Articles | Volume 10, issue 2
https://doi.org/10.5194/tc-10-511-2016
https://doi.org/10.5194/tc-10-511-2016
Research article
 | 
04 Mar 2016
Research article |  | 04 Mar 2016

Using a fixed-wing UAS to map snow depth distribution: an evaluation at peak accumulation

Carlo De Michele, Francesco Avanzi, Daniele Passoni, Riccardo Barzaghi, Livio Pinto, Paolo Dosso, Antonio Ghezzi, Roberto Gianatti, and Giacomo Della Vedova

Related authors

Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Exploring the joint probability of precipitation and soil moisture over Europe using copulas
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024,https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary
A REPLICABLE OPEN-SOURCE MULTI-CAMERA SYSTEM FOR LOW-COST 4D GLACIER MONITORING
F. Ioli, E. Bruno, D. Calzolari, M. Galbiati, A. Mannocchi, P. Manzoni, M. Martini, A. Bianchi, A. Cina, C. De Michele, and L. Pinto
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 137–144, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-137-2023,https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-137-2023, 2023
Hydrological response of a peri-urban catchment exploiting conventional and unconventional rainfall observations: the case study of Lambro Catchment
Greta Cazzaniga, Carlo De Michele, Michele D'Amico, Cristina Deidda, Antonio Ghezzi, and Roberto Nebuloni
Hydrol. Earth Syst. Sci., 26, 2093–2111, https://doi.org/10.5194/hess-26-2093-2022,https://doi.org/10.5194/hess-26-2093-2022, 2022
Short summary
A local model of snow–firn dynamics and application to the Colle Gnifetti site
Fabiola Banfi and Carlo De Michele
The Cryosphere, 16, 1031–1056, https://doi.org/10.5194/tc-16-1031-2022,https://doi.org/10.5194/tc-16-1031-2022, 2022
Short summary

Related subject area

Seasonal Snow
An examination of changes in autumn Eurasian snow cover and its relationship with the winter Arctic Oscillation using 20th Century Reanalysis version 3
Gareth J. Marshall
The Cryosphere, 19, 663–683, https://doi.org/10.5194/tc-19-663-2025,https://doi.org/10.5194/tc-19-663-2025, 2025
Short summary
Historical snow measurements in the central and southern Apennine Mountains: climatology, variability, and trend
Vincenzo Capozzi, Francesco Serrapica, Armando Rocco, Clizia Annella, and Giorgio Budillon
The Cryosphere, 19, 565–595, https://doi.org/10.5194/tc-19-565-2025,https://doi.org/10.5194/tc-19-565-2025, 2025
Short summary
Benchmarking of snow water equivalent (SWE) products based on outcomes of the SnowPEx+ Intercomparison Project
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
The Cryosphere, 19, 201–218, https://doi.org/10.5194/tc-19-201-2025,https://doi.org/10.5194/tc-19-201-2025, 2025
Short summary
Snow depth sensitivity to mean temperature, precipitation, and elevation in the Austrian and Swiss Alps
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024,https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Use of multiple reference data sources to cross-validate gridded snow water equivalent products over North America
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024,https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary

Cited articles

Agisoft: Agisoft PhotoScan User Manual Professional Edition, Version 1.1, 2014.
Anderton, S. P., White, S. M., and Alvera, B.: Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Process., 18, 435–453, https://doi.org/10.1002/hyp.1319, 2004.
Avanzi, F., De Michele, C., Ghezzi, A., Jommi, C., and Pepe, M.: A processing modeling routine to use SNOTEL hourly data in snowpack dynamic models, Adv. Water Resour., 73, 16–29, 2014.
Bavay, M., Lehning, M., Jonas, T., and Löwe, H.: Simulations of future snow cover and discharge in Alpine headwater catchments, Hydrol. Process., 23, 95–108, https://doi.org/10.1002/hyp.7195, 2009.
Bavay, M., Grünewald, T., and Lehning, M.: Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland, Adv. Water Resour., 55, 4–16, https://doi.org/10.1016/j.advwatres.2012.12.009, 2013.
Download
Short summary
We investigate snow depth distribution at peak accumulation over a small Alpine area using photogrammetry-based surveys with a fixed wing unmanned aerial system. Results reveal that UAS estimations of point snow depth present an average difference with reference to manual measurements equal to -0.073 m. Moreover, in this case study snow depth standard deviation (hence coefficient of variation) increases with decreasing cell size, but it stabilizes for resolutions smaller than 1 m.
Share