Articles | Volume 10, issue 2
https://doi.org/10.5194/tc-10-497-2016
https://doi.org/10.5194/tc-10-497-2016
Research article
 | 
03 Mar 2016
Research article |  | 03 Mar 2016

Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland

Johannes H. Bondzio, Hélène Seroussi, Mathieu Morlighem, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Eric Y. Larour

Related authors

Enthalpy benchmark experiments for numerical ice sheet models
T. Kleiner, M. Rückamp, J. H. Bondzio, and A. Humbert
The Cryosphere, 9, 217–228, https://doi.org/10.5194/tc-9-217-2015,https://doi.org/10.5194/tc-9-217-2015, 2015
Short summary

Related subject area

Numerical Modelling
A hybrid ice-mélange model based on particle and continuum methods
Saskia Kahl, Carolin Mehlmann, and Dirk Notz
The Cryosphere, 19, 129–141, https://doi.org/10.5194/tc-19-129-2025,https://doi.org/10.5194/tc-19-129-2025, 2025
Short summary
New glacier thickness and bed topography maps for Svalbard
Ward van Pelt and Thomas Frank
The Cryosphere, 19, 1–17, https://doi.org/10.5194/tc-19-1-2025,https://doi.org/10.5194/tc-19-1-2025, 2025
Short summary
Quantifying the buttressing contribution of landfast sea ice and melange to Crane Glacier, Antarctic Peninsula
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
The Cryosphere, 18, 5789–5801, https://doi.org/10.5194/tc-18-5789-2024,https://doi.org/10.5194/tc-18-5789-2024, 2024
Short summary
Multi-physics ensemble modelling of Arctic tundra snowpack properties
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024,https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Two-way coupling between ice flow and channelized subglacial drainage enhances modeled marine-ice-sheet retreat
George Lu and Jonathan Kingslake
The Cryosphere, 18, 5301–5321, https://doi.org/10.5194/tc-18-5301-2024,https://doi.org/10.5194/tc-18-5301-2024, 2024
Short summary

Cited articles

Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007.
Brown, C., Meier, M., and Post, A.: Calving speed of Alaska tidewater Glaciers, with application to Columbia Glacier, Alaska, US Geological Survey Professional Paper, 1258-C, 13 pp., 1982.
Chang, Y.-C., Hou, T., Merriman, B., and Osher, S.: A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124, 449–464, 1996.
Courant, R., Friedrichs, K., and Lewy, H.: Über die Partiellen Differenzengleichungen der Mathematischen Physik, Math. Ann., 100, 32–74, 1928.
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, Elsevier, Burlington, Mass., 2010.
Download
Short summary
We implemented a level-set method in the ice sheet system model. This method allows us to dynamically evolve a calving front subject to user-defined calving rates. We apply the method to Jakobshavn Isbræ, West Greenland, and study its response to calving rate perturbations. We find its behaviour strongly dependent on the calving rate, which was to be expected. Both reduced basal drag and rheological shear margin weakening sustain the acceleration of this dynamic outlet glacier.