Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-417-2016
https://doi.org/10.5194/tc-10-417-2016
Research article
 | 
24 Feb 2016
Research article |  | 24 Feb 2016

Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations

Laura A. Stevens, Fiamma Straneo, Sarah B. Das, Albert J. Plueddemann, Amy L. Kukulya, and Mathieu Morlighem

Related authors

Ice sheet model simulations reveal that polythermal ice conditions existed across the northeastern USA during the Last Glacial Maximum
Joshua K. Cuzzone, Aaron Barth, Kelsey Barker, and Mathieu Morlighem
The Cryosphere, 19, 1559–1575, https://doi.org/10.5194/tc-19-1559-2025,https://doi.org/10.5194/tc-19-1559-2025, 2025
Short summary
A Python library for solving ice sheet modeling problems using Physics Informed Neural Networks, PINNICLE v1.0
Gong Cheng, Mansa Krishna, and Mathieu Morlighem
EGUsphere, https://doi.org/10.5194/egusphere-2025-1188,https://doi.org/10.5194/egusphere-2025-1188, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Simulating the Holocene evolution of Ryder Glacier, North Greenland
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653,https://doi.org/10.5194/egusphere-2025-653, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Francesca Baldacchino, Nicholas R. Golledge, Mathieu Morlighem, Huw Horgan, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
The Cryosphere, 19, 107–127, https://doi.org/10.5194/tc-19-107-2025,https://doi.org/10.5194/tc-19-107-2025, 2025
Short summary
Sea-level rise contribution from Ryder Glacier in Northern Greenland varies by an order of magnitude by 2300 depending on future emissions
Felicity Alice Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3839,https://doi.org/10.5194/egusphere-2024-3839, 2024
Short summary

Related subject area

Ocean Interactions
Brief communication: Sea-level projections, adaptation planning, and actionable science
William H. Lipscomb, David Behar, and Monica Ainhorn Morrison
The Cryosphere, 19, 793–803, https://doi.org/10.5194/tc-19-793-2025,https://doi.org/10.5194/tc-19-793-2025, 2025
Short summary
Subglacial discharge effects on basal melting of a rotating, idealized ice shelf
Irena Vaňková, Xylar Asay-Davis, Carolyn Branecky Begeman, Darin Comeau, Alexander Hager, Matthew Hoffman, Stephen F. Price, and Jonathan Wolfe
The Cryosphere, 19, 507–523, https://doi.org/10.5194/tc-19-507-2025,https://doi.org/10.5194/tc-19-507-2025, 2025
Short summary
Mechanisms and impacts of extreme high-salinity shelf water formation in the Ross Sea
Xiaoqiao Wang, Zhaoru Zhang, Chuan Xie, Xi Zhao, Chuning Wang, Heng Hu, and Yuanjie Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3786,https://doi.org/10.5194/egusphere-2024-3786, 2025
Short summary
The macronutrient and micronutrient (iron and manganese) content of icebergs
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024,https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Ice mélange melt changes observed water column stratification at a tidewater glacier in Greenland
Nicole Abib, David A. Sutherland, Rachel Peterson, Ginny Catania, Jonathan D. Nash, Emily L. Shroyer, Leigh A. Stearns, and Timothy C. Bartholomaus
The Cryosphere, 18, 4817–4829, https://doi.org/10.5194/tc-18-4817-2024,https://doi.org/10.5194/tc-18-4817-2024, 2024
Short summary

Cited articles

Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2014.
Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot, E.: Recent large increases in freshwater fluxes from Greenland into the North Atlantic, Geophys. Res. Lett., 39, 1–4, https://doi.org/10.1029/2012GL052552, 2012.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013.
Banwell, A. F., Willis, I. C., and Arnold, N. S.: Modeling subglacial water routing at Paakitsoq, W Greenland, J. Geophys.-Res. Earth, 118, 1282–1295, https://doi.org/10.1002/jgrf.20093, 2013.
Barnes, S. L.: Applications of the Barnes Objective Analysis Scheme. Part I: Effects of Undersampling, Wave Position, and Station Randomness, J. Atmos. Ocean. Tech., 11, 1433–1448, 1994.
Download
Short summary
Here we pair detailed hydrographic measurements collected with an autonomous underwater vehicle as close as 150 m from the ice–ocean interface of the Saqqarliup sermia–Sarqardleq Fjord system, West Greenland, with modeled and observed subglacial discharge locations and magnitudes. We find evidence of two main types of subsurface glacially modified water localized in space that are consistent with runoff discharged at two locations along the grounding line.
Share