Articles | Volume 10, issue 2
The Cryosphere, 10, 497–510, 2016
https://doi.org/10.5194/tc-10-497-2016
The Cryosphere, 10, 497–510, 2016
https://doi.org/10.5194/tc-10-497-2016
Research article
03 Mar 2016
Research article | 03 Mar 2016

Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland

Johannes H. Bondzio et al.

Related authors

Enthalpy benchmark experiments for numerical ice sheet models
T. Kleiner, M. Rückamp, J. H. Bondzio, and A. Humbert
The Cryosphere, 9, 217–228, https://doi.org/10.5194/tc-9-217-2015,https://doi.org/10.5194/tc-9-217-2015, 2015
Short summary

Related subject area

Numerical Modelling
Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale: an application to High Mountain Asia
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022,https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
The effect of changing sea ice on wave climate trends along Alaska's central Beaufort Sea coast
Kees Nederhoff, Li Erikson, Anita Engelstad, Peter Bieniek, and Jeremy Kasper
The Cryosphere, 16, 1609–1629, https://doi.org/10.5194/tc-16-1609-2022,https://doi.org/10.5194/tc-16-1609-2022, 2022
Short summary
Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change
Stiig Wilkenskjeld, Frederieke Miesner, Paul P. Overduin, Matteo Puglini, and Victor Brovkin
The Cryosphere, 16, 1057–1069, https://doi.org/10.5194/tc-16-1057-2022,https://doi.org/10.5194/tc-16-1057-2022, 2022
Short summary
Arctic sea ice anomalies during the MOSAiC winter 2019/20
Klaus Dethloff, Wieslaw Maslowski, Stefan Hendricks, Younjoo J. Lee, Helge F. Goessling, Thomas Krumpen, Christian Haas, Dörthe Handorf, Robert Ricker, Vladimir Bessonov, John J. Cassano, Jaclyn Clement Kinney, Robert Osinski, Markus Rex, Annette Rinke, Julia Sokolova, and Anja Sommerfeld
The Cryosphere, 16, 981–1005, https://doi.org/10.5194/tc-16-981-2022,https://doi.org/10.5194/tc-16-981-2022, 2022
Short summary
Effective coefficient of diffusion and permeability of firn at Dome C and Lock In, Antarctica, and of various snow types – estimates over the 100–850 kg m−3 density range
Neige Calonne, Alexis Burr, Armelle Philip, Frédéric Flin, and Christian Geindreau
The Cryosphere, 16, 967–980, https://doi.org/10.5194/tc-16-967-2022,https://doi.org/10.5194/tc-16-967-2022, 2022
Short summary

Cited articles

Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007.
Brown, C., Meier, M., and Post, A.: Calving speed of Alaska tidewater Glaciers, with application to Columbia Glacier, Alaska, US Geological Survey Professional Paper, 1258-C, 13 pp., 1982.
Chang, Y.-C., Hou, T., Merriman, B., and Osher, S.: A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124, 449–464, 1996.
Courant, R., Friedrichs, K., and Lewy, H.: Über die Partiellen Differenzengleichungen der Mathematischen Physik, Math. Ann., 100, 32–74, 1928.
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, Elsevier, Burlington, Mass., 2010.
Download
Short summary
We implemented a level-set method in the ice sheet system model. This method allows us to dynamically evolve a calving front subject to user-defined calving rates. We apply the method to Jakobshavn Isbræ, West Greenland, and study its response to calving rate perturbations. We find its behaviour strongly dependent on the calving rate, which was to be expected. Both reduced basal drag and rheological shear margin weakening sustain the acceleration of this dynamic outlet glacier.