Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-517-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-517-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
How much can we save? Impact of different emission scenarios on future snow cover in the Alps
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos, Switzerland
Sebastian Schlögl
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos, Switzerland
École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
Mathias Bavay
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos, Switzerland
Michael Lehning
WSL Institute for Snow and Avalanche Research SLF, 7260 Davos, Switzerland
École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
Related authors
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev., 17, 8969–8988, https://doi.org/10.5194/gmd-17-8969-2024, https://doi.org/10.5194/gmd-17-8969-2024, 2024
Short summary
Short summary
We present a method to correct snow cover maps (represented in terms of snow water equivalent) to match better-quality maps. The correction can then be extended backwards and forwards in time for periods when better-quality maps are not available. The method is fast and gives good results. It is then applied to obtain a climatology of the snow cover in Switzerland over the past 60 years at a resolution of 1 d and 1 km. This is the first time that such a dataset has been produced.
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024, https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Short summary
Snow depth plays an important role in water resources, mountain tourism, and hazard management across the European Alps. Our study uses station-based historical observations to quantify how changes in temperature and precipitation affect average seasonal snow depth. We find that the relationship between these variables has been surprisingly robust over the last 120 years. This allows us to more accurately estimate how future climate will affect seasonal snow depth in different elevation zones.
Johannes Aschauer, Adrien Michel, Tobias Jonas, and Christoph Marty
Geosci. Model Dev., 16, 4063–4081, https://doi.org/10.5194/gmd-16-4063-2023, https://doi.org/10.5194/gmd-16-4063-2023, 2023
Short summary
Short summary
Snow water equivalent is the mass of water stored in a snowpack. Based on exponential settling functions, the empirical snow density model SWE2HS is presented to convert time series of daily snow water equivalent into snow depth. The model has been calibrated with data from Switzerland and validated with independent data from the European Alps. A reference implementation of SWE2HS is available as a Python package.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
Achille Capelli, Franziska Koch, Patrick Henkel, Markus Lamm, Florian Appel, Christoph Marty, and Jürg Schweizer
The Cryosphere, 16, 505–531, https://doi.org/10.5194/tc-16-505-2022, https://doi.org/10.5194/tc-16-505-2022, 2022
Short summary
Short summary
Snow occurrence, snow amount, snow density and liquid water content (LWC) can vary considerably with climatic conditions and elevation. We show that low-cost Global Navigation Satellite System (GNSS) sensors as GPS can be used for reliably measuring the amount of water stored in the snowpack or snow water equivalent (SWE), snow depth and the LWC under a broad range of climatic conditions met at different elevations in the Swiss Alps.
Johannes Aschauer and Christoph Marty
Geosci. Instrum. Method. Data Syst., 10, 297–312, https://doi.org/10.5194/gi-10-297-2021, https://doi.org/10.5194/gi-10-297-2021, 2021
Short summary
Short summary
Methods for reconstruction of winter long data gaps in snow depth time series are compared. The methods use snow depth data from neighboring stations or calculate snow depth from temperature and precipitation data. All methods except one are able to reproduce the average snow depth and maximum snow depth in a winter reasonably well. For reconstructing the number of snow days with snow depth ≥ 1 cm, results suggest using a snow model instead of relying on data from neighboring stations.
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Kay Helfricht, Lea Hartl, Roland Koch, Christoph Marty, and Marc Olefs
Hydrol. Earth Syst. Sci., 22, 2655–2668, https://doi.org/10.5194/hess-22-2655-2018, https://doi.org/10.5194/hess-22-2655-2018, 2018
Short summary
Short summary
We calculated hourly new snow densities from automated measurements. This time interval reduces the influence of settling of the freshly deposited snow. We found an average new snow density of 68 kg m−3. The observed variability could not be described using different parameterizations, but a relationship to temperature is partly visible at hourly intervals. Wind speed is a crucial parameter for the inter-station variability. Our findings are relevant for snow models working on hourly timescales.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev., 17, 8969–8988, https://doi.org/10.5194/gmd-17-8969-2024, https://doi.org/10.5194/gmd-17-8969-2024, 2024
Short summary
Short summary
We present a method to correct snow cover maps (represented in terms of snow water equivalent) to match better-quality maps. The correction can then be extended backwards and forwards in time for periods when better-quality maps are not available. The method is fast and gives good results. It is then applied to obtain a climatology of the snow cover in Switzerland over the past 60 years at a resolution of 1 d and 1 km. This is the first time that such a dataset has been produced.
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024, https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Short summary
Snow depth plays an important role in water resources, mountain tourism, and hazard management across the European Alps. Our study uses station-based historical observations to quantify how changes in temperature and precipitation affect average seasonal snow depth. We find that the relationship between these variables has been surprisingly robust over the last 120 years. This allows us to more accurately estimate how future climate will affect seasonal snow depth in different elevation zones.
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
The Cryosphere, 18, 5323–5345, https://doi.org/10.5194/tc-18-5323-2024, https://doi.org/10.5194/tc-18-5323-2024, 2024
Short summary
Short summary
This research revisits a classic scientific technique, melting calorimetry, to measure snow liquid water content. This study shows with a novel uncertainty propagation framework that melting calorimetry, traditionally less trusted than freezing calorimetry, can produce accurate results. The study defines optimal experiment parameters and a robust field protocol. Melting calorimetry has the potential to become a valuable tool for validating other liquid water content measuring techniques.
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024, https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Short summary
Wind-driven airborne transport of snow is a frequent phenomenon in snow-covered regions and a process difficult to study in the field as it is unfolding over large distances. Thus, we use a ring wind tunnel with infinite fetch positioned in a cold laboratory to study the evolution of the shape and size of airborne snow. With the help of stable water isotope analyses, we identify the hitherto unobserved process of airborne snow metamorphism that leads to snow particle rounding and growth.
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024, https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
Short summary
Information about atmospheric variables is needed to produce simulations of mountain snowpacks. We present a model that can represent processes that shape mountain snowpack, focusing on the accumulation of snow. Simulations show that this model can simulate the complex path that a snowflake takes towards the ground and that this leads to differences in the distribution of snow by the end of winter. Overall, this model shows promise with regard to improving forecasts of snow in mountains.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Riccardo Barella, Mathias Bavay, Francesca Carletti, Nicola Ciapponi, Valentina Premier, and Carlo Marin
EGUsphere, https://doi.org/10.5194/egusphere-2023-2892, https://doi.org/10.5194/egusphere-2023-2892, 2024
Preprint archived
Short summary
Short summary
Unlocking the potential of melting calorimetry, traditionally confined to school labs, this paper demonstrates its application in the field for accurate measurement of liquid water content in snow. Dispelling misconceptions about measurement uncertainty, it provide a robust protocol and quantifies associated uncertainties. The findings endorse the broader adoption of melting calorimetry for quantification of snow liquid water content in operational context.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Johannes Aschauer, Adrien Michel, Tobias Jonas, and Christoph Marty
Geosci. Model Dev., 16, 4063–4081, https://doi.org/10.5194/gmd-16-4063-2023, https://doi.org/10.5194/gmd-16-4063-2023, 2023
Short summary
Short summary
Snow water equivalent is the mass of water stored in a snowpack. Based on exponential settling functions, the empirical snow density model SWE2HS is presented to convert time series of daily snow water equivalent into snow depth. The model has been calibrated with data from Switzerland and validated with independent data from the European Alps. A reference implementation of SWE2HS is available as a Python package.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023, https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
Joel Fiddes, Kristoffer Aalstad, and Michael Lehning
Geosci. Model Dev., 15, 1753–1768, https://doi.org/10.5194/gmd-15-1753-2022, https://doi.org/10.5194/gmd-15-1753-2022, 2022
Short summary
Short summary
This study describes and evaluates a new downscaling scheme that addresses the need for hillslope-scale atmospheric forcing time series for modelling the local impact of regional climate change on the land surface in mountain areas. The method has a global scope and is able to generate all model forcing variables required for hydrological and land surface modelling. This is important, as impact models require high-resolution forcings such as those generated here to produce meaningful results.
Achille Capelli, Franziska Koch, Patrick Henkel, Markus Lamm, Florian Appel, Christoph Marty, and Jürg Schweizer
The Cryosphere, 16, 505–531, https://doi.org/10.5194/tc-16-505-2022, https://doi.org/10.5194/tc-16-505-2022, 2022
Short summary
Short summary
Snow occurrence, snow amount, snow density and liquid water content (LWC) can vary considerably with climatic conditions and elevation. We show that low-cost Global Navigation Satellite System (GNSS) sensors as GPS can be used for reliably measuring the amount of water stored in the snowpack or snow water equivalent (SWE), snow depth and the LWC under a broad range of climatic conditions met at different elevations in the Swiss Alps.
Mathias Bavay, Michael Reisecker, Thomas Egger, and Daniela Korhammer
Geosci. Model Dev., 15, 365–378, https://doi.org/10.5194/gmd-15-365-2022, https://doi.org/10.5194/gmd-15-365-2022, 2022
Short summary
Short summary
Most users struggle with the configuration of numerical models. This can be improved by relying on a GUI, but this requires a significant investment and a specific skill set and does not fit with the daily duties of model developers, leading to major maintenance burdens. Inishell generates a GUI on the fly based on an XML description of the required configuration elements, making maintenance very simple. This concept has been shown to work very well in our context.
Johannes Aschauer and Christoph Marty
Geosci. Instrum. Method. Data Syst., 10, 297–312, https://doi.org/10.5194/gi-10-297-2021, https://doi.org/10.5194/gi-10-297-2021, 2021
Short summary
Short summary
Methods for reconstruction of winter long data gaps in snow depth time series are compared. The methods use snow depth data from neighboring stations or calculate snow depth from temperature and precipitation data. All methods except one are able to reproduce the average snow depth and maximum snow depth in a winter reasonably well. For reconstructing the number of snow days with snow depth ≥ 1 cm, results suggest using a snow model instead of relying on data from neighboring stations.
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Benjamin Walter, Hendrik Huwald, Josué Gehring, Yves Bühler, and Michael Lehning
The Cryosphere, 14, 1779–1794, https://doi.org/10.5194/tc-14-1779-2020, https://doi.org/10.5194/tc-14-1779-2020, 2020
Short summary
Short summary
We applied a horizontally mounted low-cost precipitation radar to measure velocities, frequency of occurrence, travel distances and turbulence characteristics of blowing snow off a mountain ridge. Our analysis provides a first insight into the potential of radar measurements for determining blowing snow characteristics, improves our understanding of mountain ridge blowing snow events and serves as a valuable data basis for validating coupled numerical weather and snowpack simulations.
Nander Wever, Leonard Rossmann, Nina Maaß, Katherine C. Leonard, Lars Kaleschke, Marcel Nicolaus, and Michael Lehning
Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020, https://doi.org/10.5194/gmd-13-99-2020, 2020
Short summary
Short summary
Sea ice is an important component of the global climate system. The presence of a snow layer covering sea ice can impact ice mass and energy budgets. The detailed, physics-based, multi-layer snow model SNOWPACK was modified to simulate the snow–sea-ice system, providing simulations of the snow microstructure, water percolation and flooding, and superimposed ice formation. The model is applied to in situ measurements from snow and ice mass-balance buoys installed in the Antarctic Weddell Sea.
Varun Sharma, Louise Braud, and Michael Lehning
The Cryosphere, 13, 3239–3260, https://doi.org/10.5194/tc-13-3239-2019, https://doi.org/10.5194/tc-13-3239-2019, 2019
Short summary
Short summary
Snow surfaces, under the action of wind, form beautiful shapes such as waves and dunes. This study is the first ever study to simulate these shapes using a state-of-the-art numerical modelling tool. While these beautiful and ephemeral shapes on snow surfaces are fascinating from a purely aesthetic point of view, they are also critical in regulating the transfer of heat and mass between the atmosphere and snowpacks, thus being of huge importance to the Earth system.
Anselm Köhler, Jan-Thomas Fischer, Riccardo Scandroglio, Mathias Bavay, Jim McElwaine, and Betty Sovilla
The Cryosphere, 12, 3759–3774, https://doi.org/10.5194/tc-12-3759-2018, https://doi.org/10.5194/tc-12-3759-2018, 2018
Short summary
Short summary
Snow avalanches show complicated flow behaviour, characterized by several flow regimes which coexist in one avalanche. In this work, we analyse flow regime transitions where a powder snow avalanche transforms into a plug flow avalanche by incorporating warm snow due to entrainment. Prediction of such a transition is very important for hazard mitigation, as the efficiency of protection dams are strongly dependent on the flow regime, and our results should be incorporated into avalanche models.
Varun Sharma, Francesco Comola, and Michael Lehning
The Cryosphere, 12, 3499–3509, https://doi.org/10.5194/tc-12-3499-2018, https://doi.org/10.5194/tc-12-3499-2018, 2018
Short summary
Short summary
The Thorpe-Mason (TM) model describes how an ice grain sublimates during aeolian transport. We revisit this classic model using simple numerical experiments and discover that for many common scenarios, the model is likely to underestimate the amount of ice loss. Extending this result to drifting and blowing snow using high-resolution turbulent flow simulations, the study shows that current estimates for ice loss due to sublimation in regions such as Antarctica need to be significantly updated.
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018, https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary
Short summary
A comparison of winter precipitation variability in operational radar measurements and high-resolution simulations reveals that large-scale variability is well captured by the model, depending on the event. Precipitation variability is driven by topography and wind. A good portion of small-scale variability is captured at the highest resolution. This is essential to address small-scale precipitation processes forming the alpine snow seasonal snow cover – an important source of water.
Christian Gabriel Sommer, Nander Wever, Charles Fierz, and Michael Lehning
The Cryosphere, 12, 2923–2939, https://doi.org/10.5194/tc-12-2923-2018, https://doi.org/10.5194/tc-12-2923-2018, 2018
Short summary
Short summary
Wind packing is how wind produces hard crusts at the surface of the snowpack. This is relevant for the local mass balance in polar regions. However, not much is known about this process and it is difficult to capture its high spatial and temporal variability. A wind-packing event was measured in Antarctica. It could be quantified how drifting snow leads to wind packing and generates barchan dunes. The documentation of these deposition dynamics is an important step in understanding polar snow.
Kay Helfricht, Lea Hartl, Roland Koch, Christoph Marty, and Marc Olefs
Hydrol. Earth Syst. Sci., 22, 2655–2668, https://doi.org/10.5194/hess-22-2655-2018, https://doi.org/10.5194/hess-22-2655-2018, 2018
Short summary
Short summary
We calculated hourly new snow densities from automated measurements. This time interval reduces the influence of settling of the freshly deposited snow. We found an average new snow density of 68 kg m−3. The observed variability could not be described using different parameterizations, but a relationship to temperature is partly visible at hourly intervals. Wind speed is a crucial parameter for the inter-station variability. Our findings are relevant for snow models working on hourly timescales.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Thomas Grünewald, Fabian Wolfsperger, and Michael Lehning
The Cryosphere, 12, 385–400, https://doi.org/10.5194/tc-12-385-2018, https://doi.org/10.5194/tc-12-385-2018, 2018
Short summary
Short summary
Snow farming is the conservation of snow during summer. Large snow piles are covered with a sawdust insulation layer, reducing melt and guaranteeing a specific amount of available snow in autumn, independent of the weather conditions. Snow volume changes in two heaps were monitored, showing that about a third of the snow was lost. Model simulations confirmed the large effect of the insulation on energy balance and melt. The model can now be used as a tool to examine future snow-farming projects.
Nander Wever, Francesco Comola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 21, 4053–4071, https://doi.org/10.5194/hess-21-4053-2017, https://doi.org/10.5194/hess-21-4053-2017, 2017
Short summary
Short summary
The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the
linkage between the snow cover, soil and discharge in the stream network. Simulations of soil moisture and streamflow were performed and compared with observations. It was found that discharge at the catchment outlet during intense rainfall or snowmelt periods correlates positively with the initial soil moisture state, in both measurements and simulations.
Sebastian Würzer, Nander Wever, Roman Juras, Michael Lehning, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 1741–1756, https://doi.org/10.5194/hess-21-1741-2017, https://doi.org/10.5194/hess-21-1741-2017, 2017
Short summary
Short summary
We discuss a dual-domain water transport model in a physics-based snowpack model to account for preferential flow (PF) in addition to matrix flow. So far no operationally used snow model has explicitly accounted for PF. The new approach is compared to existing water transport models and validated against in situ data from sprinkling and natural rain-on-snow (ROS) events. Our work demonstrates the benefit of considering PF in modelling hourly snowpack runoff, especially during ROS conditions.
Anna Haberkorn, Nander Wever, Martin Hoelzle, Marcia Phillips, Robert Kenner, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, https://doi.org/10.5194/tc-11-585-2017, 2017
Short summary
Short summary
The effects of permafrost degradation on rock slope stability in the Alps affect people and infrastructure. Modelling the evolution of permafrost is therefore of great importance. However, the snow cover has generally not been taken into account in model studies of steep, rugged rock walls. Thus, we present a distributed model study on the influence of the snow cover on rock temperatures. The promising results are discussed against detailed rock temperature measurements and snow depth data.
Aurélien Gallice, Mathias Bavay, Tristan Brauchli, Francesco Comola, Michael Lehning, and Hendrik Huwald
Geosci. Model Dev., 9, 4491–4519, https://doi.org/10.5194/gmd-9-4491-2016, https://doi.org/10.5194/gmd-9-4491-2016, 2016
Short summary
Short summary
This paper presents the improvements brought to an existing model for discharge and temperature prediction in Alpine streams. Compared to the original model version, it is now possible to choose between various alternatives to simulate certain parts of the water cycle, such as the technique used to transfer water along the stream network. The paper includes an example of application of the model over an Alpine catchment in Switzerland.
Nander Wever, Sebastian Würzer, Charles Fierz, and Michael Lehning
The Cryosphere, 10, 2731–2744, https://doi.org/10.5194/tc-10-2731-2016, https://doi.org/10.5194/tc-10-2731-2016, 2016
Short summary
Short summary
The study presents a dual domain approach to simulate liquid water flow in snow using the 1-D physics based snow cover model SNOWPACK. In this approach, the pore space is separated into a part for matrix flow and a part that represents preferential flow. Using this approach, water can percolate sub-freezing snow and form dense (ice) layers. A comparison with snow pits shows that some of the observed ice layers were reproduced by the model while others remain challenging to simulate.
Rebecca Mott, Enrico Paterna, Stefan Horender, Philip Crivelli, and Michael Lehning
The Cryosphere, 10, 445–458, https://doi.org/10.5194/tc-10-445-2016, https://doi.org/10.5194/tc-10-445-2016, 2016
Short summary
Short summary
For the first time, this contribution investigates atmospheric decoupling above melting snow in a wind tunnel study. High-resolution vertical profiles of
sensible heat fluxes are measured directly over the melting snow patch.
The study shows that atmospheric decoupling is strongly increased in topographic sheltering but only for low wind velocities. Then turbulent mixing close to the surface is strongly suppressed, facilitating the formation of cold-air pooling in local depressions.
N. Wever, L. Schmid, A. Heilig, O. Eisen, C. Fierz, and M. Lehning
The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, https://doi.org/10.5194/tc-9-2271-2015, 2015
Short summary
Short summary
A verification of the physics based SNOWPACK model with field observations showed that typical snowpack properties like density and temperature are adequately simulated. Also two water transport schemes were verified, showing that although Richards equation improves snowpack runoff and several aspects of the internal snowpack structure, the bucket scheme appeared to have a higher agreement with the snow microstructure. The choice of water transport scheme may depend on the intended application.
W. Steinkogler, B. Sovilla, and M. Lehning
The Cryosphere, 9, 1819–1830, https://doi.org/10.5194/tc-9-1819-2015, https://doi.org/10.5194/tc-9-1819-2015, 2015
Short summary
Short summary
Infrared radiation thermography (IRT) was used to assess the surface temperature of avalanches with high spatial resolution. Thermal energy increase due to friction was mainly depending on the elevation drop of the avalanche. Warming due to entrainment was very specific to the individual avalanche and depends on the temperature of the snow along the path and the erosion depth. The warmest temperatures were located in the deposits of the dense core.
A. Gallice, B. Schaefli, M. Lehning, M. B. Parlange, and H. Huwald
Hydrol. Earth Syst. Sci., 19, 3727–3753, https://doi.org/10.5194/hess-19-3727-2015, https://doi.org/10.5194/hess-19-3727-2015, 2015
Short summary
Short summary
This study presents a new model to estimate the monthly mean stream temperature of ungauged rivers over multiple years in an Alpine country. Contrary to the other approaches developed to date, which are usually based on standard regression techniques, our model makes use of the understanding that we have about the physics controlling stream temperature. On top of its accuracy being comparable to that of the other models, it can be used to gain some knowledge about the stream temperature dynamics
E. Trujillo and M. Lehning
The Cryosphere, 9, 1249–1264, https://doi.org/10.5194/tc-9-1249-2015, https://doi.org/10.5194/tc-9-1249-2015, 2015
Short summary
Short summary
In this article, we present a methodology for the objective evaluation of the error in capturing mean snow depths from point measurements. We demonstrate, using LIDAR snow depths, how the model can be used for assisting the design of survey strategies such that the error is minimized or an estimation threshold is achieved. Furthermore, the model can be extended to other spatially distributed snow variables (e.g., SWE) whose statistical properties are comparable to those of snow depth.
J. Schwaab, M. Bavay, E. Davin, F. Hagedorn, F. Hüsler, M. Lehning, M. Schneebeli, E. Thürig, and P. Bebi
Biogeosciences, 12, 467–487, https://doi.org/10.5194/bg-12-467-2015, https://doi.org/10.5194/bg-12-467-2015, 2015
T. Grünewald, Y. Bühler, and M. Lehning
The Cryosphere, 8, 2381–2394, https://doi.org/10.5194/tc-8-2381-2014, https://doi.org/10.5194/tc-8-2381-2014, 2014
Short summary
Short summary
Elevation dependencies of snow depth are analysed based on snow depth maps obtained from airborne remote sensing. Elevation gradients are characterised by a specific shape: an increase of snow depth with elevation is followed by a distinct peak at a certain level and a decrease in the highest elevations. We attribute this shape to an increase of precipitation with altitude, which is modified by topographical-induced redistribution processes of the snow on the ground (wind, gravitation).
M. Bavay and T. Egger
Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, https://doi.org/10.5194/gmd-7-3135-2014, 2014
Short summary
Short summary
The open-source MeteoIO library has been designed to perform the data preprocessing required by numerical models using large meteorological data sets, with a strong emphasis on simplicity and modularity. It retrieves, filters and resamples the data if necessary as well as provides spatial interpolations and parameterizations. It presents a uniform interface to meteorological data in the models, hides the complexity of the preprocessing and guarantees a robust behaviour in case of data errors.
N. Wever, T. Jonas, C. Fierz, and M. Lehning
Hydrol. Earth Syst. Sci., 18, 4657–4669, https://doi.org/10.5194/hess-18-4657-2014, https://doi.org/10.5194/hess-18-4657-2014, 2014
Short summary
Short summary
We simulated a severe rain-on-snow event in the Swiss Alps in October 2011 with a detailed multi-layer snow cover model. We found a strong modulating effect of the incoming rainfall signal by the snow cover. Initially, water from both rainfall and snow melt was absorbed by the snowpack. But once the snowpack released the stored water, simulated outflow rates exceeded rainfall and snow melt rates. The simulations suggest that structural snowpack changes enhanced the outflow during this event.
N. Wever, C. Fierz, C. Mitterer, H. Hirashima, and M. Lehning
The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, https://doi.org/10.5194/tc-8-257-2014, 2014
T. Grünewald, J. Stötter, J. W. Pomeroy, R. Dadic, I. Moreno Baños, J. Marturià, M. Spross, C. Hopkinson, P. Burlando, and M. Lehning
Hydrol. Earth Syst. Sci., 17, 3005–3021, https://doi.org/10.5194/hess-17-3005-2013, https://doi.org/10.5194/hess-17-3005-2013, 2013
C. D. Groot Zwaaftink, A. Cagnati, A. Crepaz, C. Fierz, G. Macelloni, M. Valt, and M. Lehning
The Cryosphere, 7, 333–347, https://doi.org/10.5194/tc-7-333-2013, https://doi.org/10.5194/tc-7-333-2013, 2013
Related subject area
Seasonal Snow
Snow depth sensitivity to mean temperature, precipitation, and elevation in the Austrian and Swiss Alps
Use of multiple reference data sources to cross-validate gridded snow water equivalent products over North America
Characterization of non-Gaussianity in the snow distributions of various landscapes
A simple snow temperature index model exposes discrepancies between reanalysis snow water equivalent products
Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?
Spatial and temporal changes in autumn Eurasian snow cover and its relationship with the Arctic Oscillation
Historical snowfall measurements in the Central and Southern Apennine Mountains: climatology, variability and trend
From snow accumulation to snow depth distributions by quantifying meteoric ice fractions in the Weddell Sea
Snow depth in high-resolution regional climate model simulations over southern Germany – suitable for extremes and impact-related research?
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
Benchmarking of SWE products based on outcomes of the SnowPEx+ Intercomparison Project
Spatiotemporal snow water storage uncertainty in the midlatitude American Cordillera
Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Change in the potential snowfall phenology: past, present, and future in the Chinese Tianshan mountainous region, Central Asia
The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
Impact of measured and simulated tundra snowpack properties on heat transfer
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
Past changes in natural and managed snow reliability of French Alps ski resorts from 1961 to 2019
Multilayer observation and estimation of the snowpack cold content in a humid boreal coniferous forest of eastern Canada
Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis dataset
Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing
Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements
Observed snow depth trends in the European Alps: 1971 to 2019
Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling
Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps)
Local-scale variability of snow density on Arctic sea ice
Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach
Evaluation of long-term Northern Hemisphere snow water equivalent products
Towards a webcam-based snow cover monitoring network: methodology and evaluation
Simulated single-layer forest canopies delay Northern Hemisphere snowmelt
Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers
Converting snow depth to snow water equivalent using climatological variables
Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study
The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China
Brief Communication: Early season snowpack loss and implications for oversnow vehicle recreation travel planning
Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps
Canadian snow and sea ice: assessment of snow, sea ice, and related climate processes in Canada's Earth system model and climate-prediction system
Canadian snow and sea ice: historical trends and projections
Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models
Black carbon and mineral dust in snow cover on the Tibetan Plateau
Snow farming: conserving snow over the summer season
Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites
Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012
Measuring snow water equivalent from common-offset GPR records through migration velocity analysis
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024, https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Short summary
Snow depth plays an important role in water resources, mountain tourism, and hazard management across the European Alps. Our study uses station-based historical observations to quantify how changes in temperature and precipitation affect average seasonal snow depth. We find that the relationship between these variables has been surprisingly robust over the last 120 years. This allows us to more accurately estimate how future climate will affect seasonal snow depth in different elevation zones.
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024, https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary
Short summary
Ground measurements of snow water equivalent (SWE) are vital for understanding the accuracy of large-scale estimates from satellites and climate models. We compare two types of measurements – snow courses and airborne gamma SWE estimates – and analyze how measurement type impacts the accuracy assessment of gridded SWE products. We use this analysis to produce a combined reference SWE dataset for North America, applicable for future gridded SWE product evaluations and other applications.
Noriaki Ohara, Andrew D. Parsekian, Benjamin M. Jones, Rodrigo C. Rangel, Kenneth M. Hinkel, and Rui A. P. Perdigão
The Cryosphere, 18, 5139–5152, https://doi.org/10.5194/tc-18-5139-2024, https://doi.org/10.5194/tc-18-5139-2024, 2024
Short summary
Short summary
Snow distribution characterization is essential for accurate snow water estimation for water resource prediction from existing in situ observations and remote-sensing data at a finite spatial resolution. Four different observed snow distribution datasets were analyzed for Gaussianity. We found that non-Gaussianity of snow distribution is a signature of the wind redistribution effect. Generally, seasonal snowpack can be approximated well by a Gaussian distribution for a fully snow-covered area.
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
The Cryosphere, 18, 4955–4969, https://doi.org/10.5194/tc-18-4955-2024, https://doi.org/10.5194/tc-18-4955-2024, 2024
Short summary
Short summary
We look at three commonly used snow depth datasets that are produced through a combination of snow modelling and historical measurements (reanalysis). When compared with each other, these datasets have differences that arise for various reasons. We show that a simple snow model can be used to examine these inconsistencies and highlight issues. This method indicates that one of the complex datasets should be excluded from further studies.
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Gareth J. Marshall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1892, https://doi.org/10.5194/egusphere-2024-1892, 2024
Short summary
Short summary
Eurasian autumn snow cover (SC) can influence Northern Hemisphere weather in the following winter by affecting the Arctic Oscillation (AO) mode of atmospheric variability. We find that the relationship between the rate of October snow advance and the AO is predominantly of opposite sign between east and west Eurasia. Periods when the SC advance is strongly related to the AO, and thus might be used for weather prediction, occur when the sign of the relationship is reversed in one of the regions.
Vincenzo Capozzi, Francesco Serrapica, Armando Rocco, Clizia Annella, and Giorgio Budillon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1056, https://doi.org/10.5194/egusphere-2024-1056, 2024
Short summary
Short summary
This study offers a “journey through time” to discover historical information about snow precipitation in the Italian Apennines. In this area, in the second half of past century, a gradual decline in snow persistence on the ground as well as in the frequency of occurrence of snowfall events has been observed, especially in sites located above 1000 m a.s.l.. The old data rescued in this study strongly enhances our knowledge about past snowfall variability and climate in the Mediterranean area.
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
The Cryosphere, 18, 2001–2015, https://doi.org/10.5194/tc-18-2001-2024, https://doi.org/10.5194/tc-18-2001-2024, 2024
Short summary
Short summary
Antarctic sea ice maintains year-round snow cover, crucial for its energy and mass budgets. Despite its significance, snow depth remains poorly understood. Over the last decades, Snow Buoys have been deployed extensively on the sea ice to measure snow accumulation but not actual depth due to snow transformation into meteoric ice. Therefore, in this study we utilize sea ice and snow models to estimate meteoric ice fractions in order to calculate actual snow depth in the Weddell Sea.
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024, https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Short summary
Information about snow depth is important within climate research but also many other sectors, such as tourism, mobility, civil engineering, and ecology. Climate models often feature a spatial resolution which is too coarse to investigate snow depth. Here, we analyse high-resolution simulations and identify added value compared to a coarser-resolution state-of-the-art product. Also, daily snow depth extremes are well reproduced by two models.
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024, https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.
Vilna Tyystjärvi, Pekka Niittynen, Julia Kemppinen, Miska Luoto, Tuuli Rissanen, and Juha Aalto
The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024, https://doi.org/10.5194/tc-18-403-2024, 2024
Short summary
Short summary
At high latitudes, winter ground surface temperatures are strongly controlled by seasonal snow cover and its spatial variation. Here, we measured surface temperatures and snow cover duration in 441 study sites in tundra and boreal regions. Our results show large variations in how much surface temperatures in winter vary depending on the landscape and its impact on snow cover. These results emphasise the importance of understanding microclimates and their drivers under changing winter conditions.
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
EGUsphere, https://doi.org/10.5194/egusphere-2023-3014, https://doi.org/10.5194/egusphere-2023-3014, 2024
Short summary
Short summary
We evaluate and rank 23 products that estimate historical snow amounts. The evaluation uses new a set of ground measurements with improved spatial coverage enabling evaluation across both mountain and non-mountain regions. Performance measures vary tremendously across the products: while most perform reasonably in non-mountain regions, accurate representation of snow amounts in mountain regions and of historical trends is much more variable.
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023, https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Short summary
Using newly developed snow reanalysis datasets as references, snow water storage is at high uncertainty among commonly used global products in the Andes and low-resolution products in the western United States, where snow is the key element of water resources. In addition to precipitation, elevation differences and model mechanism variances drive snow uncertainty. This work provides insights for research applying these products and generating future products in areas with limited in situ data.
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023, https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Short summary
We evaluated snow cover properties in state-of-the-art reanalyses (ERA5 and ERA5-Land) with satellite-based datasets. Both ERA5 and ERA5-Land overestimate snow mass, whereas albedo estimates are more consistent between the datasets. Snow cover extent (SCE) is accurately described in ERA5-Land, while ERA5 shows larger SCE than the satellite-based datasets. The trends in snow mass, SCE, and albedo are mostly negative in 1982–2018, and the negative trends become more apparent when spring advances.
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023, https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary
Short summary
Beyond directly using in situ observations, often sparsely available in mountain regions, climate model simulations and so-called reanalyses are increasingly used for climate change impact studies. Here we evaluate such datasets in the European Alps from 1950 to 2020, with a focus on snow cover information and its main drivers: air temperature and precipitation. In terms of variability and trends, we identify several limitations and provide recommendations for future use of these datasets.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023, https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from aeroplane to large (> 100 km2) detailed and accurate snow depth maps around Davos (CH). We use these maps to describe the existing snow depth distribution, other special features and potential applications.
Xuemei Li, Xinyu Liu, Kaixin Zhao, Xu Zhang, and Lanhai Li
The Cryosphere, 17, 2437–2453, https://doi.org/10.5194/tc-17-2437-2023, https://doi.org/10.5194/tc-17-2437-2023, 2023
Short summary
Short summary
Quantifying change in the potential snowfall phenology (PSP) is an important area of research for understanding regional climate change past, present, and future. However, few studies have focused on the PSP and its change in alpine mountainous regions. We proposed three innovative indicators to characterize the PSP and its spatial–temporal variation. Our study provides a novel approach to understanding PSP in alpine mountainous regions and can be easily extended to other snow-dominated regions.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022, https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary
Short summary
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic natural processes. Our study of a winter time series of high-resolution snow depth maps found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability at a couloir study site in the Bridger Range of Montana, USA. The results of this research have the potential to reduce uncertainty associated with snowpack and snow water resource analysis.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Bertrand Cluzet, Matthieu Lafaysse, César Deschamps-Berger, Matthieu Vernay, and Marie Dumont
The Cryosphere, 16, 1281–1298, https://doi.org/10.5194/tc-16-1281-2022, https://doi.org/10.5194/tc-16-1281-2022, 2022
Short summary
Short summary
The mountainous snow cover is highly variable at all temporal and spatial scales. Snow cover models suffer from large errors, while snowpack observations are sparse. Data assimilation combines them into a better estimate of the snow cover. A major challenge is to propagate information from observed into unobserved areas. This paper presents a spatialized version of the particle filter, in which information from in situ snow depth observations is successfully used to constrain nearby simulations.
Kerttu Kouki, Petri Räisänen, Kari Luojus, Anna Luomaranta, and Aku Riihelä
The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, https://doi.org/10.5194/tc-16-1007-2022, 2022
Short summary
Short summary
We analyze state-of-the-art climate models’ ability to describe snow mass and whether biases in modeled temperature or precipitation can explain the discrepancies in snow mass. In winter, biases in precipitation are the main factor affecting snow mass, while in spring, biases in temperature becomes more important, which is an expected result. However, temperature or precipitation cannot explain all snow mass discrepancies. Other factors, such as models’ structural errors, are also significant.
Lucas Berard-Chenu, Hugues François, Emmanuelle George, and Samuel Morin
The Cryosphere, 16, 863–881, https://doi.org/10.5194/tc-16-863-2022, https://doi.org/10.5194/tc-16-863-2022, 2022
Short summary
Short summary
This study investigates the past snow reliability (1961–2019) of 16 ski resorts in the French Alps using state-of-the-art snowpack modelling. We used snowmaking investment figures to infer the evolution of snowmaking coverage at the individual ski resort level. Snowmaking improved snow reliability for the core of the winter season for the highest-elevation ski resorts. However it did not counterbalance the decreasing trend in snow cover reliability for lower-elevation ski resorts and in spring.
Achut Parajuli, Daniel F. Nadeau, François Anctil, and Marco Alves
The Cryosphere, 15, 5371–5386, https://doi.org/10.5194/tc-15-5371-2021, https://doi.org/10.5194/tc-15-5371-2021, 2021
Short summary
Short summary
Cold content is the energy required to attain an isothermal (0 °C) state and resulting in the snow surface melt. This study focuses on determining the multi-layer cold content (30 min time steps) relying on field measurements, snow temperature profile, and empirical formulation in four distinct forest sites of Montmorency Forest, eastern Canada. We present novel research where the effect of forest structure, local topography, and meteorological conditions on cold content variability is explored.
Yufei Liu, Yiwen Fang, and Steven A. Margulis
The Cryosphere, 15, 5261–5280, https://doi.org/10.5194/tc-15-5261-2021, https://doi.org/10.5194/tc-15-5261-2021, 2021
Short summary
Short summary
We examined the spatiotemporal distribution of stored water in the seasonal snowpack over High Mountain Asia, based on a new snow reanalysis dataset. The dataset was derived utilizing satellite-observed snow information, which spans across 18 water years, at a high spatial (~ 500 m) and temporal (daily) resolution. Snow mass and snow storage distribution over space and time are analyzed in this paper, which brings new insights into understanding the snowpack variability over this region.
Alicia A. Dauginis and Laura C. Brown
The Cryosphere, 15, 4781–4805, https://doi.org/10.5194/tc-15-4781-2021, https://doi.org/10.5194/tc-15-4781-2021, 2021
Short summary
Short summary
This work examines changes in the timing (on/off dates) of Arctic snow, lake ice, and sea ice to investigate how they have responded to recent climate change and determine if they are responding similarly. We looked at pan-Arctic trends since 1997 and regional trends since 2004 using (mainly) satellite data. Strong regional variability was shown in the snow and ice trends, which highlights the need for a detailed understanding of the regional response to ongoing changes in the Arctic climate.
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Jianwei Yang, Lingmei Jiang, Kari Luojus, Jinmei Pan, Juha Lemmetyinen, Matias Takala, and Shengli Wu
The Cryosphere, 14, 1763–1778, https://doi.org/10.5194/tc-14-1763-2020, https://doi.org/10.5194/tc-14-1763-2020, 2020
Short summary
Short summary
There are many challenges for accurate snow depth estimation using passive microwave data. Machine learning (ML) techniques are deemed to be powerful tools for establishing nonlinear relations between independent variables and a given target variable. In this study, we investigate the potential capability of the random forest (RF) model on snow depth estimation at temporal and spatial scales. The result indicates that the fitted RF algorithms perform better on temporal than spatial scales.
Colleen Mortimer, Lawrence Mudryk, Chris Derksen, Kari Luojus, Ross Brown, Richard Kelly, and Marco Tedesco
The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, https://doi.org/10.5194/tc-14-1579-2020, 2020
Short summary
Short summary
Existing stand-alone passive microwave SWE products have markedly different climatological SWE patterns compared to reanalysis-based datasets. The AMSR-E SWE has low spatial and temporal correlations with the four reanalysis-based products evaluated and GlobSnow and perform poorly in comparisons with snow transect data from Finland, Russia, and Canada. There is better agreement with in situ data when multiple SWE products, excluding the stand-alone passive microwave SWE products, are combined.
Céline Portenier, Fabia Hüsler, Stefan Härer, and Stefan Wunderle
The Cryosphere, 14, 1409–1423, https://doi.org/10.5194/tc-14-1409-2020, https://doi.org/10.5194/tc-14-1409-2020, 2020
Short summary
Short summary
We present a method to derive snow cover maps from freely available webcam images in the Swiss Alps. With marginal manual user input, we can transform a webcam image into a georeferenced map and therewith perform snow cover analyses with a high spatiotemporal resolution over a large area. Our evaluation has shown that webcams could not only serve as a reference for improved validation of satellite-based approaches, but also complement satellite-based snow cover retrieval.
Markus Todt, Nick Rutter, Christopher G. Fletcher, and Leanne M. Wake
The Cryosphere, 13, 3077–3091, https://doi.org/10.5194/tc-13-3077-2019, https://doi.org/10.5194/tc-13-3077-2019, 2019
Short summary
Short summary
Vegetation is often represented by a single layer in global land models. Studies have found deficient simulation of thermal radiation beneath forest canopies when represented by single-layer vegetation. This study corrects thermal radiation in forests for a global land model using single-layer vegetation in order to assess the effect of deficient thermal radiation on snow cover and snowmelt. Results indicate that single-layer vegetation causes snow in forests to be too cold and melt too late.
Stefanie Arndt and Christian Haas
The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019, https://doi.org/10.5194/tc-13-1943-2019, 2019
David F. Hill, Elizabeth A. Burakowski, Ryan L. Crumley, Julia Keon, J. Michelle Hu, Anthony A. Arendt, Katreen Wikstrom Jones, and Gabriel J. Wolken
The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019, https://doi.org/10.5194/tc-13-1767-2019, 2019
Short summary
Short summary
We present a new statistical model for converting snow depths to water equivalent. The only variables required are snow depth, day of year, and location. We use the location to look up climatological parameters such as mean winter precipitation and mean temperature difference (difference between hottest month and coldest month). The model is simple by design so that it can be applied to depth measurements anywhere, anytime. The model is shown to perform better than other widely used approaches.
Rebecca Mott, Andreas Wolf, Maximilian Kehl, Harald Kunstmann, Michael Warscher, and Thomas Grünewald
The Cryosphere, 13, 1247–1265, https://doi.org/10.5194/tc-13-1247-2019, https://doi.org/10.5194/tc-13-1247-2019, 2019
Short summary
Short summary
The mass balance of very small glaciers is often governed by anomalous snow accumulation, winter precipitation being multiplied by snow redistribution processes, or by suppressed snow ablation driven by micrometeorological effects lowering net radiation and turbulent heat exchange. In this study we discuss the relative contribution of snow accumulation (avalanches) versus micrometeorology (katabatic flow) on the mass balance of the lowest perennial ice field of the Alps, the Ice Chapel.
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Short summary
We first investigated the optical characteristics and potential sources of chromophoric dissolved organic matter (CDOM) in seasonal snow over northwestern China. The abundance of CDOM showed regional variation. At some sites strongly influenced by local soil, the absorption of CDOM cannot be neglected compared to black carbon. We found two humic-like and one protein-like fluorophores in snow. The major sources of snow CDOM were soil, biomass burning, and anthropogenic pollution.
Benjamin J. Hatchett and Hilary G. Eisen
The Cryosphere, 13, 21–28, https://doi.org/10.5194/tc-13-21-2019, https://doi.org/10.5194/tc-13-21-2019, 2019
Short summary
Short summary
We examine the timing of early season snowpack relevant to oversnow vehicle (OSV) recreation over the past 3 decades in the Lake Tahoe region (USA). Data from two independent data sources suggest that the timing of achieving sufficient snowpack has shifted later by 2 weeks. Increasing rainfall and more dry days play a role in the later onset. Adaptation strategies are provided for winter travel management planning to address negative impacts of loss of early season snowpack for OSV usage.
Deborah Verfaillie, Matthieu Lafaysse, Michel Déqué, Nicolas Eckert, Yves Lejeune, and Samuel Morin
The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, https://doi.org/10.5194/tc-12-1249-2018, 2018
Short summary
Short summary
This article addresses local changes of seasonal snow and its meteorological drivers, at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps, for the period 1960–2100. We use an ensemble of adjusted RCM outputs consistent with IPCC AR5 GCM outputs (RCPs 2.6, 4.5 and 8.5) and the snowpack model Crocus. Beyond scenario-based approach, global temperature levels on the order of 1.5 °C and 2 °C above preindustrial levels correspond to 25 and 32% reduction of mean snow depth.
Paul J. Kushner, Lawrence R. Mudryk, William Merryfield, Jaison T. Ambadan, Aaron Berg, Adéline Bichet, Ross Brown, Chris Derksen, Stephen J. Déry, Arlan Dirkson, Greg Flato, Christopher G. Fletcher, John C. Fyfe, Nathan Gillett, Christian Haas, Stephen Howell, Frédéric Laliberté, Kelly McCusker, Michael Sigmond, Reinel Sospedra-Alfonso, Neil F. Tandon, Chad Thackeray, Bruno Tremblay, and Francis W. Zwiers
The Cryosphere, 12, 1137–1156, https://doi.org/10.5194/tc-12-1137-2018, https://doi.org/10.5194/tc-12-1137-2018, 2018
Short summary
Short summary
Here, the Canadian research network CanSISE uses state-of-the-art observations of snow and sea ice to assess how Canada's climate model and climate prediction systems capture variability in snow, sea ice, and related climate parameters. We find that the system performs well, accounting for observational uncertainty (especially for snow), model uncertainty, and chaotic climate variability. Even for variables like sea ice, where improvement is needed, useful prediction tools can be developed.
Lawrence R. Mudryk, Chris Derksen, Stephen Howell, Fred Laliberté, Chad Thackeray, Reinel Sospedra-Alfonso, Vincent Vionnet, Paul J. Kushner, and Ross Brown
The Cryosphere, 12, 1157–1176, https://doi.org/10.5194/tc-12-1157-2018, https://doi.org/10.5194/tc-12-1157-2018, 2018
Short summary
Short summary
This paper presents changes in both snow and sea ice that have occurred over Canada during the recent past and shows climate model estimates for future changes expected to occur by the year 2050. The historical changes of snow and sea ice are generally coherent and consistent with the regional history of temperature and precipitation changes. It is expected that snow and sea ice will continue to decrease in the future, declining by an additional 15–30 % from present day values by the year 2050.
Andrew M. Snauffer, William W. Hsieh, Alex J. Cannon, and Markus A. Schnorbus
The Cryosphere, 12, 891–905, https://doi.org/10.5194/tc-12-891-2018, https://doi.org/10.5194/tc-12-891-2018, 2018
Short summary
Short summary
Estimating winter snowpack throughout British Columbia is challenging due to the complex terrain, thick forests, and high snow accumulations present. This paper describes a way to make better snow estimates by combining publicly available data using machine learning, a branch of artificial intelligence research. These improved estimates will help water resources managers better plan for changes in rivers and lakes fed by spring snowmelt and will aid other research that supports such planning.
Yulan Zhang, Shichang Kang, Michael Sprenger, Zhiyuan Cong, Tanguang Gao, Chaoliu Li, Shu Tao, Xiaofei Li, Xinyue Zhong, Min Xu, Wenjun Meng, Bigyan Neupane, Xiang Qin, and Mika Sillanpää
The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, https://doi.org/10.5194/tc-12-413-2018, 2018
Short summary
Short summary
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snowpack and ice. This study focused on the black carbon and mineral dust in snow cover on the Tibetan Plateau. We discussed their concentrations, distributions, possible sources, and albedo reduction and radiative forcing. Findings indicated that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections.
Thomas Grünewald, Fabian Wolfsperger, and Michael Lehning
The Cryosphere, 12, 385–400, https://doi.org/10.5194/tc-12-385-2018, https://doi.org/10.5194/tc-12-385-2018, 2018
Short summary
Short summary
Snow farming is the conservation of snow during summer. Large snow piles are covered with a sawdust insulation layer, reducing melt and guaranteeing a specific amount of available snow in autumn, independent of the weather conditions. Snow volume changes in two heaps were monitored, showing that about a third of the snow was lost. Model simulations confirmed the large effect of the insulation on energy balance and melt. The model can now be used as a tool to examine future snow-farming projects.
Kristoffer Aalstad, Sebastian Westermann, Thomas Vikhamar Schuler, Julia Boike, and Laurent Bertino
The Cryosphere, 12, 247–270, https://doi.org/10.5194/tc-12-247-2018, https://doi.org/10.5194/tc-12-247-2018, 2018
Short summary
Short summary
We demonstrate how snow cover data from satellites can be used to constrain estimates of snow distributions at sites in the Arctic. In this effort, we make use of data assimilation to combine the information contained in the snow cover data with a simple snow model. By comparing our snow distribution estimates to independent observations, we find that this method performs favorably. Being modular, this method could be applied to other areas as a component of a larger reanalysis system.
Xinyue Zhong, Tingjun Zhang, Shichang Kang, Kang Wang, Lei Zheng, Yuantao Hu, and Huijuan Wang
The Cryosphere, 12, 227–245, https://doi.org/10.5194/tc-12-227-2018, https://doi.org/10.5194/tc-12-227-2018, 2018
James St. Clair and W. Steven Holbrook
The Cryosphere, 11, 2997–3009, https://doi.org/10.5194/tc-11-2997-2017, https://doi.org/10.5194/tc-11-2997-2017, 2017
Short summary
Short summary
We investigate the performance of a semiautomated algorithm for measuring snow water equivalent (SWE) from common-offset ground-penetrating radar (GPR) data. GPR-derived SWE estimates are similar to manual measurements, indicating that the method is reliable. Our results will hopefully make GPR a more attractive tool for monitoring SWE in mountain watersheds.
Cited articles
Abegg, B., Agrawala, S., Crick, F., and de Montfalcon, A.: Climate change impacts and adaptation in winter tourism, in: Climate Change in the European Alps, edited by: Agrawala, S., OECD, Paris, France, 25–60, 2007.
Bartolini, E., Claps, P., and D'Odorico, P.: Interannual variability of winter precipitation in the European Alps: relations with the North Atlantic Oscillation., Hydrol. Earth Syst. Sci., 13, 17–25, https://doi.org/10.5194/hess-13-17-2009, 2009.
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, 2014.
Bavay, M., Lehning, M., Jonas, T., and Löwe, H.: Simulations of future snow cover and discharge in Alpine headwater catchments, Hydrol. Process., 23, 95–108, https://doi.org/10.1002/hyp.7195, 2009.
Bavay, M., Grünewald, T., and Lehning, M.: Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland, Adv. Water Resour., 55, 4–16, 2013.
Beniston, M. and Stoffel, M.: Assessing the impacts of climatic change on mountain water resources, Sci. Total Environ., 493, 1129–1137, https://doi.org/10.1016/j.scitotenv.2013.11.122, 2014.
Bossard, M., Feranec, J., and Otahel, J.: CORINE land cover technical guide: Addendum 2000, European Environment Agency, Copenhagen, Denmark, 2000.
Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the role of natural variability in future North American climate, Supplement, Nat. Clim. Change, 2, 775–779, https://doi.org/10.1038/nclimate1562, 2012.
Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Merindol, L., and Lesaffre, B.: Reanalysis of 47 Years of Climate in the French Alps (1958–2005): Climatology and Trends for Snow Cover, J. Appl. Meteorol. Clim., 48, 2487–2512, 2009.
Elsasser, H. and Bürki, R.: Climate change as a threat to tourism in the Alps, Clim. Res., 20, 253–257, 2002.
Fischer, A. M., Weigel, A. P., Buser, C. M., Knutti, R., Künsch, H. R., Liniger, M. A., Schär, C., and Appenzeller, C.: Climate change projections for Switzerland based on a Bayesian multi-model approach, Int. J. Climatol., 32, 2348–2371, https://doi.org/10.1002/joc.3396, 2012.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.: 21st century climate change in the European Alps-A review, Sci. Total Environ., 493, 1138–1151, https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.
Grünewald, T. and Lehning, M.: Are flat-field snow depth measurements representative? A comparison of selected index sites with areal snow depth measurements at the small catchment scale, Hydrol. Process., 29, 1717–1728, https://doi.org/10.1002/hyp.10295, 2015.
Haberkorn, A., Hoelzle, M., Phillips, M., and Kenner, R.: Snow as a driving factor of rock surface temperatures in steep rough rock walls, Cold Reg. Sci. Technol., 118, 64–75, https://doi.org/10.1016/j.coldregions.2015.06.013, 2015.
Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., Gärtner-Roer, I., Gruber, S., Isaksen, K., Kneisel, C., Krautblatter, M., and Phillips, M.: Mountain permafrost: development and challenges of a young research field, J. Glaciol., 56, 1043–1058, https://doi.org/10.3189/002214311796406121, 2010.
Hess, M., Saska, M., and Schilling, K.: Application of coordinated multi-vehicle formations for snow shoveling on airports, Intelligent Service Robotics, 2, 205–217, https://doi.org/10.1007/s11370-009-0048-5, 2009.
Holmes, C. R., Woollings, T., Hawkins, E., and Vries, H. d.: Robust Future Changes in Temperature Variability under Greenhouse Gas Forcing and the Relationship with Thermal Advection, J. Climate, 29, 2221–2236, https://doi.org/10.1175/jcli-d-14-00735.1, 2016.
Kotlarski, S., Lüthi, D., and Schär, C.: The elevation dependency of 21st century European climate change: an RCM ensemble perspective, Int. J. Climatol., 35, 3902–3920, https://doi.org/10.1002/joc.4254, 2015.
Laghari, A. N., Vanham, D., and Rauch, W.: To what extent does climate change result in a shift in Alpine hydrology? A case study in the Austrian Alps, Hydrolog. Sci. J., 57, 103–117, https://doi.org/10.1080/02626667.2011.637040, 2012.
Lehning, M., Voelksch Ingo, I., Gustafsson, D., Nguyen, T. A., Staehli, M., and Zappa, M.: ALPINE3D: A detailed model of mountain surface processes and its application to snow hydrology, Hydrol. Process., 20, 2111–2128, 2006.
Linsbauer, A., Paul, F., Machguth, H., and Haeberli, W.: Comparing three different methods to model scenarios of future glacier change in the Swiss Alps, Ann. Glaciol., 54, 241–253, 2013.
Mankin, J. and Diffenbaugh, N.: Influence of temperature and precipitation variability on near-term snow trends, Clim. Dynam., 45, 1099–1116, https://doi.org/10.1007/s00382-014-2357-4, 2015.
Marke, T., Strasser, U., Hanzer, F., Stötter, J., Wilcke, R. A. I., and Gobiet, A.: Scenarios of Future Snow Conditions in Styria (Austrian Alps), J. Hydrometeorol., 16, 261–277, https://doi.org/10.1175/jhm-d-14-0035.1, 2014.
Marty, C.: Regime shift of snow days in Switzerland, Geophys. Res. Lett., 35, L12501, https://doi.org/10.1029/2008gl033998, 2008.
Marty, C., Tilg, A.-M., and Jonas, T.: Recent evidence of large scale receding snow water equivalents in the European Alps, J. Hydrometeorol., https://doi.org/10.1175/jhm-d-16-0188.1, in press, 2017.
Nakicenovic, N. and Swart, R. (Eds.): Special report on emissions scenarios, Cambridge University Press, Cambridge, UK, 612 pp., 2000.
Norrman, J., Eriksson, M., and Lindqvist, S.: Relationships between road slipperiness, traffic accident risk and winter road maintenance activity, Clim. Res., 15, 185–193, 2000.
Oerlemans, J., Giesen, R. H., and Van Den Broeke, M. R.: Retreating alpine glaciers: Increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland, J. Glaciol., 55, 729–736, https://doi.org/10.3189/002214309789470969, 2009.
Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Le Quere, C., Marland, G., Raupach, M. R., and Wilson, C.: The challenge to keep global warming below 2 °C, Supplement, Nat. Clim. Change, 3, 4–6, https://doi.org/10.1038/nclimate1783, 2013.
Rousselot, M., Durand, Y., Giraud, G., Mérindol, L., Dombrowski-Etchevers, I., Déqué, M., and Castebrunet, H.: Statistical adaptation of ALADIN RCM outputs over the French Alps – application to future climate and snow cover, The Cryosphere, 6, 785–805, https://doi.org/10.5194/tc-6-785-2012, 2012.
Scherrer, S. C., Appenzeller, C., and Laternser, M.: Trends in Swiss Alpine snow days: The role of local- and large-scale climate variability, Geophys. Res. Lett., 31, L13215, https://doi.org/10.1029/2004GL020255, 2004.
Schlögl, S., Marty, C., Bavay, M., and Lehning, M.: Sensitivity of Alpine3D modeled snow cover to modifications in DEM resolution, station coverage and meteorological input quantities, Environ. Modell. Softw., 83, 387–396, https://doi.org/10.1016/j.envsoft.2016.02.017, 2016.
Schmidlin, T. W.: Impacts of Severe Winter Weather during December 1989 in the Lake Erie Snowbelt, J. Climate, 6, 759–767, https://doi.org/10.1175/1520-0442(1993)006<0759:ioswwd>2.0.co;2, 1993.
Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Simulations of 21st century snow response to climate change in Switzerland from a set of RCMs, Int. J. Climatol., 35, 3262–3273, https://doi.org/10.1002/joc.4205, 2015.
Schmucki, E., Marty, C., Lehning, M., Fierz, C., and Weingartner, R.: Impact of climate change in Switzerland on socio-economic snow indices, Theor. Appl. Climatol., 127, 875–889, https://doi.org/10.1007/s00704-015-1676-7, 2017.
Serquet, G., Marty, C., Dulex, J., and Rebetez, M.: Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland, Geophys. Res. Lett., 38, L07703, https://doi.org/10.1029/2011GL046976, 2011.
Steger, C., Kotlarski, S., Jonas, T., and Schär, C.: Alpine snow cover in a changing climate: A regional climate model perspective, Clim. Dynam., 41, 735–754, 2013.
Valt, M. and Cianfarra, P.: Recent snow cover variability in the Italian Alps, Cold Reg. Sci. Technol., 64, 146–157, 2010.
Van der Linden, P. and Mitchell, J. (Eds.): ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 160 pp., 2009.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Viviroli, D., Zappa, M., Gurtz, J., and Weingartner, R.: An introduction to the hydrological modelling system PREVAH and its pre-and post-processing-tools, Environ. Modell. Softw., 24, 1209–1222, 2009.
Wilhelm, C., Wiesinger, T., Bründl, M., and Ammann, W.: The avalanche winter 1999 in Switzerland-an overview, Proceedings International Snow Science Workshop, 1–6 October 2000, Big Sky, Montana, USA, 487–494, 2001.
Zubler, E. M., Fischer, A. M., Liniger, M. A., Croci-Maspoli, M., Scherrer, S. C., and Appenzeller, C.: Localized climate change scenarios of mean temperature and precipitation over Switzerland, Climatic Change, 125, 237–252, https://doi.org/10.1007/s10584-014-1144-x, 2014.
Short summary
We simulate the future snow cover in the Alps with the help of a snow model, which is fed by projected temperature and precipitation changes from a large set of climate models. The results demonstrate that snow below 1000 m is probably a rare guest at the end of the century. Moreover, even above 3000 m the simulations show a drastic decrease in snow depth. However, the results reveal that the projected snow cover reduction can be mitigated by 50 % if we manage to keep global warming below 2°.
We simulate the future snow cover in the Alps with the help of a snow model, which is fed by...