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Abstract. Measurements of near-ice (< 200 m) hydrography

and near-terminus subglacial hydrology are lacking, due in

large part to the difficulty in working at the margin of calv-

ing glaciers. Here we pair detailed hydrographic and bathy-

metric measurements collected with an autonomous under-

water vehicle as close as 150 m from the ice–ocean inter-

face of the Saqqarliup sermia–Sarqardleq Fjord system, West

Greenland, with modeled and observed subglacial discharge

locations and magnitudes. We find evidence of two main

types of subsurface glacially modified water (GMW) with

distinct properties and locations. The two GMW locations

also align with modeled runoff discharged at separate lo-

cations along the grounded margin corresponding with two

prominent subcatchments beneath Saqqarliup sermia. Thus,

near-ice observations and subglacial discharge routing indi-

cate that runoff from this glacier occurs primarily at two dis-

crete locations and gives rise to two distinct glacially mod-

ified waters. Furthermore, we show that the location with

the largest subglacial discharge is associated with the lighter,

fresher glacially modified water mass. This is qualitatively

consistent with results from an idealized plume model.

1 Introduction

Greenland Ice Sheet mass loss quadrupled over the last 2

decades, contributing roughly 7.4 mm to global sea level rise

from 1992 to 2011 (Shepherd et al., 2012), and increasing

freshwater inputs into the North Atlantic (Bamber et al.,

2012). Ice sheet mass loss occurs through runoff of surface

melt, ice discharge through iceberg calving, and submarine

melt at marine-terminating outlet glacier margins (Van den

Broeke et al., 2009; Enderlin et al., 2014). The synchronous

retreat and speedup of marine-terminating glaciers in south-

east Greenland in the early 2000s was likely initiated by

a dynamic change at marine termini (Van den Broeke et

al., 2009; Rignot and Kanagaratnam, 2006; Thomas et al.,

2009), and points towards common external forcings from

the warming atmosphere (Box et al., 2009) and/or ocean

around Greenland (Straneo and Heimbach, 2013), though the

exact forcing mechanisms and relative magnitudes remain

unclear (Joughin et al., 2012; Straneo et al., 2013).

Increased submarine melt rates at outlet glacier marine ter-

mini may be a leading cause of Greenland Ice Sheet outlet

glacier speed up and retreat (Holland et al., 2008; Joughin et

al., 2012; Motyka et al., 2013; Post et al., 2011). The heat

to drive submarine melting is supplied by waters from the

subpolar North Atlantic and Arctic seas, whose circulation

inside the fjords is a result of processes across a range of
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spatiotemporal scales (Jackson et al., 2014; Straneo et al.,

2010). Ultimately, melt rates are affected by ocean proper-

ties (temperature and stratification) and circulation in near-

ice waters (< 200 m) (Jenkins et al., 2010). Submarine melt-

ing is thought to be enhanced in summer as a result of melt-

water runoff along the ice sheet bed entering the fjord across

the grounding line as subglacial discharge, which provides

an additional buoyancy source alongside submarine melt for

initiating buoyant plumes along the terminus face (Jenkins,

1999, 2011; Sciascia et al., 2013; Xu et al., 2013). Relatively

fresh waters rising in the core of these plumes become denser

as they entrain salty ambient fjord waters, and this entrain-

ment driven by plumes serves as a mechanism for transport-

ing ambient fjord waters to the glacier face (Jenkins, 1999,

2011; Sciascia et al., 2013; Xu et al., 2013).

Plume theory and models combined with melt rate pa-

rameterizations suggest that higher subglacial discharge rates

are associated with faster flows and entrainment of a greater

volume of ambient fjord waters leading to higher subma-

rine melt rates (Jenkins, 1999, 2011; Sciascia et al., 2013;

Xu et al., 2013; Carroll et al., 2015); however, ocean prop-

erty and plume measurements needed to inform and vali-

date model simulations and theory are lacking due to diffi-

culty in working at the margin of calving glaciers (Straneo

and Cenedese, 2015). As a result, current modeling-sourced

estimates of submarine melt rates at tidewater glaciers and

their sensitivity to external forcings of the near-ice environ-

ment are highly uncertain, and based on unconstrained mod-

els of plume dynamics using ice–ocean boundary parameter-

izations forced by far field (> 1 km) ocean property measure-

ments and largely unknown subglacial discharge magnitude

and distribution (Jenkins, 2011; Kimura et al., 2014; Scias-

cia et al., 2013; Slater et al., 2015; Xu et al., 2012, 2013). For

example, in a recent numerical study the spatial distribution

of subglacial discharge along the grounding line was found

to have a large effect on both the total submarine melt rate

and its distribution along marine termini (Slater et al., 2015).

With a lack of observations of both the near-ice environment

and subglacial discharge configurations, we are unable to de-

fine likely subglacial discharge scenarios and their associated

influence on ice–ocean interactions, resulting in an inade-

quate and untested understanding of how tidewater glaciers

respond to oceanic forcing now and in the future (Straneo and

Cenedese, 2015). Specifically, ocean measurements collected

at distances> 1 km from the glacier terminus provide limited

information on the near-ice processes because the signals of

glacial modification have, by that time, largely been smeared

by lateral mixing processes. Indeed, the picture that emerges

from such far-field measurements is of a horizontally invari-

ant overturning cell (Chauché et al., 2014; Inall et al., 2014;

Johnson et al., 2011; Mortensen et al., 2011; Straneo et al.,

2011; Sutherland et al., 2014).

In this study, we present fjord hydrography and

bathymetry measurements from the near-ice environment of

a tidewater glacier in west Greenland (Fig. 1) that allow us

Figure 1. The Sarqardleq Fjord–Saqqarliup sermia outlet glacier

system in West Greenland. Modified from NunaGIS 1 : 100 000 map

(Asiaq, Greenland Survey). Sill locations shown in red. Figure 3

location shown in red box.

to reconstruct the distribution of subglacial discharge and

provide key details on the ice–ocean exchanges. We do this

by identifying the distribution of glacially modified water

(GMW) – a product of ambient fjord waters mixing with

subglacial discharge and glacial melt, including cooling due

the melting of ice (Jenkins, 2011; Straneo et al., 2011) –

within a few 100 m of the glacier face, and by delineat-

ing the subglacial catchments that route subglacial melt-

water to discharge locations along the grounded terminus.

These hydrographic measurements were obtained primar-

ily in July 2012, using a REMUS-100 (remote environmen-

tal measuring units) autonomous underwater vehicle (AUV)

(Fig. 2a) to observe the temperature, salinity, and turbidity of

waters in Sarqardleq Fjord (SF) from ∼ 2 km away to within

a couple hundred meters of Saqqarliup sermia (SS) (Sar-

qardliup sermia in Old Greenlandic), a medium-sized tidewa-

ter glacier in West Greenland (68.90◦ N, 50.32◦W) (Fig. 1).

This novel, high-risk field campaign was successful in ob-

taining multiple vertical sections of fjord water properties as

close as 150± 25 m from the terminus as well as detailed

bathymetry of the previously unmapped fjord.

2 Field campaign

2.1 REMUS-100 AUV

The REMUS-100 AUV is a small (1.8 m-long) and

light (45 kg) vehicle, rated to 100 m-depth that has

been modified for under-ice exploration (Plueddemann et

al., 2012) (Fig. 2a). REMUS environmental sensors in-
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Figure 2. REMUS-100 AUV and past Saqqarliup sermia terminus positions in Sarqardleq Fjord. (a) REMUS-100 AUV before deployment

in Sarqardleq Fjord. Note dense ice cover along Saqqarliup sermia terminus. (b) Saqqarliup sermia terminus 1975–2013 summertime posi-

tions digitized from the Landsat archive (http://earthexplorer.usgs.gov/) over fjord bathymetry and subglacial topography (see Fig. 3). Front

position dates are listed in the legend as year and day of year.

cluded a Neil Brown Ocean Systems conductivity-depth-

temperature (CTD) sensor, a WetLabs Environmental Char-

acterization Optics (ECO) Triplet sensor, and a Teledyne–

RDI dual (upward and downward looking) 1200 kHz acous-

tic Doppler current profiler (ADCP). The ECO Triplet pro-

vides measurements of turbidity from backscatter at 660 nm.

At the surface, REMUS communications include Iridium

satellite telemetry, FreeWave 900 MHz radio acoustic data

telemetry, WiFi for local area network for wireless testing

and configuration, and a Global Positioning System (GPS)

receiver for location fixes at the start and end of missions.

At depth, REMUS navigates by acoustically ranging to a

network of three moored low-frequency (LF 10 kHz) long-

baseline (LBL) transponders (Fig. 3). The vehicle continu-

ously updates its position while underway through a com-

bination of dead reckoning algorithms (which incorporate

compass data, as well as propeller turns, water velocity and

bottom track data from the ADCP), LBL fixes, and surface

GPS fixes when available (see Plueddemann et al., 2012).

Field operations from the shore and in small boats took

place from 17–27 July 2012 (DOY 199–209). SF is largely

free of icebergs after spring sea-ice break up, though frequent

calving along the SS terminus prevents boat travel within

∼ 200 m of the terminus. REMUS experienced navigational

challenges in the fjord environment due to a confluence of

factors including a strong surface pycnocline, loud and vari-

able noise from calving and overturning of icebergs, and

heavy ice conditions preventing some GPS fixes. Transects

presented here include occasional deviations on the order of

5 to 50 m perpendicular to mission tracks. Data collected dur-

ing mission track deviations are accepted and collapsed back

onto the transect line.

Deployed over the side of a small fishing boat, and even-

tually from the shore, 11 REMUS missions were com-

pleted over 9 days for both engineering and science objec-

tives. Although a minor issue for the localization of water

properties, the navigation challenges and track-line devia-

tions caused significant uncertainties in the conversion from

vehicle-relative to earth-referenced velocities. As a result,

only measurements from the CTD and ECO Triplet are pre-

sented here. Combinations of yo-yo, fixed-depth, and fixed-

altitude above-bottom sampling paths along transects paral-

lel to the glacier face were used to acquire vertical sections

of SF water properties. In total, 5 transects of temperature,

salinity, and turbidity along 5 terminus-parallel sections (R1–

R5, Fig. 3) at distances 150 to 1500± 25 m from the termi-

nus selected based on REMUS navigation quality and best

across- and along-fjord coverage are presented in this paper

(Table 1).

2.2 Hydrographic and turbidity data

Profiles and sections presented here are made from along-

track edited and smoothed REMUS CTD and ECO data. RE-

MUS temperature and salinity data were edited with the re-

moval of occasional erroneous points identified by an along-

track first difference filter of density calculated from the

temperature and salinity measurements. First differences of

> 0.1 sigma were removed, affecting 0.2 % of the data. Tur-

bidity values were capped at 10 nephelometric turbidity

units (NTUs). Raw temperature and salinity data were ob-

tained at 0.22 s intervals, while turbidity measurements were

taken at 1.15 s intervals. Temperature, salinity, and turbidity

measurements were interpolated to 0.5 s and then averaged

over 2 s to obtain smoothed, along-track data for all sensors

on a common time base with along-track resolution of 3.2–

3.6 m (based on typical vehicle speeds that ranged between

1.6 and 1.8 m s−1). Contour maps of observed variables vs.

depth and distance were created from the REMUS mission

www.the-cryosphere.net/10/417/2016/ The Cryosphere, 10, 417–432, 2016
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Figure 3. July 2012 Survey of Sarqardleq Fjord. Sarqardleq Fjord

bathymetry (10 m colored contours below sea level within fjord)

and Morlighem et al. (2014) bedrock elevation map (10 m colored

contours above and below sea level outside of fjord) are shown. The

Saqqarliup sermia front position and coastline from a 19 June 2012

Landsat image are mapped in red and black lines, respectively.

Depth measurements collected during July 2012 field operations

used to create the Sarqardleq Fjord bathymetry are plotted as grey

dots over the contoured bathymetry. REMUS transects R1–R5 are

shown in black, with LBL transponders mapped with red trian-

gles. Subglacial subcatchments C1, C2, and C3 dividing lines from

MBM2014 analysis are mapped in dashed blue line, with the lo-

cation of D1, D2, and D3 subglacial discharge channels along the

submerged terminus shown with thin black arrows. CTD casts are

shown with diamonds: white diamonds are CTD casts along R1

used in REMUS cross-calibration, and the blue, gold, and grey di-

amonds are CTD casts 1, 2, and 3 that were taken along R5 within

GMW1, GMW2, and the region between GMW1 and GMW2 (out-

lined in blue, gold, and white, respectively). Three proglacial stream

entries to Sarqardleq Fjord are shown along the northeast and south-

west fjord coastlines with thick black arrows.

tracks by optimal interpolation (kriging) of measurements

collapsed along glacier face-parallel transect lines (Fig. 4).

Simple, linear fits to computed autocorrelation were used for

temperature, salinity, and turbidity. Kriging was completed

over a depth and along-track distance range slightly larger

than the data range, with a vertical resolution of 2 m and a

horizontal resolution of 100 m, based on the along-track res-

olution of 3 m and the horizontal distance between REMUS

mid-depth sample lines of 100 m, respectively. Sensitivity

tests of different kriging models and linear slopes yielded lit-

tle impact on resulting sections, demonstrating a robust krig-

ing methodology.

Several shipboard CTD casts, collected using an

RBR XR 620 CTD during the field campaign, are presented

to supplement the REMUS observations (Fig. 6). Eight ship-

board CTD casts were taken along the R1 transect (Fig. 3),

8 casts were taken along cross-fjord sections in the outer SF

(> 10 km from the SS terminus) (triangles in Fig. 7a), and

3 casts were taken roughly at the R5 midpoint, northeast-

ern end, and southwestern end (Fig. 3). REMUS and CTD

measurements were cross-calibrated by comparing REMUS

R1 measurements with the 8 CTD casts taken along the R1

transect immediately following the completion of the RE-

MUS R1 mission. θ , S, and depth offsets were found to be

0.0015 ◦C,−0.05 PSU, and−2.5 m respectively, between the

CTD and REMUS measurements. The RBR XR 620 CTD

was calibrated before and after the fieldwork, but the RE-

MUS CTD was not. REMUS measurements were therefore

adjusted by 2.5 m to match the CTD observations, and this

offset is assumed to have remained constant throughout the

campaign.

2.3 Bathymetric data

Detailed bathymetry of the previously unmapped SF was ob-

tained through depth measurements from a shipboard single-

beam depth sounder, a shipboard ADCP, and the REMUS

downward looking ADCP in bottom-track mode (Fig. 3). Af-

ter removing occasional spikes in the REMUS ADCP depth

soundings (outliers on the order of 15 m deeper than back-

ground), depth measurements across the sampling platforms

at crossover points were consistent within < 4 m. Coastline

positions were assigned a depth of 0 m, and were obtained

from digitizing a 19 June 2012 Landsat image (30 m horizon-

tal resolution). Depth measurements were combined across

platforms by calculating a binned average depth measure-

ment over a 25 m× 25 m grid across the fjord. The Barnes

Objective Analysis (Barnes, 1994) was used to interpo-

late the binned depth measurements with a 175 m× 175 m

search radius to create the bathymetry shown in Fig. 3. The

bathymetry product aligns well with the binned depth mea-

surements (less than 1 m offsets) except in the location of the

northern side of the seamount (68.92◦ N, 50.34◦W), which

contains the maximum offset from the gridded depth mea-

surements at ±5 m. Due to low data coverage, the Barnes

Objective Analysis was not extended to the outer regions of

SF. However, with depth measurements from the shipboard

echosounder we have mapped the fjord centerline depth to

the confluence of SF and Tasiussaq Fjord, 15 km from the SS

terminus (Figs. 1 and 7a).

3 Physical setting: the Sarqardleq Fjord–Saqqarliup

sermia outlet glacier system

3.1 Fjord bathymetry, subglacial topography, and

historical terminus positions

The Saqqarliup sermia–Sarqardleq Fjord (SS–SF) outlet

glacier–fjord system is located in West Greenland roughly

30 km south of Jakobshavn Isbræ (Fig. 1). SS is a marine ter-

minating outlet glacier with a 6 km-wide terminus and an up-

stream subglacial catchment area of 400± 50 km2 (Fig. 7a,

The Cryosphere, 10, 417–432, 2016 www.the-cryosphere.net/10/417/2016/
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Table 1. REMUS Missions in Sarqardleq Fjord.

Mission Date Local time Duration Transect sampling path Distance

at mission (h:mm) (m depth) traveled

start (km)

R1 18 July 21:10 1:28 Yo-Yo= 5–90 9.00

R2 21 July 15:37 3:41 Yo-Yo= 5–50; 23.11

Fixed depth= 50, 70;

Altitude= 10 m above bottom

R3 22 July 14:58 6:25 Yo-Yo= 5–55; 41.36

Fixed depth= 60, 70;

Altitude= 10 m above bottom

R4 23 July 14:37 5:05 Yo-Yo= 5–50; 30.93

Fixed depth= 60, 70;

Altitude= 10 m above bottom

R5 24 July 18:12 5:26 Yo-Yo= 5–60; 34.91

Fixed depth= 40, 55, 70;

Altitude= 10 m above bottom

Figure 4. Select REMUS across-fjord sections. θ (◦C), S (PSU), and turbidity (NTU) sections along REMUS lines (a)–(c) R5, (d)–(f) R3,

and (g)–(i) R1 from 0 to 100 m depth. Sections are oriented looking away from the terminus, with the southwestern end of the section on the

left. Across-fjord transect distance is plotted as horizontal distance along section, with 0 km located at the intersection of the REMUS section

with an along-fjord line running from D1 to the southwestern LBL transponder along R1 (Fig. 3). GMW1 and GMW2 regions identified

by black ellipses, and labeled in blue and gold, respectively in (a)–(c). Isopycnals plotted in grey, REMUS mission tracks shown in white

(Table 1), and bathymetry shown in black (Fig. 3).

www.the-cryosphere.net/10/417/2016/ The Cryosphere, 10, 417–432, 2016
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Table 3; methods described in Sect. 3.2). We estimate to-

tal annual runoff out of this catchment to be on the order

of 1 km3 yr−1 using Regional Atmospheric Climate Model

version 2.3 (RACMO2.3) runoff values (Van den Broeke et

al., 2009) (methods described in Sect. 3.2). A bedrock trough

100–150 m b.s.l. (below sea level) extends 15 km inland from

the terminus, and continues further inland as a bedrock

trough above sea level (Morlighem et al., 2014) (Fig. 7a).

The SS centerline ice thickness is ∼ 200 m at the terminus

and increases inland (Morlighem et al., 2014) (Fig. 7a). The

Saqqarliup sermia terminus position has been relatively sta-

ble in comparison to the large terminus retreats observed

at other Greenland tidewater glaciers (Moon and Joughin,

2008) based on our analyses of LANDSAT imagery from

1979 to present (Fig. 2b). Modest advance and retreat phases

on the order of ±500 m are observed over recent decades,

with a net retreat of ∼ 1 km within the center third of the

glacier terminus observed from 1992 to present (Fig. 2b).

Average flow velocities within the SS outlet glacier during

the 2007–2009 winters were on the order of 125–175 m yr−1,

with the center third of the SS terminus reaching speeds of

200 m yr−1 (Joughin et al., 2013).

The Sarqardleq–Tasiussaq Fjord system is the south-

ern side fjord off the larger, deeper Jakobshavn Isbræ (JI)

Fjord, which connects the largest and fastest Greenland ice

stream (JI) to Disko Bugt (Fig. 1). From the SS terminus,

the shallower Sarqardleq–Tasiussaq Fjord system extends

roughly 30 km to the northwest before reaching JI Fjord. SF

meets Tasiussaq Fjord over a previously unknown 70 m-deep

sill, 15 km from the SS terminus (Figs. 1 and 7a). Tasiussaq

Fjord meets JI fjord over an at most 125 m-deep sill (Gladish

et al., 2015a) 30 km from the SS terminus (Fig. 1). Waters

along the SS terminus range from 20–150 m-depth, and are

deepest in two troughs near the center of the glacier (Fig. 3,

Table 3). Both SS lateral terminus regions are grounded in

relatively shallow lagoons (< 20 m) (Fig. 3). A 40 m-deep

seamount is located 2.5 km from the vertical SS calving face

(Fig. 3).

3.2 Subglacial catchment and runoff

To first order, subglacial catchments are defined by ice sheet

surface and bed topography, which governs subglacial hy-

draulic potential at the bed (Cuffey and Patterson, 2010).

Gradients in subglacial hydraulic potential at the ice-sheet

bed do not completely dictate subglacial meltwater pathways

due to the constantly evolving subglacial hydraulic system

over the summer melt season (Andrews et al., 2014; Chan-

dler et al., 2013; Hewitt et al., 2012; Schoof, 2010), but sub-

glacial hydraulic potential gradients are likely the dominant

regional factor. This is supported by recent modeling stud-

ies, which find a strong topographic control of channelized

subglacial meltwater routing over Greenland Ice Sheet outlet

glaciers (Banwell et al., 2013; Palmer et al., 2011).

The SS catchment area was determined based on stream-

line analysis through subglacial hydraulic potential gradient

fields to estimate which path water parcels located at the bed

under inland ice will follow out to the coast. The downslope

subglacial hydraulic potential gradient, −∇8h, was calcu-

lated as follows:

−∇8h =−ρig
[
fw∇S+

[
ρw/ρi− fw

]
∇B

]
, (1)

where ρi is the density of ice, ρw is the density of fresh-

water, g is the gravitational acceleration, fw is the flota-

tion fraction, and ∇S and ∇B are the surface and bed gra-

dients, respectively (Cuffey and Patterson, 2010; Shreve,

1972). We assume water at the bed flows along the steep-

est subglacial hydraulic potential gradient (Shreve, 1972).

We used two widely available bedrock elevation maps, Bam-

ber et al. (2013) and Morlighem et al. (2014) (hereafter

BBM2013 and MBM2014) to calculate −∇8h across a

1 km by 1 km grid (Bamber et al., 2013) and 150 m by

150 m grid (Morlighem et al. 2014) equivalent to the reso-

lution of each bedrock elevation map. MBM2014 beneath

SS was updated from the previously published map by

adding our SF bathymetry measurements as a boundary con-

straint along the SS terminus in this otherwise data-sparse

region. The MBM2014 used in this study is available on-

line as IceBridge BedMachine Greenland, Version 2 from

the National Snow and Ice Data Center (http://nsidc.org/data/

docs/daac/icebridge/idbmg4/index.html). Surface ice gradi-

ents (∇S) are calculated from the Greenland Ice Mapping

Project (GIMP) digital elevation model (Howat et al., 2014).

The flotation fraction was set to fw= 1 (basal water pres-

sures are equal to ice overburden pressure), which resulted

in the maximum catchment area possible based on basal hy-

draulic gradients in this region.

Surface runoff in the SS catchment for 2012 was deter-

mined from bilinear interpolation of the 11 km grid resolu-

tion RACMO2.3 runoff values (3 grid cells within SS catch-

ment) (Van den Broeke et al., 2009) to the 1 km grid from

BMB2013 and the 150 m grid from MBM2014 (Fig. 7a).

Portions of the catchment lower than 400 m a.s.l. were pre-

scribed the same runoff values as the RACMO2.3 grid point

within the catchment at 432 m a.s.l. (68.82◦ N, 50.19◦W)

(Fig. 7a), as there are no RACMO2.3 grid points at lower el-

evations within the catchment. We assume that the ice-sheet

bed is impermeable (does not store water) over the timescales

considered here, and that all surface runoff is transferred im-

mediately to the bed directly beneath the location of runoff

formation at the ice sheet surface.

The Cryosphere, 10, 417–432, 2016 www.the-cryosphere.net/10/417/2016/
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Figure 5. Glacially modified water in Sarqardleq Fjord. θ (◦C) (a) and S (b) profiles for R4 and R5 measurements over the full water-column

depth (grey), with the average of R4 and R5 measurements and the ambient fjord waters in black and red, respectively. (a) and (b) insets

show same data from 20–95 m depth over a finer θ or S range, with measurements taken within the GMW1 and GMW2 regions along R4

and R5 (Fig. 3) shown in blue and gold, respectively. θ/S plots of R4 and R5 measurements (c) (colors same as in a and b), with melt and

runoff mixing lines. Intersection for melt and runoff mixing lines set to CTD2 properties at grounding line depth (Fig. 6b). Black square

along ambient fjord water profile shows θ/S properties at sill depth (70 m). θ/S results for the Jenkins (2011) plume modeling (Table 4) of

D1 (blue triangles) and D2 (gold triangles) shown. (d) Same data as in (c) over finer θ/S range indicated by thin black box in (c).

4 Results

4.1 Glacially modified water (GMW) temperature,

salinity, and turbidity properties in Sarqardleq

Fjord

The summer Sarqardleq Fjord waters are characterized by a

∼ 10–20 m fresh and relatively warm surface layer overlying

a thick layer of weakly stratified, relatively salty (S= 30.5–

32.5) and cold (θ ≈ 1 ◦C) waters (Table 2, Fig. 5a and b). The

summer fjord waters are the same as the surface waters (SW)

and Ilulissat Icefjord waters (IIW) observed by recent hydro-

graphic surveys throughout Ilulissat Icefjord (Gladish et al.,

2015a, b). SW are a mixture of IIW and fresher, warmer wa-

ters originating from local freshwater sources and warmed

by summer atmospheric forcing. IIW originates from Arc-

tic Waters observed in Disko and Baffin Bays (Gladish et

al., 2015b) that enter SF after crossing sills at the mouth of

JI Fjord (Schumann et al., 2012), the confluence of JI Fjord

and Tasiussaq Fjord (Gladish et al., 2015a), and the mouth

of SF (Fig. 1). These summer fjord waters are observed in

the outer SF by a set of far-field CTD profiles taken near the

fjord mouth more than 10 km from the SS terminus (triangles

in Fig. 7a). We define ambient fjord waters as the average of

these far-field CTD profiles (red profile in Figs. 5 and 6).

Near the glacier we observe a range of water masses not

found in the outer fjord. These waters are generally colder,

fresher, and more turbid than waters near the mouth of the

fjord (Fig. 5a and b). The REMUS sections reveal two dis-

tinct glacially modified waters (GMWs), which we refer to

as GMW1 and GMW2 (Fig. 4, Table 2). GMW1 and GMW2

are cold anomalies with a high turbidity signal that are most

evident at two distinct locations (Fig. 4). GMW1 is observed

in the southwestern ends of R1–R5 at ∼ 40 m depth, while
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Table 2. Water mass properties in Sarqardleq Fjord.

Water mass Surface Ilulissat Icefjord Glacially Glacially

Water Waters (IIW) Modified Water 1 Modified Water 2

(SW) (GMW1) (GMW2)

Depth range (m) 0–20 20–SF bottom 35–60 50–70

S (PSU) 21–30.5 32.5–33.5 30.8–31.5 31.1–32.3

θ (◦C) 1.5–10 0.8–1.5 0.75–0.85 0.59–0.75

σθ (ρθ − 1000 kg m−3) 16.0–24.3 25.9–26.7 24.6–25.1 24.8–25.8

Turbidity (NTU) Low (< 4 NTU) Low (< 4 NTU) High (> 9 NTU) High (> 9 NTU)

Origin/formation Local formation Disko and Baffin Bay Local formation Local formation

Figure 6. Turbidity of glacially modified waters. θ (◦C) and S (PSU) profiles from the regions along R4 and R5 outlined in blue (GMW1

region) (a), gold (GMW2 region) (b), and white (the region between GMW1 and GMW2) (c) in Fig. 3, with turbidity plotted as the color of

the point. CTD1 (a), CTD2 (b), and CTD3 (c) are plotted in grey. The GMW region in θ/S space is outlined in purple. The average of all R4

and R5 measurements and the ambient fjord waters are plotted in black and red, respectively. Black square along ambient fjord water profile

shows θ/S properties at sill depth (70 m).

GMW2 is observed in the northeastern ends of R1–R5 at

∼ 60 m depth (Fig. 4). Both GMW1’s and GMW2’s temper-

ature and turbidity anomalies are most pronounced close to

the glacier (Fig. 4a–c), and decrease as these waters spread

away from the glacier (Fig. 4g–i). For example, the high

turbidity associated with GMW1 spreads laterally beneath

the pycnocline at R1 (Fig. 4i). Turbidity does not consis-

tently map onto regions of local temperature minima; there

are regions in the REMUS sections with high turbidity but

with temperatures above 0.9 ◦C (northeastern R1 below 80 m

depth, Fig. 4i). High turbidity in these regions may be due

to other sources including suspended sediment sourced from

proglacial streams that enter SF as surface runoff near the

northeastern end of R1 (Fig. 3) or iceberg discharge.

CTD casts 1–3 were taken closer to the SS face than the R5

transect during the same July 2012 field campaign (Fig. 3),

and provide additional θ/S characteristics below the 100 m

REMUS depth limit (Fig. 6a–c). These casts record deeper

cold anomalies at the bottom of SF, as well as cold excur-

sions from ∼ 40 to 80 m depth, similar to REMUS measure-

ments (Fig. 6a–c). Overall the CTD profiles align well with

REMUS measurements where coincident (above 100 m).

Further insight into the origins of GMW1 and GMW2 is

found in θ/S space, where GMW1 and GMW2 stand out

as cold anomalies as compared to waters near the mouth

of the fjord (Figs. 5d and 6a, b). GMW1 and GMW2

are clustered at two distinct densities (Fig. 6a and b).

At a density of σθ ≈ 24.8 kg m−3, where σθ is potential

density less 1000 kg m−3, GMW1 is lighter than GMW2

(σθ ≈ 25.5 kg m−3) (Table 2, Fig. 6a and b). In general,

GMW is fresher and more turbid compared to ambient wa-

ters, consistent with fjord waters mixing with submarine melt

and subglacial discharge. If we assume that both GMW1

and GMW2 are driven by subglacial discharge plumes that

emerged at the grounding line, then we can assume that the

bulk of the entrainment was of deeper waters at densities of

σθ = 25.5–26.5 kg m−3 (Fig. 6a and b). In θ/S space, GMW

is further identified with the use of meltwater and runoff

mixing lines (Figs. 5c, d and 6a–c), which represent con-

servative mixing between ambient water and submarine melt

or subglacial discharge, respectively (Jenkins, 1999). End-
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Figure 7. Saqqarliup sermia catchments and discharge. (a) Es-

timated Saqqarliup sermia catchment (thick black line) and sub-

catchments C1, C2, and C3 (dashed black line) from the MBM2014

analysis over Morlighem et al. (2014) bedrock elevation map (filled

contours) and ice sheet surface (magenta contours). BBM2013

catchment and subcatchments outlines in thick solid and dashed

grey lines, respectively. Ice sheet margin and coastlines shown

in red and blue, respectively. RACMO2.3 11 km resolution grid

points shown with white diamonds. Sarqardleq Fjord bathymetry

and outer Sarqardleq Fjord CTD positions (black triangles) and

depth measurements also shown. (b) Daily C1, C2, and C3 sub-

catchment MBM2014 RACMO2.3 discharge estimates (red, blue,

and black lines, respectively) and daily average RACMO2.3 tem-

perature (green line) across the Saqqarliup sermia subcatchment C1

for DOY 150–250, 2012. Daily C1, C2, and C3 subcatchment

BBM2013 RACMO2.3 discharge estimates in pink, cyan, and grey

lines, respectively. Dates of REMUS and CTD sampling from

DOY 200–207 marked by grey bar.

points for the melt and runoff mixing lines are set to proper-

ties observed by CTD cast 2 at grounding line depth (Figs. 3

and 6b). GMW1 and GMW2 are consistent with the trans-

formation of ambient waters by mixing with submarine melt

and subglacial discharge, as they fall between the meltwater

and runoff mixing lines in θ/S space (Figs. 5c, d and 6a–c).

Thus, near the glacier we observe water masses not found

in the outer fjord that we attribute to glacier–ocean inter-

actions (Jenkins et al., 2010; Straneo et al., 2011). We ob-

serve two distinct GMW that are both colder, fresher, and

more turbid compared to ambient waters at similar depths

(Figs. 5a–c, and 6a, b) but are located in different regions

of the fjord (Fig. 3). GMW1, observed in the southwestern

ends of R1–R5, is considerably fresher and lighter than the

colder GMW2 observed in the northeastern ends of R1–R5

(Figs. 3 and 6a, b, Table 2). The lighter GMW1 (σθ ≈ 24.8)

is observed at an equilibrium depth of 35–60 m, while the

denser GMW2 (σθ ≈ 25.5) has a deeper equilibrium depth of

50–70 m (Table 2), suggesting that GMW1 contains a higher

fraction of subglacial runoff than GMW2 (see Sect. 4.3). We

further elucidate GMW1 and GMW2 origins in the following

section on the SS catchment and subglacial discharge across

the SS terminus.

4.2 SS catchment and subglacial discharge across

SS terminus

The 400± 50 km2 area SS catchment extends 15 km up the

basal valley beneath the 6 km-wide SS outlet glacier snout

and widens under inland ice, reaching a maximum inland

extent of 35 km just above the 900 m a.s.l. ice-sheet surface

elevation contour (Fig. 7a, Table 3). Bedrock basins that

steer subglacial water to the southwest delineate the south-

ern boundary of the catchment (Fig. 7a). The northern ex-

tent of the catchment is bounded by the Alanngorliup sermia

outlet glacier catchment parallel to SS (Fig. 7a). Three sub-

catchments – C1, C2, and C3 – are delineated within the SS

catchment from binning −∇8h streamline endpoints along

the SS face in both the MBM2014 and BBM2013 analy-

ses (Fig. 7a). The main difference between the MBM2014

and BBM2013 analyses is the size of the C1 subcatchment

(BBM2013 33 % larger), with the BBM2013 analysis de-

lineating the northern inland extent of C1 into a region the

MBM2014 analysis places in the Alanngorliup sermia catch-

ment (Figs. 1 and 7a, Table 3).

The three sub-catchments delineate three sections along

the terminus (Fig. 7a), with each section mapping onto a di-

rectly observed or inferred subglacial meltwater discharge

channel (D1, D2, and D3 in Fig. 3). Subcatchment C1,

the largest sub-catchment at 269 km2 area (MBM2014) dis-

charges along the middle of the terminus at discharge loca-

tion D1, while subcatchment C2 and C3 discharge along the

northeastern and southwestern extents of the terminus at D2

and D3, respectively (Fig. 3). D1 and D2 align with two dis-

tinct bathymetric troughs of 150 and 132 m depth, respec-

tively (Table 3), bounded by bathymetry highs of 60 to 40 m

depth in SF (Fig. 3). D1 and D2 also coincide with depressed

glacier margin heights along the terminus, enhanced ice sheet

velocities (Joughin et al., 2013), and high calving flux rela-

tive to the rest of the terminus. D1 is a particularly frequent

calving region in comparison to the rest of the terminus, as

observed during our two field campaigns. At times, a turbu-

lent, sediment-rich plume reaches the fjord surface at D1, as

observed in satellite images and during subsequent fieldwork

in July 2013 (Mankoff et al., 2016). While exhibiting sim-
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Table 3. Saqqarliup sermia subcatchments and runoff estimates.

Subcatchment C1 C2 C3 SS (
∑

C1–3)

Discharge location D1 D2 D3 –

Bathymetry along catchment terminus

Average depth (m) 116.4 101.5 39.9 –

Maximum depth (m) 150.4 131.8 49.9 –

Morlighem et al. (2014) (MBM2014)

Catchment area (km2) 268.74 47.97 23.31 340.02

Catchment area compared to SS (%) 79 % 14 % 7 % –

Catchment average daily runoff July
115.78± 42.59 20.62± 7.33 9.97± 3.47 146.37± 53.26

2012 ±σJULY (Qsg) (m3 s−1)

Average daily July runoff compared to SS (%) 79 % 14 % 7 % –

Catchment average daily runoff during

88.70± 42.59 16.10± 7.33 7.89± 3.47 112.69± 53.26the field expedition (DOY 200, 203–206)

±σJULY (Qsg) (m3 s−1)

Bamber et al. (2013) (BBM2013)

Catchment area (km2) 402 42 9 453

Catchment area compared to SS (%) 89 % 9 % 2 % –

Catchment average daily runoff July
171.01± 64.27 17.47± 6.40 3.72± 1.36 192.20± 71.75

2012 ±σJULY (Qsg) (m3 s−1)

Average daily July runoff compared to SS (%) 89 % 9 % 2 % –

Catchment average daily runoff during

122.83± 64.27 14.08± 6.40 3.05± 1.36 139.96± 71.75the field expedition (DOY 200, 203–206)

±σJULY (Qsg) (m3 s−1)

ilarly frequent calving, terminus height, and velocity char-

acteristics as D1, surface plumes have not been observed at

D2. Subcatchment C3 discharges beneath the slow-moving,

southwestern margin of the terminus at D3 (Fig. 3), through

a visible, broad channel mouth at the fjord surface, entering

into a shallow region of SF (Table 3, Fig. 3).

Variability in calculated subglacial discharge for each sub-

catchment is controlled primarily by temperature variabil-

ity, with daily runoff rates a summation of melt and precip-

itation across the catchment (Van den Broeke et al., 2009)

(Fig. 7b, Table 3). During our 2012 field expedition, catch-

ment runoff rates were slightly below the monthly July aver-

age, with no above average temperature days falling within

the sampling period (Fig. 7b). Disregarding the possibil-

ity for periods of subglacial water storage during the en-

and subglacial transport of runoff to the SS terminus, daily

discharge rates across the terminus during the field expe-

dition are 146 m3 s−1 (MBM2014 estimate) (Table 3). An

additional though likely minor amount of surface meltwa-

ter runoff enters the fjord through proglacial streams, which

discharge at land-terminating margins abutting SS (Fig. 3).

Daily runoff discharges for C1 and C2 scale primarily with

area differences and are 115.78 and 20.62 m3 s−1, respec-

tively (MBM2014) (Table 3). As error estimates for the

RACMO2.3 runoff rates are not available, we take the stan-

dard deviation of July 2012 daily discharge rates as a measure

of the potential variation observed during the field expedition

(Table 3).

4.3 Buoyant plume model for the SS–SF system

As described above, we have found evidence for three main

subglacial catchments discharging runoff into SF at three lo-

cations along the terminus. The two prominent discharge lo-

cations, D1 and D2, coincide with GMW1 and GMW2 ob-

servations. The picture that emerges is that different prop-

erties of GMW1 and GMW2 are attributable to differences

in subglacial discharge magnitude at that location. Here, we

use a buoyant plume model to investigate the extent to which

the two plumes’ predicted characteristics compare with the

GMW1 and GMW2 observations. Buoyant plume theory

states that the growth of a plume is dictated by the plume’s

buoyancy forcing, which can be due to subglacial discharge

at the grounding line and/or submarine melting along the ter-

minus (Morton et al., 1956; Turner, 1979). The buoyancy

forcing of the plume determines the plume’s vertical velocity

and entrainment of ambient fjord waters (Morton et al., 1956;

Turner, 1979). A class of simple, one-dimensional buoyant

plume models has been used to investigate plume dynamics

and terminus melt rates near glaciers (Hellmer and Olbers,

1989; Jenkins, 1991, 2011). Solutions to these models es-
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Table 4. Buoyant plume model simulations for D1 and D2 scenarios at MBM2014 subglacial discharge values. Plume θ and S ranges are

plotted in Fig. 5c and d.

D1 D2

Ambient θ/S profile CTD 1 CTD 2

Calving face depth (m) 153 140

Subglacial discharge (Qsg) (m3 s−1) [46.11, 88.70, 131.29] [8.77, 16.10, 23.43]

Plume θ (◦C) at neutral buoyancy depth [0.82, 0.85, 0.84] [0.83, 0.82, 0.82]

Plume S (PSU) at neutral buoyancy depth [30.50, 29.72, 29.17] [31.32, 30.88, 30.56]

Plume σθ (ρθ − 1000 kg m−3) at neutral buoyancy depth [24.34, 23.74, 23.30] [24.90, 24.59, 24.35]

Neutral buoyancy depth (m) [21.79, 14.03, 13.79] [41.41, 31.23, 27.68]

Volume fraction of entrained water [0.94, 0.94, 0.94] [0.96, 0.96, 0.96]

timate plume temperature, salinity, vertical velocity, width,

and intrusion depth, the depth at which the plume becomes

neutrally buoyant and changes from flowing vertically up

the terminus to flowing horizontally away from the termi-

nus. Here we investigate D1 and D2 plume scenarios using

the Jenkins (2011) buoyant plume model adapted to a half-

conical plume driven by a point-source.

The plume model uses conservation of the fluxes of mass,

momentum, heat, and salt, to calculate plume characteristics

that are uniform in time and across-flow direction (Jenkins,

2011). Key initial conditions that we prescribe include an

ice temperature of −10 ◦C (Lüthi et al., 2002); fjord ambi-

ent temperature and stratification (Table 4); a vertical glacier

face; and a modeled subglacial discharge across the termi-

nus, Qsg (Table 4). Entrainment of ambient fjord waters into

the buoyant plume is modeled as a product of plume veloc-

ity, the sine of the ice terminus slope (vertical for SS), and

a theoretically defined entrainment coefficient (E0) of 0.08

following Sciascia et al. (2013).

The buoyant plume model is calculated for D1 and D2 sce-

narios and evaluated based on end plume temperature, salin-

ity, and intrusion depth (Table 4). Ambient water properties

are defined by two CTD measurements of full water column

temperature and salinity from nearby D1 and D2 (CTD1 and

CTD2, respectively, in Fig. 3). Temperature, salinity, and in-

trusion depth at the end of the plume are found to be largely

insensitive to varying ambient fjord water properties if the

ambient waters show strong summer stratification. We use

the RACMO2.3-derived estimates of subglacial discharge

across the terminus at D1 and D2 (m3 s−1) (using MBM2014

of average daily runoff during the field expedition; m3 s−1)

(Table 3).

Given the observed ocean stratification and the modeled

subglacial discharge, the plume model confirms that GMW1

should be notably fresher and lighter than GMW2 (Fig. 5c,

Table 4). This supports the conclusion that GMW1 and

GMW2 are the result of two distinct discharge locations with

different subglacial discharge magnitudes. For the D2 sce-

nario, the plume model predicts end plume properties and

neutrally buoyant depths (∼ 31 m) that are aligned with the

GMW2 observations at similar depths (Fig. 5c and d). For

the D1 scenario, the plume model predicts end plume prop-

erties that are lighter and fresher than the observed GMW1

(Fig. 5c, Tables 2 and 4). The predicted D1 plume would

reach above the 20 m-deep pycnocline at neutral buoyancy

depth of ∼ 14 m (Table 4). With a minimum amount of over-

shoot, we might expect the D1 plume to reach the surface

or depths close enough to the surface to be visible during

field observations. In reality, the plume at D1 was not ob-

served to reach the surface, and GMW1 was only observed

beneath the pycnocline (Fig. 4). There are several possible

reasons for this discrepancy. First, the plume model may have

an incorrect entrainment parameterization. Second, the esti-

mated subglacial discharge could be incorrect. In addition,

after detaching from the terminus at the plume’s intrusion

depth, GMW spreads an additional 150 m away from the SS

face before being observed at R5. Over this time, we would

expect lateral mixing to further dilute the GMW properties.

The plume model does not describe lateral mixing, as the

model ends when the plume reaches intrusion depth.

5 Discussion

5.1 Subglacial catchments, discharge, and GMW

observations

Our analysis of the ocean data and subglacial catchments

both suggest that there are two primary subglacial discharge

locations along the ice–ocean interface. On the outlet glacier

catchment side of the interface, the primary subcatchments,

C1 and C2 (Fig. 7a), route substantial (> 90 %) of the to-

tal SS meltwater runoff (Table 3) into the fjord across the

grounding line at discharge locations D1 and D2, respec-

tively (Fig. 3). On the ocean side of the interface, GMW1

and GMW2 are located near D1 and D2, respectively, and

show fresher, colder waters with high turbidity as compared

to ambient fjord waters (Fig. 5a and b). The properties of

these waters, in particular, are consistent with glacial mod-

ification due to significant injection of runoff at depth as is

expected from a localized discharge of meltwater at D1 and
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D2. Finally, between D1 and D2, there is a 2 km stretch of the

terminus where GMW show cold excursions with low to high

turbidity along R4 and R5 (Fig. 6c). The formation of this

GMW is less clear, though in this region between subglacial

discharge locations, GMW properties are more indicative of

submarine melt and limited subglacial discharge and/or lat-

eral mixing of GMW1 and GMW2.

Although we lack observations within the plumes them-

selves in 2012, the ocean observations of GMW suggest that

these waters are produced by ambient fjord waters interact-

ing with a limited number of discrete plumes along the ter-

minus. Our observations of GMW beneath the pycnocline at

a distance of ∼ 150 m from the terminus suggest that the two

plumes reach neutral buoyancy beneath the fjord surface. Vi-

sual observations during the 2012 field campaign confirm

that the plumes did not reach the fjord surface during this

time. In contrast, during the July 2013 field campaign at SF,

a vigorous, turbulent plume was observed to break through

at the fjord surface at D1 (Mankoff et al., 2016).

Differences in subglacial discharge magnitude entering the

fjord at D1 and D2 is both observed and predicted to result

in water mass differences between GMW1 and GMW2. Fed

by subglacial discharge from the largest subglacial subcatch-

ment, GMW1 is fresher and lighter than GMW2 (Table 3,

Figs. 5a–d and 6a, b). D2 receives roughly 20 % of the sub-

glacial discharge magnitude at D1 (Table 3). This smaller

subglacial discharge results in a relatively saltier and heav-

ier GMW2 in comparison to GMW1 (Figs. 5a–d and 6a, b).

While a greater volume of subglacial discharge leads to a

fresher water mass, the strength of the resultant buoyant

plume also plays a role in near-ice water mass transforma-

tion. Plume theory predicts that a plume fed by a greater

amount of subglacial discharge will have a stronger buoy-

ancy forcing, leading to both faster entrainment of ambi-

ent waters and an increase in the fraction of subglacial dis-

charge in the plume (Jenkins, 2011; Straneo and Cenedese,

2015). In this fjord, the entrainment of ambient waters into a

plume results in GMW with temperatures and salinities that

are warmer and saltier than the subglacial discharge enter-

ing the fjord (θ = 0 ◦C, S= 0 PSU). The volume fraction of

entrained water for both D1 and D2 plumes is above 0.9

(Table 4), indicating that for this fjord, the plume temper-

ature and salinity at neutral buoyancy depth are largely a

function of the entrained ambient water mass. Thus, over-

all, the greater subglacial discharge at D1 drives a more vig-

orous plume that mixes with both IIW and SW, which re-

sults in GMW that is closer in θ and S to SW than IIW (Ta-

ble 2, Fig. 6a). In contrast, smaller subglacial discharge at

D2 drives a less vigorous plume that mixes at deeper depths

with only IIW, resulting in GMW that retains the cold signa-

ture of subglacial discharge and submarine melting (Table 2,

Fig. 6b).

Consistent with the ocean data, the plume model predicts

end plume conditions at D1 are fresher and lighter than those

at D2 as they contain a greater amount of subglacial dis-

charge (Fig. 5d, Table 4). However, the end plume conditions

from the Jenkins (2011) model for D1 scenarios are lighter

than the GMW1 we observe (Fig. 5c, Table 4). In addition to

errors in the plume model and subglacial discharge estimates,

lateral mixing within ∼ 150 m of the terminus is a consider-

ation for comparing the plume model results and observed

GMW. Large amounts of mixing with ambient waters likely

occur once the plume detaches from the terminus and GMW

is exported away from the ice–ocean interface. This lateral

mixing has been observed in other marine terminating outlet

glacier systems in Greenland, where GMW from an inferred

localized subglacial discharge location was found uniformly

across the fjord in profiles taken ∼ 200 m from the terminus

(Chauché et al., 2014).

5.2 Observing the heterogeneous near-ice environment

The coupling of near-ice observations and subglacial dis-

charge routing is necessary for understanding ice-ocean in-

teractions at marine terminating outlet glaciers. While multi-

ple recent studies have observed GMW in fjords (Chauché et

al., 2014; Inall et al., 2014; Johnson et al., 2011; Mortensen

et al., 2011; Straneo et al., 2011; Sutherland et al., 2014) and

others have measured and modeled runoff based on surface

catchment area (Mernild et al., 2015), no studies have di-

rectly linked the two sides of this interface or considered the

role of basal routing on catchment area. For this study, we

pair near-ice observations and subglacial discharge routing

to show for the first time that the observed GMW charac-

teristics align with the subglacial discharge magnitudes from

outlet glacier subcatchments.

Our results highlight the necessity of subsurface observa-

tions within the near-ice zone for accurately characterizing

the heterogeneous processes at the ice–ocean interface. We

observe heterogeneous, subsurface GMW as high turbidity,

cold excursions in across-fjord sections as far as 1.5 km from

the SS terminus (Fig. 4). Further away from the terminus,

only the cold excursion at the density of GMW1 remains

in the far-field profiles (Fig. 5d). Thus, while in the near-ice

zone there are multiple subglacial discharge locations across

the SS grounding line and different types of GMW observed,

only a modified GMW1 is identifiable in far-field profiles.

Noble gas observations of GMW in neighboring Greenland

fjords observe a dilution of GMW as you move away from

the terminus, suggesting that GMW is highly diluted outside

of the near-ice zone (Beaird et al., 2015). Thus, the fact that

only a modified GMW1 is detectable in the far-field profiles

is likely due to the larger volume flux of discharge from D1

entering the fjord as compared to discharge from D2 (Ta-

ble 4). Sill depth may be an additional factor impeding the

export of GMW2; GMW2 is observed at or barely above the

70 m sill depth, while GMW1 is observed at shallower depths

(Figs. 1 and 3, Table 2). The implication is that far-field mea-

surements only provide a partial representation of processes

along the ice–ocean interface.
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Similar to the single cold excursion observed in the ambi-

ent SF waters, many studies have observed evidence of sub-

surface GMW uniformly distributed across fjord width out-

side of the near-ice zone (Johnson et al., 2011; Mortensen et

al., 2011; Straneo et al., 2011; Chauché et al., 2014; Inall et

al., 2014; Sutherland et al., 2014). Observations at Store and

Rink glaciers as close as∼ 200 m to termini identify one to a

couple of surface and subsurface plumes along each glacier

termini (Chauché et al., 2014). However, the GMW observed

200 m from the termini is uniform across the fjord (Chauché

et al., 2014). While our observations of subglacial discharge

locations in SF are consistent with the low number of sub-

glacial discharge locations found at Store and Rink glaciers

(Chauché et al., 2014), we are able to further differentiate

and map types of GMW to outlet glacier subcatchments.

The subsurface nature of the plumes and resultant GMW

we observed is consistent with multiple studies that have also

observed subsurface GMW (Chauché et al., 2014; Inall et al.,

2014; Johnson et al., 2011; Mortensen et al., 2011; Straneo

et al., 2011; Sutherland et al., 2014). Together these findings

drive home the point that plumes and other processes at the

ice–ocean interface actively driving submarine melt can and

often do operate without creating an expression on the fjord

surface. Surface expressions of plumes have been detected

at many Greenland tidewater glaciers and invoked as evi-

dence for runoff release from the ice sheet into fjords and

proglacial streams (Chu et al., 2009; Tedstone and Arnold,

2012), and have even been proposed as a potentially use-

ful remote measure of runoff variability (Chu et al., 2012).

However, our observations of plumes and GMW that reach

neutral buoyancy beneath the pycnocline suggest in many

cases this relationship does not hold true. The magnitude of

subglacial discharge entering a fjord, fjord stratification, and

fjord depth have all been shown to affect whether a plume

reaches the surface (Sciascia et al., 2013). The absence of

plume surface expression does not negate the presence of

subglacial discharge plumes that may be driving significant

submarine melt and circulation along a tidewater terminus.

Thus, across-fjord subsurface observations within the near-

ice zone provide the most comprehensive characterization of

ice–ocean interactions in Greenland fjords.

5.3 Observational constraints for modeling the

heterogeneous near-ice environment

While spatial distribution of subglacial discharge is a crit-

ical component for estimating submarine melt rates at ma-

rine terminating outlet glaciers in numerical models (Slater

et al., 2015), we have few observations to constrain sub-

glacial discharge scenarios. Model configurations of sub-

glacial discharge for major Greenland outlet glaciers range

from a distributed subglacial system where equal amounts

of subglacial discharge emerge across the entire grounding

line width (Jenkins, 2011; Sciascia et al., 2013), to partition-

ing subglacial discharge between a number of equally spaced

plumes along the terminus (Kimura et al., 2014; Slater et

al., 2015), to routing all subglacial discharge through a

single subglacial channel emerging in one, central plume

(Slater et al., 2015; Xu et al., 2013). While all these mod-

els, which share the same melt parameterization, agree that

submarine melt rates increase with increasing subglacial dis-

charge (Jenkins, 2011; Kimura et al., 2014; Sciascia et al.,

2013; Slater et al., 2015; Xu et al., 2012, 2013), the amount

and distribution of the increased melting depends on the

largely unknown pattern of subglacial discharge (Straneo and

Cenedese, 2015). Most recently, Slater et al. (2015) con-

cluded that a distributed system yields as much as 5 times

more submarine melting than a channelized system consist-

ing of a few plumes along the terminus. Thus, spatial distri-

bution of subglacial melt is critically important for accurately

estimating submarine melt rates in a numerical model (Slater

et al., 2015; Straneo and Cenedese, 2015).

For this system, we observe at least two, localized areas

of subglacial discharge separated by wide areas of the termi-

nus with little to no subglacial discharge. Our survey interval

was limited to peak summer conditions, when one would ex-

pect channelized subglacial discharge. Observations during

other times of the year, in particular prior to and during the

onset of meltwater runoff early in the melt season, as well as

towards the end of the melt season when runoff is reduced

again, would be useful to more fully characterize the sea-

sonally evolving magnitude and type of subglacial discharge

in this environment. A simple subglacial meltwater routing

model using MBM2014, the GIMP ice sheet surface digi-

tal elevation model, and RACMO2.3 runoff estimates was

able to predict the number, approximate location, and relative

magnitude and type of subglacial discharge locations. And

while this subglacial catchment delineation method should

be supplemented with ocean measurements and field obser-

vations where possible, in many cases it may prove a useful

first-order approximation of the spatial distribution of sub-

glacial discharge at other marine terminating outlet glaciers

where fjord observations are lacking or difficult to obtain.

6 Conclusions

Hydrographic surveys completed by an AUV in Sarqardleq

Fjord provide several new observational insights to the char-

acteristics and distribution of near-ice GMW in a shallow-

silled, moderate-sized west Greenland fjord. Overcoming

navigation difficulties in the acoustically noisy, iceberg-filled

fjord, the AUV covered a large portion of the near-ice wa-

ters along the terminus. AUV observations provide the most

comprehensive and spatiotemporally detailed snapshots of

across-fjord hydrography in the near-ice zone to date. From

these measurements we identified two types of GMW that

map onto two plumes based on θ/S/turbidity near-ice proper-

ties and subcatchment runoff estimates. The two plumes are,

notably, not observed to reach the surface in the fjords, but at-
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tain neutral buoyancy beneath the pycnocline of the strongly

stratified summer fjord conditions.

Our observations detail how mixing processes at the ice–

ocean interface driven by either submarine melting and/or

plumes fed by subglacial discharge can produce GMW that

is colder, fresher, and at times more turbid than ambient

fjord waters. An idealized plume model for plumes fed by

a range of RACMO2.3-derived subglacial discharges appro-

priate for the two plumes observed in this fjord is qualita-

tively consistent with the largest subglacial discharge being

associated with the lighter, fresher glacially modified water

mass. The characterization of GMW and subglacial catch-

ments for this outlet glacier system provides critical obser-

vational constraints on the widely varying subglacial dis-

charge scenarios employed by the current set of submarine

melt modeling studies. Results supply near-ice observations

abutting one Greenland Ice Sheet outlet glacier, though the

continued investigation of other Greenland outlet glaciers is

much needed to ultimately move towards an accurate repre-

sentation of oceanic forcing at outlet glacier termini and an

improved understanding of the ice sheet’s outlet glacier dy-

namics.
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