Reconciling the surface temperature–surface mass balance relationship in models and ice cores in Antarctica over the last 2 centuries
Tracing devastating fires in Portugal to a snow archive in the Swiss Alps: a case study
Systematic bias of Tibetan Plateau snow cover in subseasonal-to-seasonal models
Towards understanding the pattern of glacier mass balances in High Mountain Asia using regional climatic modelling
Warm-air entrainment and advection during alpine blowing snow events
Quantifying the impact of synoptic weather types and patterns on energy fluxes of a marginal snowpack
Radar measurements of blowing snow off a mountain ridge
Brief communication: Rare ambient saturation during drifting snow occurrences at a coastal location of East Antarctica
Understanding snow bedform formation by adding sintering to a cellular automata model
Decadal changes in the leading patterns of sea level pressure in the Arctic and their impacts on the sea ice variability in boreal summer
Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations
Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean
A multi-season investigation of glacier surface roughness lengths through in situ and remote observation
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Brief communication: Analysis of organic matter in surface snow by PTR-MS – implications for dry deposition dynamics in the Alps
Variability in individual particle structure and mixing states between the glacier–snowpack and atmosphere in the northeastern Tibetan Plateau
Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich
The Cryosphere, 18, 5239–5258, https://doi.org/10.5194/tc-18-5239-2024, https://doi.org/10.5194/tc-18-5239-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are long, narrow corridors of strong water vapor transport in the atmosphere. ARs play an important role in extreme weather in polar regions, including heavy rain and/or snow, heat waves, and surface melt. The standard AR scale is developed based on the midlatitude climate and is insufficient for polar regions. This paper introduces an extended version of the AR scale tuned to polar regions, aiming to quantify polar ARs objectively based on their strength and impact.
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024, https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Short summary
Wind-driven airborne transport of snow is a frequent phenomenon in snow-covered regions and a process difficult to study in the field as it is unfolding over large distances. Thus, we use a ring wind tunnel with infinite fetch positioned in a cold laboratory to study the evolution of the shape and size of airborne snow. With the help of stable water isotope analyses, we identify the hitherto unobserved process of airborne snow metamorphism that leads to snow particle rounding and growth.
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024, https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
Short summary
Information about atmospheric variables is needed to produce simulations of mountain snowpacks. We present a model that can represent processes that shape mountain snowpack, focusing on the accumulation of snow. Simulations show that this model can simulate the complex path that a snowflake takes towards the ground and that this leads to differences in the distribution of snow by the end of winter. Overall, this model shows promise with regard to improving forecasts of snow in mountains.
Lara Foth, Wolfgang Dorn, Annette Rinke, Evelyn Jäkel, and Hannah Niehaus
The Cryosphere, 18, 4053–4064, https://doi.org/10.5194/tc-18-4053-2024, https://doi.org/10.5194/tc-18-4053-2024, 2024
Short summary
Short summary
It is demonstrated that the explicit consideration of the cloud dependence of the snow surface albedo in a climate model results in a more realistic simulation of the surface albedo during the snowmelt period in late May and June. Although this improvement appears to be relatively insubstantial, it has significant impact on the simulated sea-ice volume and extent in the model due to an amplification of the snow/sea-ice albedo feedback, one of the main contributors to Arctic amplification.
Hongjie Liang and Wen Zhou
The Cryosphere, 18, 3559–3569, https://doi.org/10.5194/tc-18-3559-2024, https://doi.org/10.5194/tc-18-3559-2024, 2024
Short summary
Short summary
This study identifies the metric of springtime sea-ice surface melt advance in the Laptev Sea and East Siberian Sea, which can be defined on the same date each year and has the potential to be used in the practical seasonal prediction of summer sea ice cover instead of average melt onset. Detailed analysis of dynamic and thermodynamic processes related to different melt advance scenarios in this region imply considerable interannual and interdecadal variability in springtime conditions.
Cécile Davrinche, Anaïs Orsi, Cécile Agosta, Charles Amory, and Christoph Kittel
The Cryosphere, 18, 2239–2256, https://doi.org/10.5194/tc-18-2239-2024, https://doi.org/10.5194/tc-18-2239-2024, 2024
Short summary
Short summary
Coastal surface winds in Antarctica are amongst the strongest winds on Earth. They are either driven by the cooling of the surface air mass by the ice sheet (katabatic) or by large-scale pressure systems. Here we compute the relative contribution of these drivers. We find that seasonal variations in the wind speed come from the katabatic acceleration, but, at a 3-hourly timescale, none of the large-scale or katabatic accelerations can be considered as the main driver.
Daniela Brito Melo, Armin Sigmund, and Michael Lehning
The Cryosphere, 18, 1287–1313, https://doi.org/10.5194/tc-18-1287-2024, https://doi.org/10.5194/tc-18-1287-2024, 2024
Short summary
Short summary
Snow saltation – the transport of snow close to the surface – occurs when the wind blows over a snow-covered surface with sufficient strength. This phenomenon is represented in some climate models; however, with limited accuracy. By performing numerical simulations and a detailed analysis of previous works, we show that snow saltation is characterized by two regimes. This is not represented in climate models in a consistent way, which hinders the quantification of snow transport and sublimation.
Ricardo Garza-Girón and Slawek M. Tulaczyk
The Cryosphere, 18, 1207–1213, https://doi.org/10.5194/tc-18-1207-2024, https://doi.org/10.5194/tc-18-1207-2024, 2024
Short summary
Short summary
By analyzing temperature time series over more than 20 years, we have found a discrepancy between the 2 m temperature values reported by the ERA5 reanalysis and the automatic weather stations in the McMurdo Dry Valleys, Antarctica.
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
The Cryosphere, 18, 957–976, https://doi.org/10.5194/tc-18-957-2024, https://doi.org/10.5194/tc-18-957-2024, 2024
Short summary
Short summary
A prerequisite for understanding the local, regional, and hemispherical impacts of Arctic sea-ice decline on the atmosphere is to quantify the effects of sea-ice concentration (SIC) on the sensible and latent heat fluxes in the Arctic. We analyse these effects utilising four data sets called atmospheric reanalyses, and we evaluate uncertainties in these effects arising from inter-reanalysis differences in SIC and in the sensitivity of the latent and sensible heat fluxes to SIC.
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024, https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary
Short summary
Wind-driven snow redistribution affects glacier mass balance. A case study of Hintereisferner glacier in Austria used high-resolution observations and simulations to model snow redistribution. Simulations matched observations, showing the potential of the model for studying snow redistribution on other mountain glaciers.
Aymeric P. M. Servettaz, Cécile Agosta, Christoph Kittel, and Anaïs J. Orsi
The Cryosphere, 17, 5373–5389, https://doi.org/10.5194/tc-17-5373-2023, https://doi.org/10.5194/tc-17-5373-2023, 2023
Short summary
Short summary
It has been previously observed in polar regions that the atmospheric temperature is warmer during precipitation events. Here, we use a regional atmospheric model to quantify the temperature changes associated with snowfall events across Antarctica. We show that more intense snowfall is statistically associated with a warmer temperature anomaly compared to the seasonal average, with the largest anomalies seen in winter. This bias may affect water isotopes in ice cores deposited during snowfall.
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frédéric Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
The Cryosphere, 17, 5241–5254, https://doi.org/10.5194/tc-17-5241-2023, https://doi.org/10.5194/tc-17-5241-2023, 2023
Short summary
Short summary
In the face of global warming, understanding the changing water cycle and temperatures in polar regions is crucial. These factors directly impact the balance of ice sheets in the Arctic and Antarctic. By studying the composition of water vapor, we gain insights into climate variations. Our 2-year study at Dumont d’Urville station, Adélie Land, offers valuable data to refine models. Additionally, we demonstrate how modeling aids in interpreting signals from ice core samples in the region.
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023, https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet contributes strongly to sea level rise in the warming climate. One process that can affect the ice sheet's mass balance is short-term ice speed-up events. These can be caused by high melting or rainfall as the water flows underneath the glacier and allows for faster sliding. In this study we found three main weather patterns that cause such ice speed-up events on the Russell Glacier in southwest Greenland and analyzed how they induce local melting and ice accelerations.
Andrew O. Hoffman, Michelle Maclennan, Jan Lenaerts, Kristine M. Larson, and Knut Chrsitianson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-114, https://doi.org/10.5194/tc-2023-114, 2023
Revised manuscript accepted for TC
Short summary
Short summary
Traditionally, glaciologists have used GNSS to measure the surface elevation, and velocity of glaciers to understand processes associated with ice flow. Using the interference of GNSS signals that bounce off of the ice sheet surface, we measure the surface height change of several receivers in the Amundsen Sea Embayment. From surface height change, we infer accumulation records and use these records to understand the drivers of extreme precipitation on Thwaites Glacier.
Amelie U. Schmitt and Christof Lüpkes
The Cryosphere, 17, 3115–3136, https://doi.org/10.5194/tc-17-3115-2023, https://doi.org/10.5194/tc-17-3115-2023, 2023
Short summary
Short summary
In the last few decades, the region between Greenland and Svalbard has experienced the largest loss of Arctic sea ice in winter. We analyze how changes in air temperature, humidity and wind in this region differ for winds that originate from sea ice covered areas and from the open ocean. The largest impacts of sea ice cover are found for temperatures close to the ice edge and up to a distance of 500 km. Up to two-thirds of the observed temperature variability is related to sea ice changes.
Diana Francis, Ricardo Fonseca, Kyle S. Mattingly, Stef Lhermitte, and Catherine Walker
The Cryosphere, 17, 3041–3062, https://doi.org/10.5194/tc-17-3041-2023, https://doi.org/10.5194/tc-17-3041-2023, 2023
Short summary
Short summary
Role of Foehn Winds in ice and snow conditions at the Pine Island Glacier, West Antarctica.
Alia L. Khan, Peng Xian, and Joshua P. Schwarz
The Cryosphere, 17, 2909–2918, https://doi.org/10.5194/tc-17-2909-2023, https://doi.org/10.5194/tc-17-2909-2023, 2023
Short summary
Short summary
Ice–albedo feedbacks in the ablation region of the Greenland Ice Sheet are difficult to constrain and model. Surface samples were collected across the 2014 summer melt season from different ice surface colors. On average, concentrations were higher in patches that were visibly dark, compared to medium patches and light patches, suggesting that black carbon aggregation contributed to snow aging, and vice versa. High concentrations are likely due to smoke transport from high-latitude wildfires.
Sara Arioli, Ghislain Picard, Laurent Arnaud, and Vincent Favier
The Cryosphere, 17, 2323–2342, https://doi.org/10.5194/tc-17-2323-2023, https://doi.org/10.5194/tc-17-2323-2023, 2023
Short summary
Short summary
To assess the drivers of the snow grain size evolution during snow drift, we exploit a 5-year time series of the snow grain size retrieved from spectral-albedo observations made with a new, autonomous, multi-band radiometer and compare it to observations of snow drift, snowfall and snowmelt at a windy location of coastal Antarctica. Our results highlight the complexity of the grain size evolution in the presence of snow drift and show an overall tendency of snow drift to limit its variations.
Guillaume Gastineau, Claude Frankignoul, Yongqi Gao, Yu-Chiao Liang, Young-Oh Kwon, Annalisa Cherchi, Rohit Ghosh, Elisa Manzini, Daniela Matei, Jennifer Mecking, Lingling Suo, Tian Tian, Shuting Yang, and Ying Zhang
The Cryosphere, 17, 2157–2184, https://doi.org/10.5194/tc-17-2157-2023, https://doi.org/10.5194/tc-17-2157-2023, 2023
Short summary
Short summary
Snow cover variability is important for many human activities. This study aims to understand the main drivers of snow cover in observations and models in order to better understand it and guide the improvement of climate models and forecasting systems. Analyses reveal a dominant role for sea surface temperature in the Pacific. Winter snow cover is also found to have important two-way interactions with the troposphere and stratosphere. No robust influence of the sea ice concentration is found.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Maria Wind, Friedrich Obleitner, Tanguy Racine, and Christoph Spötl
The Cryosphere, 16, 3163–3179, https://doi.org/10.5194/tc-16-3163-2022, https://doi.org/10.5194/tc-16-3163-2022, 2022
Short summary
Short summary
We present a thorough analysis of the thermal conditions of a sag-type ice cave in the Austrian Alps using temperature measurements for the period 2008–2021. Apart from a long-term increasing temperature trend in all parts of the cave, we find strong interannual and spatial variations as well as a characteristic seasonal pattern. Increasing temperatures further led to a drastic decrease in cave ice. A first attempt to model ablation based on temperature shows promising results.
Graig Sutherland, Victor de Aguiar, Lars-Robert Hole, Jean Rabault, Mohammed Dabboor, and Øyvind Breivik
The Cryosphere, 16, 2103–2114, https://doi.org/10.5194/tc-16-2103-2022, https://doi.org/10.5194/tc-16-2103-2022, 2022
Short summary
Short summary
The marginal ice zone (MIZ), which is the transition region between the open ocean and the dense pack ice, is a very dynamic region comprising a mixture of ice and ocean conditions. Using novel drifters deployed in various ice conditions in the MIZ, several material transport models are tested with two operational ice–ocean prediction systems. A new general transport equation, which uses both the ice and ocean solutions, is developed that reduces the error in drift prediction for our case study.
Matthew K. Laffin, Charles S. Zender, Melchior van Wessem, and Sebastián Marinsek
The Cryosphere, 16, 1369–1381, https://doi.org/10.5194/tc-16-1369-2022, https://doi.org/10.5194/tc-16-1369-2022, 2022
Short summary
Short summary
The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula (AP) occurred while the ice shelves were covered with large melt lakes, and ocean waves damaged the ice shelf fronts, triggering collapse. Observations show föhn winds were present on both ice shelves and increased surface melt and drove sea ice away from the ice front. Collapsed ice shelves experienced enhanced surface melt driven by föhn winds, whereas extant ice shelves are affected less by föhn-wind-induced melt.
Georg Lackner, Florent Domine, Daniel F. Nadeau, Annie-Claude Parent, François Anctil, Matthieu Lafaysse, and Marie Dumont
The Cryosphere, 16, 127–142, https://doi.org/10.5194/tc-16-127-2022, https://doi.org/10.5194/tc-16-127-2022, 2022
Short summary
Short summary
The surface energy budget is the sum of all incoming and outgoing energy fluxes at the Earth's surface and has a key role in the climate. We measured all these fluxes for an Arctic snowpack and found that most incoming energy from radiation is counterbalanced by thermal radiation and heat convection while sublimation was negligible. Overall, the snow model Crocus was able to simulate the observed energy fluxes well.
Abigail G. Hughes, Sonja Wahl, Tyler R. Jones, Alexandra Zuhr, Maria Hörhold, James W. C. White, and Hans Christian Steen-Larsen
The Cryosphere, 15, 4949–4974, https://doi.org/10.5194/tc-15-4949-2021, https://doi.org/10.5194/tc-15-4949-2021, 2021
Short summary
Short summary
Water isotope records in Greenland and Antarctic ice cores are a valuable proxy for paleoclimate reconstruction and are traditionally thought to primarily reflect precipitation input. However,
post-depositional processes are hypothesized to contribute to the isotope climate signal. In this study we use laboratory experiments, field experiments, and modeling to show that sublimation and vapor–snow isotope exchange can rapidly influence the isotopic composition of the snowpack.
Saeid Bagheri Dastgerdi, Melanie Behrens, Jean-Louis Bonne, Maria Hörhold, Gerrit Lohmann, Elisabeth Schlosser, and Martin Werner
The Cryosphere, 15, 4745–4767, https://doi.org/10.5194/tc-15-4745-2021, https://doi.org/10.5194/tc-15-4745-2021, 2021
Short summary
Short summary
In this study, for the first time, water vapour isotope measurements in Antarctica for all seasons of a year are performed. Local temperature is identified as the main driver of δ18O and δD variability. A similar slope of the temperature–δ18O relationship in vapour and surface snow points to the water vapour isotope content as a potential key driver. This dataset can be used as a new dataset to evaluate the capability of isotope-enhanced climate models.
Jenny V. Turton, Philipp Hochreuther, Nathalie Reimann, and Manuel T. Blau
The Cryosphere, 15, 3877–3896, https://doi.org/10.5194/tc-15-3877-2021, https://doi.org/10.5194/tc-15-3877-2021, 2021
Short summary
Short summary
We assess the climatic controls of melt lake development, melt duration, melt extent, and the spatial distribution of lakes of 79°N Glacier. There is a large interannual variability in the areal extent of the lakes and the maximum elevation of lake development, which is largely controlled by the summertime air temperatures and the snowpack thickness. Late-summer lake development can be prompted by spikes in surface mass balance. There is some evidence of inland expansion of lakes over time.
Holt Hancock, Jordy Hendrikx, Markus Eckerstorfer, and Siiri Wickström
The Cryosphere, 15, 3813–3837, https://doi.org/10.5194/tc-15-3813-2021, https://doi.org/10.5194/tc-15-3813-2021, 2021
Short summary
Short summary
We investigate how snow avalanche activity in central Spitsbergen, Svalbard, is broadly controlled by atmospheric circulation. Avalanche activity in this region is generally associated with atmospheric circulation conducive to increased precipitation, wind speeds, and air temperatures near Svalbard during winter storms. Our results help place avalanche activity on Spitsbergen in the wider context of Arctic environmental change and provide a foundation for improved avalanche forecasting here.
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke
The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021, https://doi.org/10.5194/tc-15-2601-2021, 2021
Short summary
Short summary
We developed a method to estimate the aerodynamic properties of the Greenland Ice Sheet surface using either UAV or ICESat-2 elevation data. We show that this new method is able to reproduce the important spatiotemporal variability in surface aerodynamic roughness, measured by the field observations. The new maps of surface roughness can be used in atmospheric models to improve simulations of surface turbulent heat fluxes and therefore surface energy and mass balance over rough ice worldwide.
Diana Francis, Kyle S. Mattingly, Stef Lhermitte, Marouane Temimi, and Petra Heil
The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, https://doi.org/10.5194/tc-15-2147-2021, 2021
Short summary
Short summary
The unexpected September 2019 calving event from the Amery Ice Shelf, the largest since 1963 and which occurred almost a decade earlier than expected, was triggered by atmospheric extremes. Explosive twin polar cyclones provided a deterministic role in this event by creating oceanward sea surface slope triggering the calving. The observed record-anomalous atmospheric conditions were promoted by blocking ridges and Antarctic-wide anomalous poleward transport of heat and moisture.
Thorsten Bartels-Rausch, Xiangrui Kong, Fabrizio Orlando, Luca Artiglia, Astrid Waldner, Thomas Huthwelker, and Markus Ammann
The Cryosphere, 15, 2001–2020, https://doi.org/10.5194/tc-15-2001-2021, https://doi.org/10.5194/tc-15-2001-2021, 2021
Short summary
Short summary
Chemical reactions in sea salt embedded in coastal polar snow impact the composition and air quality of the atmosphere. Here, we investigate the phase changes of sodium chloride. This is of importance as chemical reactions proceed faster in liquid solutions compared to in solid salt and the precise precipitation temperature of sodium chloride is still under debate. We focus on the upper nanometres of sodium chloride–ice samples because of their role as a reactive interface in the environment.
Rebecca Mott, Ivana Stiperski, and Lindsey Nicholson
The Cryosphere, 14, 4699–4718, https://doi.org/10.5194/tc-14-4699-2020, https://doi.org/10.5194/tc-14-4699-2020, 2020
Short summary
Short summary
The Hintereisferner Experiment (HEFEX) investigated spatial and temporal dynamics of the near-surface boundary layer and associated heat exchange processes close to the glacier surface during the melting season. Turbulence data suggest that strong changes in the local thermodynamic characteristics occur when westerly flows disturbed prevailing katabatic flow, forming across-glacier flows and facilitating warm-air advection from the surrounding ice-free areas, which potentially promote ice melt.
Julián Gelman Constantin, Lucas Ruiz, Gustavo Villarosa, Valeria Outes, Facundo N. Bajano, Cenlin He, Hector Bajano, and Laura Dawidowski
The Cryosphere, 14, 4581–4601, https://doi.org/10.5194/tc-14-4581-2020, https://doi.org/10.5194/tc-14-4581-2020, 2020
Short summary
Short summary
We present the results of two field campaigns and modeling activities on the impact of atmospheric particles on Alerce Glacier (Argentinean Andes). We found that volcanic ash remains at different snow layers several years after eruption, increasing light absorption on the glacier surface (with a minor contribution of soot). This leads to 36 % higher annual glacier melting. We find remarkably that volcano eruptions in 2011 and 2015 have a relevant effect on the glacier even in 2016 and 2017.
Jenny V. Turton, Amélie Kirchgaessner, Andrew N. Ross, John C. King, and Peter Kuipers Munneke
The Cryosphere, 14, 4165–4180, https://doi.org/10.5194/tc-14-4165-2020, https://doi.org/10.5194/tc-14-4165-2020, 2020
Short summary
Short summary
Föhn winds are warm and dry downslope winds in the lee of a mountain range, such as the Antarctic Peninsula. Föhn winds heat the ice of the Larsen C Ice Shelf at the base of the mountains and promote more melting than during non-föhn periods in spring, summer and autumn in both model output and observations. Especially in spring, when they are most frequent, föhn winds can extend the melt season by over a month and cause a similar magnitude of melting to that observed in summer.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Wenkai Li, Shuzhen Hu, Pang-Chi Hsu, Weidong Guo, and Jiangfeng Wei
The Cryosphere, 14, 3565–3579, https://doi.org/10.5194/tc-14-3565-2020, https://doi.org/10.5194/tc-14-3565-2020, 2020
Short summary
Short summary
Understanding the forecasting skills of the subseasonal-to-seasonal (S2S) model on Tibetan Plateau snow cover (TPSC) is the first step to applying the S2S model to hydrological forecasts over the Tibetan Plateau. This study conducted a multimodel comparison of the TPSC prediction skill to learn about their performance in capturing TPSC variability. S2S models can skillfully forecast TPSC within a lead time of 2 weeks but show limited skill beyond 3 weeks. Systematic biases of TPSC were found.
Remco J. de Kok, Philip D. A. Kraaijenbrink, Obbe A. Tuinenburg, Pleun N. J. Bonekamp, and Walter W. Immerzeel
The Cryosphere, 14, 3215–3234, https://doi.org/10.5194/tc-14-3215-2020, https://doi.org/10.5194/tc-14-3215-2020, 2020
Short summary
Short summary
Glaciers worldwide are shrinking, yet glaciers in parts of High Mountain Asia are growing. Using models of the regional climate and glacier growth, we reproduce the observed patterns of glacier growth and shrinkage in High Mountain Asia of the last decades. Increases in snow, in part from water that comes from lowland agriculture, have probably been more important than changes in temperature to explain the growing glaciers. We now better understand changes in the crucial mountain water cycle.
Nikolas O. Aksamit and John W. Pomeroy
The Cryosphere, 14, 2795–2807, https://doi.org/10.5194/tc-14-2795-2020, https://doi.org/10.5194/tc-14-2795-2020, 2020
Short summary
Short summary
In cold regions, it is increasingly important to quantify the amount of water stored as snow at the end of winter. Current models are inconsistent in their estimates of snow sublimation due to atmospheric turbulence. Specific wind structures have been identified that amplify potential rates of surface and blowing snow sublimation during blowing snow storms. The recurrence of these motions has been modeled by a simple scaling argument that has its foundation in turbulent boundary layer theory.
Andrew J. Schwartz, Hamish A. McGowan, Alison Theobald, and Nik Callow
The Cryosphere, 14, 2755–2774, https://doi.org/10.5194/tc-14-2755-2020, https://doi.org/10.5194/tc-14-2755-2020, 2020
Short summary
Short summary
This study measured energy available for snowmelt during the 2016 and 2017 snow seasons in Kosciuszko National Park, NSW, Australia, and identified common traits for days with similar weather characteristics. The analysis showed that energy available for snowmelt was highest in the days before cold fronts passed through the region due to higher air temperatures. Regardless of differences in daily weather characteristics, solar radiation contributed the highest amount of energy to snowpack melt.
Benjamin Walter, Hendrik Huwald, Josué Gehring, Yves Bühler, and Michael Lehning
The Cryosphere, 14, 1779–1794, https://doi.org/10.5194/tc-14-1779-2020, https://doi.org/10.5194/tc-14-1779-2020, 2020
Short summary
Short summary
We applied a horizontally mounted low-cost precipitation radar to measure velocities, frequency of occurrence, travel distances and turbulence characteristics of blowing snow off a mountain ridge. Our analysis provides a first insight into the potential of radar measurements for determining blowing snow characteristics, improves our understanding of mountain ridge blowing snow events and serves as a valuable data basis for validating coupled numerical weather and snowpack simulations.
Charles Amory and Christoph Kittel
The Cryosphere, 13, 3405–3412, https://doi.org/10.5194/tc-13-3405-2019, https://doi.org/10.5194/tc-13-3405-2019, 2019
Short summary
Short summary
Snow mass fluxes and vertical profiles of relative humidity are used to document concurrent occurrences of drifting snow and near-surface air saturation at a site dominated by katabatic winds in East Antarctica. Despite a high prevalence of drifting snow conditions, we demonstrate that saturation is reached only in the most extreme wind and transport conditions and discuss implications for the understanding of surface mass and atmospheric moisture budgets of the Antarctic ice sheet.
Varun Sharma, Louise Braud, and Michael Lehning
The Cryosphere, 13, 3239–3260, https://doi.org/10.5194/tc-13-3239-2019, https://doi.org/10.5194/tc-13-3239-2019, 2019
Short summary
Short summary
Snow surfaces, under the action of wind, form beautiful shapes such as waves and dunes. This study is the first ever study to simulate these shapes using a state-of-the-art numerical modelling tool. While these beautiful and ephemeral shapes on snow surfaces are fascinating from a purely aesthetic point of view, they are also critical in regulating the transfer of heat and mass between the atmosphere and snowpacks, thus being of huge importance to the Earth system.
Nakbin Choi, Kyu-Myong Kim, Young-Kwon Lim, and Myong-In Lee
The Cryosphere, 13, 3007–3021, https://doi.org/10.5194/tc-13-3007-2019, https://doi.org/10.5194/tc-13-3007-2019, 2019
Short summary
Short summary
This study compares the decadal changes of the leading patterns of sea level pressure between the early (1982–1997) and the recent (1998–2017) periods as well as their influences on the Arctic sea ice extent (SIE) variability. The correlation between the Arctic Dipole (AD) mode and SIE becomes significant in the recent period, not in the past, due to its spatial pattern change. This tends to enhance meridional wind over the Fram Strait and sea ice discharge to the Atlantic.
Yvan Orsolini, Martin Wegmann, Emanuel Dutra, Boqi Liu, Gianpaolo Balsamo, Kun Yang, Patricia de Rosnay, Congwen Zhu, Wenli Wang, Retish Senan, and Gabriele Arduini
The Cryosphere, 13, 2221–2239, https://doi.org/10.5194/tc-13-2221-2019, https://doi.org/10.5194/tc-13-2221-2019, 2019
Short summary
Short summary
The Tibetan Plateau region exerts a considerable influence on regional climate, yet the snowpack over that region is poorly represented in both climate and forecast models due a large precipitation and snowfall bias. We evaluate the snowpack in state-of-the-art atmospheric reanalyses against in situ observations and satellite remote sensing products. Improved snow initialisation through better use of snow observations in reanalyses may improve medium-range to seasonal weather forecasts.
Haibo Bi, Qinghua Yang, Xi Liang, Liang Zhang, Yunhe Wang, Yu Liang, and Haijun Huang
The Cryosphere, 13, 1423–1439, https://doi.org/10.5194/tc-13-1423-2019, https://doi.org/10.5194/tc-13-1423-2019, 2019
Short summary
Short summary
The Arctic sea ice extent is diminishing, which is deemed an immediate response to a warmer Earth. However, quantitative estimates about the contribution due to transport and melt to the sea ice loss are still vague. This study mainly utilizes satellite observations to quantify the dynamic and thermodynamic aspects of ice loss for nearly 40 years (1979–2016). In addition, the potential impacts on ice reduction due to different atmospheric circulation pattern are highlighted.
Noel Fitzpatrick, Valentina Radić, and Brian Menounos
The Cryosphere, 13, 1051–1071, https://doi.org/10.5194/tc-13-1051-2019, https://doi.org/10.5194/tc-13-1051-2019, 2019
Short summary
Short summary
Measurements of surface roughness are rare on glaciers, despite being an important control for heat exchange with the atmosphere and surface melt. In this study, roughness values were determined through measurements at multiple locations and seasons and found to vary across glacier surfaces and to differ from commonly assumed values in melt models. Two new methods that remotely determine roughness from digital elevation models returned good performance and may facilitate improved melt modelling.
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019, https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary
Short summary
Observed summer Arctic sea ice retreat has been faster than simulated by the average CMIP5 models, most of which exclude falling ice particles from their radiative calculations.
We use controlled CESM1-CAM5 simulations to show for the first time that snowflakes' radiative effects can accelerate sea ice retreat. September retreat rates are doubled above current CO2 levels, highlighting falling ice radiative effects as a high priority for inclusion in future modelling of the Arctic.
Dušan Materić, Elke Ludewig, Kangming Xu, Thomas Röckmann, and Rupert Holzinger
The Cryosphere, 13, 297–307, https://doi.org/10.5194/tc-13-297-2019, https://doi.org/10.5194/tc-13-297-2019, 2019
Zhiwen Dong, Shichang Kang, Dahe Qin, Yaping Shao, Sven Ulbrich, and Xiang Qin
The Cryosphere, 12, 3877–3890, https://doi.org/10.5194/tc-12-3877-2018, https://doi.org/10.5194/tc-12-3877-2018, 2018
Short summary
Short summary
This study aimed to provide a first and unique record of physicochemical properties and mixing states of LAPs at the glacier and atmosphere interface over the northeastern Tibetan Plateau to determine the individual LAPs' structure aging and mixing state changes through the atmospheric deposition process from atmosphere to glacier–snowpack surface, thereby helping to characterize the LAPs' radiative forcing and climate effects in the cryosphere region.
Cited articles
AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, vii +, 116 pp., 2015.
Arnalds, O.: Dust sources and deposition of aeolian materials in Iceland, Icelandic Agricultural Sciences, 23, 3–21, 2010.
Arnalds, O.: The soils of Iceland, Springer, Dordrecht, the Netherlands, 160 pp., 2015.
Arnalds, O., Gisladottir, F. O., and Sigurjonsson, H.: Sandy deserts of Iceland: an overview, J. Arid Environ., 47, 359–371, 2001.
Arnalds, O., Olafsson, H., and Dagsson-Waldhauserova, P.: Quantification of iron-rich volcanogenic dust emissions and deposition over the ocean from Icelandic dust sources, Biogeosciences, 11, 6623–6632, https://doi.org/10.5194/bg-11-6623-2014, 2014.
Arnalds, O., Dagsson-Waldhauserova, P., and Olafsson, H.: The Icelandic volcanic aeolian environment: Processes and impacts – A review, Aeolian Research, 20, 176–195, 2016.
Baddock, M. C., Mockford, T., Bullard, J. E., and Thorsteinsson, T.: Pathways of high-latitude dust in the North Atlantic, Earth Planet. Sc. Lett., 459, 170–182, 2017.
Björnsson, H. and Pálsson, F.: Icelandic glaciers, Jökull, 58, 365–386, 2008.
Björnsson, H., Pálsson, F., Gudmundsson, S., Magnússon, E., Adalgeirsdóttir, G., Jóhannesson, T., Berthier, E., Sigurdsson, O., and Thorsteinsson, T.: Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age, Geophys. Res. Lett., 40, 1–5, https://doi.org/10.1002/grl.50278, 2013.
Budyko, M. I.: The effect of solar radiation variations on the climate of the earth, Tellus, 21, 611–619, 1969.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, 693 pp., Academic Press, 2010.
Dadic, R., Mullen, P. C., Schneebeli, M., Brandt, R. E., and Warren, S. G.: Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the Transantarctic Mountains: Implications for sea glaciers on Snowball Earth, J. Geophys. Res.-Earth, 118, 1658–1676, 2013.
Dagsson-Waldhauserova, P., Arnalds, O., and Olafsson, H.: Long-term frequency and characteristics of dust storm events in Northeast Iceland (1949–2011), Atmos. Environ., 77, 117–127, 2013.
Dagsson-Waldhauserova, P., Arnalds, O., Olafsson, H., Skrabalova, L., Sigurdardottir, G. M., Branis, M., Hladil, J., Skala, R., Navratil, T., Chadimova, L., Von Lowis of Menar, S., Throsteinsson, T., Krage Carlsen, H., and Jonsdottir, I.: Physical properties of suspended dust during moist and low wind conditions in Iceland, Icelandic Agricultural Sciences, 27, 25–39, 2014.
Dagsson-Waldhauserova, P., Arnalds, O., Olafsson, H., Hladil, J., Skala, R., Navratil, T., Chadimova, L., and Meinander, O.: Snow–dust storm: unique case study from Iceland, 6–7 March 2013, Aeolian Research, 16, 69–74, 2015.
Davies, S. M., Larsen, G., Wastegård, S., Turney, C. S., Hall, V. A., Coyle, L., and Thordarson, T.: Widespread dispersal of Icelandic tephra: how does the Eyjafjöll eruption of 2010 compare to past Icelandic events?, J. Quaternary Sci., 25, 605–611, 2010.
Di Mauro, B., Fava, F., Ferrero, L., Garzonio, R., Baccolo, G., Delmonte, B., and Colombo, R.: Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations, J. Geophys. Res.-Atmos., 120, 6080–6097, 2015.
Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L., Brandt, R. E., and Warren, S. G.: Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow, J. Geophys. Res.-Atmos., 118, 5553–5569, 2013.
Dragosics, M., Meinander, O., Jónsdóttir, T., Dürig, T., De Leeuw, G., Pálsson, F., Dagsson-Waldhauserová, P., and Thorsteinsson, T.: Insulation effects of Icelandic dust and volcanic ash on snow and ice, Arab. J. Geosci., 9, 1–10, 2016.
Dumont, M., Brun, E., Picard, G., Michou, M., Libois, Q., Petit, J. R., Morin, S., and Josse, B.: Contribution of light-absorbing impurities in snow to Greenland/'s darkening since 2009, Nat. Geosci., 7, 509–512, 2014.
Eerola, K.: About the performance of HIRLAM version 7.0, HIRLAM Newsletter, 51, 93–102, 2006.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from black carbon in snow, J. Geophys. Res.-Atmos., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Flanner, M. G., Gardner, A. S., Eckhardt, S., Stohl, A., and Perket, J.: Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions, J. Geophys. Res., 119, 9481–9491, https://doi.org/10.1002/2014JD021977, 2014.
Gabbi, J., Huss, M., Bauder, A., Cao, F., and Schwikowski, M.: The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier, The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, 2015.
Goelles, T., Bøggild, C. E., and Greve, R.: Ice sheet mass loss caused by dust and black carbon accumulation, The Cryosphere, 9, 1845–1856, https://doi.org/10.5194/tc-9-1845-2015, 2015.
Groot Zwaaftink, C. D., Grythe, H., Skov, H., and Stohl, A.: Substantial contribution of northern high-latitude sources to mineral dust in the Arctic, J. Geophys. Res.-Atmos., 121, 13678–13697, https://doi.org/10.1002/2016JD025482, 2016.
Guðmundsson, S., Björnsson, H., Pálsson, F., and Haraldsson, H. H.: Energy balance of Brúarjökull and circumstances leading to the August 2004 floods in the river Jökla, N-Vatnajökull, Jökull, 55, 1–18, 2006.
Guðmundsson, S., Björnsson, H., Pálsson, F., and Haraldsson, H. H.: Comparison of energy balance and degree-day models of summer ablation on the Langjökull ice cap, SW-Iceland, Jökull, 59, 1–18, 2009.
Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos, P. Natl. Acad. Sci. USA, 101, 423–428, 2004.
He, C., Li, Q. B., Liou, K. N., Takano, Y., Gu, Y., Qi, L., Mao, Y. H., and Leung, L. R.: Black carbon radiative forcing over the Tibetan Plateau, Geophys. Res. Lett., 41, 7806–7813, https://doi.org/10.1002/2014gl062191, 2014.
Hock, R.: Glacier melt: a review of processes and their modelling, Prog. Phys. Geog., 29, 362–391, 2005.
IPCC: Climate change 2013: The physical science basis, in: Working Group I, Contribution to the IPCC 5th Assessment Report – summary for policy makers, edited by: Stocker, T. F., Quin, D., Plattner, G., Tignor, M. M. B., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., 2013.
Kipp & Zonen Instruction Manual for Pyranometer/Albedometer CM11 and CM14, available at: http://www.kippzonen.com (last access: 30 August 2016), 2000.
Kok, J. F.: A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle, P. Natl. Acad. Sci., 108, 1016–1021, 2011.
Langen, P. L., Mottram, R. H., Christensen, J. H., Boberg, F., Rodehacke, C. B., Stendel, M., van As, D., Ahlstrøm, A. P., Mortensen, J., Rysgaard, S., Petersen, D., Svendsen, K. H. , Aðalgeirsdóttir, G., and Cappelen, J.: Quantifying Energy and Mass Fluxes Controlling Godthåbsfjord Freshwater Input in a 5-km Simulation (1991–2012), J. Climate, 28, 3694–3713, 2015.
Lucas-Picher, P., Wulff-Nielsen, M., Christensen, J. H., Adalgeirsdóttir, G., Mottram, R. H., and Simonsen, S. B.: Very high resolution regional climate model simulations over Greenland: Identifying added value, J. Geophys. Res., 121, 13678–13697 , 2012.
Marticorena, B. and Bergametti, G.: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme, J. Geophys. Res.-Atmos., 100, 16415–16430, 1995.
Meinander, O., Kontu, A., Virkkula, A., Arola, A., Backman, L., Dagsson-Waldhauserová, P., Järvinen, O., Manninen, T., Svensson, J., de Leeuw, G., and Leppäranta, M.: Brief communication: Light-absorbing impurities can reduce the density of melting snow, The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014, 2014.
Meinander, O., Dagsson-Waldhauserova, P., and Arnalds, O.: Icelandic volcanic dust can have a significant influence on the cryosphere in Greenland and elsewhere, Polar Research, 35, 1751–8369, https://doi.org/10.3402/polar.v35.31313, 2016.
Möller, R., Möller, M., Björnsson, H., Guðmundsson, S., Pálsson, F., Oddsson, B., Kukla, P. A., and Schneider, C.: MODIS-derived albedo changes of Vatnajökull (Iceland) due to tephradeposition from the 2004 Grímsvötn eruption, Int. J. Appl. Earth Obs., 26, 256–269, 2013.
Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Table, 8, 714, 2013.
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt across the Greenland ice sheet in 2012, Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012GL053611, 2012.
Nielsen-Englyst, P.: Impact of albedo parameterizations on surface mass balance and runoff on the Greenland Ice Sheet, Master's thesis University of Copenhagen, unpublished, 2015.
Oerlemans, J.: Glaciers and climate change, CRC Press, 2001.
Oerlemans, J., Giesen, R. H., and Van den Broeke, M. R.: Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland), J. Glaciol., 55, 729–736, 2009.
Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C. R., McBride, K. E., and Farmer, G. L.: Impact of disturbed desert soils on duration of mountain snow cover, Geophys. Res. Lett., 34, L12502, https://doi.org/10.1029/2007GL030284, 2007.
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A., and Abdalati, W.: End of the Little Ice Age in the Alps forced by industrial black carbon, P. Natl. Acad. Sci., 110, 15216–15221, 2013.
Petit, J. R., Wegner, A., Narsici, B., Svensson, A., Bigler, M., and Steffensen, J. P.: The NEEM record of aeolian dust: contributions from Coulter counter measurements, in: EGU General Assembly Conference Abstracts, 15, p. 6255, 2013.
Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., Fridlind, A., Garrett, T. J., Koch, D., Menon, S., Shindell, D., Stohl, A., and Warren, S. G.: Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies, Atmos. Chem. Phys., 8, 1723–1735, https://doi.org/10.5194/acp-8-1723-2008, 2008.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation model ECHAM 5 PART I: Model description, Technical Report 349, Report/MPI für Meteorologie, 2003.
Schmidt, L. S., Aðalgeirsdóttir, G., Guðmundsson, S., Langen, P. L., Pálsson, F., Mottram, R., Gascoin, S., and Björnsson, H.: The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: Evaluating the surface energy budget in a Regional Climate Model with automatic weather station observations, The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-14, in review, 2017.
Stohl, A., Hittenberger, M., and Wotawa, G.: Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data, Atmos. Environ., 32, 4245–4264, 1998.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J. E., and Wouters, B.: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data, The Cryosphere, 7, 615–630, https://doi.org/10.5194/tc-7-615-2013, 2013.
Wiscombe, W. J. and Warren, S. G.: A model for the spectral albedo of snow. I: Pure snow, J. Atmos. Sci., 37, 2712–2733, 1980.
Yoshida, A., Moteki, N., Ohata, S., Mori, T., Tada, R., Dagsson-Waldhauserová, P., and Kondo, Y.: Detection of light-absorbing iron oxide particles using a modified single-particle soot photometer, Aerosol Sci. Tech., 50, 1–4, https://doi.org/10.1080/02786826.2016.1146402, 2016.
Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., Jin, J., Flanner, M. G., Zhang, R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements, Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, 2014.
Short summary
This work includes a study on the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of Vatnajökull, Iceland's largest ice cap. A model was used to simulate dust deposition on the glacier, and these periods of dust were compared to albedo measurements at two weather stations on Brúarjökull to evaluate the dust impact. We determine the influence of dust events on the snow albedo and the surface energy balance.
This work includes a study on the effects of dust deposition on the mass balance of...