Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-2501-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-2501-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ice core evidence for a 20th century increase in surface mass balance in coastal Dronning Maud Land, East Antarctica
Morgane Philippe
CORRESPONDING AUTHOR
Laboratoire de Glaciologie, Département des Géosciences,
Environnement et Société, Université Libre de Bruxelles, 1050 Brussels, Belgium
Jean-Louis Tison
Laboratoire de Glaciologie, Département des Géosciences,
Environnement et Société, Université Libre de Bruxelles, 1050 Brussels, Belgium
Karen Fjøsne
Laboratoire de Glaciologie, Département des Géosciences,
Environnement et Société, Université Libre de Bruxelles, 1050 Brussels, Belgium
Bryn Hubbard
Centre for Glaciology, Department of Geography and Earth Sciences,
Aberystwyth University, Aberystwyth, SY23 3DB, UK
Helle A. Kjær
Centre for Ice and Climate, Niels Bohr Institute, University of
Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen, Denmark
Jan T. M. Lenaerts
Institute for Marine and Atmospheric Research Utrecht, Utrecht
University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
Reinhard Drews
Bavarian Academy for Sciences and Humanities, Alfons-Goppel-Strasse
11, 80539 Munich, Germany
Simon G. Sheldon
Centre for Ice and Climate, Niels Bohr Institute, University of
Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen, Denmark
Kevin De Bondt
Department of Analytical Environmental and Geo-Chemistry, Vrije
Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Philippe Claeys
Department of Analytical Environmental and Geo-Chemistry, Vrije
Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Frank Pattyn
Laboratoire de Glaciologie, Département des Géosciences,
Environnement et Société, Université Libre de Bruxelles, 1050 Brussels, Belgium
Related authors
No articles found.
Margaret Mallory Harlan, Jodi Fox, Helle Astrid Kjær, Tessa R. Vance, Anders Svensson, and Eliza Cook
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-64, https://doi.org/10.5194/cp-2024-64, 2024
Preprint under review for CP
Short summary
Short summary
We identify two tephra horizons in the Mount Brown South (MBS) ice core originating from the mid-1980s eruptive period of Mt. Erebus and the 1991 eruption of Cerro Hudson. They represent an important addition to East Antarctic tephrochronology, with implications for understanding atmospheric dynamics and ice core chronologies. This work underpins the importance of the MBS ice core as a new tephrochronological archive in an underrepresented region of coastal East Antarctica.
Margaret Harlan, Helle Astrid Kjær, Aylin de Campo, Anders Svensson, Thomas Blunier, Vasileios Gkinis, Sarah Jackson, Christopher Plummer, and Tessa Vance
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-335, https://doi.org/10.5194/essd-2024-335, 2024
Preprint under review for ESSD
Short summary
Short summary
This paper provides high-resolution chemistry and impurity measurements from the Mount Brown South ice core in East Antarctica, from 873 to 2009 CE. Measurements include sodium, ammonium, hydrogen peroxide, electrolytic conductivity, and insoluble microparticles. Data are provided on three scales: 1 mm and 3 cm averaged depth resolution and decadally averaged. The paper also describes the continuous flow analysis systems used to collect the data as well as uncertainties and data quality.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024, https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
Falk M. Oraschewski, Inka Koch, M. Reza Ershadi, Jonathan D. Hawkins, Olaf Eisen, and Reinhard Drews
The Cryosphere, 18, 3875–3889, https://doi.org/10.5194/tc-18-3875-2024, https://doi.org/10.5194/tc-18-3875-2024, 2024
Short summary
Short summary
Mountain glaciers have a layered structure which contains information about past snow accumulation and ice flow. Using ground-penetrating radar instruments, the internal structure can be observed. The detection of layers in the deeper parts of a glacier is often difficult. Here, we present a new approach for imaging the englacial structure of an Alpine glacier (Colle Gnifetti, Switzerland and Italy) using a phase-sensitive radar that can detect reflection depth changes at sub-wavelength scales.
Ole Zeising, Tore Hattermann, Lars Kaleschke, Sophie Berger, Reinhard Drews, M. Reza Ershadi, Tanja Fromm, Frank Pattyn, Daniel Steinhage, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2109, https://doi.org/10.5194/egusphere-2024-2109, 2024
Short summary
Short summary
Basal melting of ice shelves impacts the mass loss of the Antarctic Ice Sheet. This study focuses on the Ekström Ice Shelf in East Antarctica, using multi-year data from an autonomous radar system. Results show a surprising seasonal pattern of high melt rates in winter and spring. Sea-ice growth correlates with melt rates, indicating that in winter, dense water enhances plume activity and melt rates. Understanding these dynamics is crucial for improving future mass balance projections.
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Nina M. A. Wichern, Or M. Bialik, Theresa Nohl, Lawrence M. E. Percival, R. Thomas Becker, Pim Kaskes, Philippe Claeys, and David De Vleeschouwer
Clim. Past, 20, 415–448, https://doi.org/10.5194/cp-20-415-2024, https://doi.org/10.5194/cp-20-415-2024, 2024
Short summary
Short summary
Middle–Late Devonian sedimentary rocks are often punctuated by anoxic black shales. Due to their semi-regular nature, anoxic events may be linked to periodic changes in the Earth’s climate caused by astronomical forcing. We use portable X-ray fluorescence elemental records, measured on marine sediments from Germany, to construct an astrochronological framework for the Kellwasser ocean anoxic Crisis. Results suggest that the Upper Kellwasser event was preceded by a specific orbital configuration.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Vjeran Višnjević, Reinhard Drews, Clemens Schannwell, Inka Koch, Steven Franke, Daniela Jansen, and Olaf Eisen
The Cryosphere, 16, 4763–4777, https://doi.org/10.5194/tc-16-4763-2022, https://doi.org/10.5194/tc-16-4763-2022, 2022
Short summary
Short summary
We present a simple way to model the internal layers of an ice shelf and apply the method to the Roi Baudouin Ice Shelf in East Antarctica. Modeled results are compared to measurements obtained by radar. We distinguish between ice directly formed on the shelf and ice transported from the ice sheet, and we map the spatial changes in the volume of the locally accumulated ice. In this context, we discuss the sensitivity of the ice shelf to future changes in surface accumulation and basal melt.
Elise Kazmierczak, Sainan Sun, Violaine Coulon, and Frank Pattyn
The Cryosphere, 16, 4537–4552, https://doi.org/10.5194/tc-16-4537-2022, https://doi.org/10.5194/tc-16-4537-2022, 2022
Short summary
Short summary
The water at the interface between ice sheets and underlying bedrock leads to lubrication between the ice and the bed. Due to a lack of direct observations, subglacial conditions beneath the Antarctic ice sheet are poorly understood. Here, we compare different approaches in which the subglacial water could influence sliding on the underlying bedrock and suggest that it modulates the Antarctic ice sheet response and increases uncertainties, especially in the context of global warming.
Helle Astrid Kjær, Patrick Zens, Samuel Black, Kasper Holst Lund, Anders Svensson, and Paul Vallelonga
Clim. Past, 18, 2211–2230, https://doi.org/10.5194/cp-18-2211-2022, https://doi.org/10.5194/cp-18-2211-2022, 2022
Short summary
Short summary
Six shallow cores from northern Greenland spanning a distance of 426 km were retrieved during a traversal in 2015. We identify several recent acid horizons associated with Icelandic eruptions and eruptions in the Barents Sea region and obtain a robust forest fire proxy associated primarily with Canadian forest fires. We also observe an increase in the large dust particle fluxes that we attribute to an activation of Greenland local sources in recent years (1998–2015).
A. Clara J. Henry, Reinhard Drews, Clemens Schannwell, and Vjeran Višnjević
The Cryosphere, 16, 3889–3905, https://doi.org/10.5194/tc-16-3889-2022, https://doi.org/10.5194/tc-16-3889-2022, 2022
Short summary
Short summary
We used a 3D, idealised model to study features in coastal Antarctica called ice rises and ice rumples. These features regulate the rate of ice flow into the ocean. We show that when sea level is raised or lowered, the size of these features and the ice flow pattern can change. We find that the features depend on the ice history and do not necessarily fully recover after an equal increase and decrease in sea level. This shows that it is important to initialise models with accurate ice geometry.
David De Vleeschouwer, Marion Peral, Marta Marchegiano, Angelina Füllberg, Niklas Meinicke, Heiko Pälike, Gerald Auer, Benjamin Petrick, Christophe Snoeck, Steven Goderis, and Philippe Claeys
Clim. Past, 18, 1231–1253, https://doi.org/10.5194/cp-18-1231-2022, https://doi.org/10.5194/cp-18-1231-2022, 2022
Short summary
Short summary
The Leeuwin Current transports warm water along the western coast of Australia: from the tropics to the Southern Hemisphere midlatitudes. Therewith, the current influences climate in two ways: first, as a moisture source for precipitation in southwestern Australia; second, as a vehicle for Equator-to-pole heat transport. In this study, we study sediment cores along the Leeuwin Current pathway to understand its ocean–climate interactions between 4 and 2 Ma.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Matthias Sinnesael, Alfredo Loi, Marie-Pierre Dabard, Thijs R. A. Vandenbroucke, and Philippe Claeys
Geochronology, 4, 251–267, https://doi.org/10.5194/gchron-4-251-2022, https://doi.org/10.5194/gchron-4-251-2022, 2022
Short summary
Short summary
We used new geochemical measurements to study the expression of astronomical climate cycles recorded in the Ordovician (~ 460 million years ago) geological sections of the Crozon Peninsula (France). This type of geological archive is not often studied in this way, but as they become more important going back in time, a better understanding of their potential astronomical cycles is crucial to advance our knowledge of deep-time climate dynamics and to construct high-resolution timescales.
Julien Westhoff, Giulia Sinnl, Anders Svensson, Johannes Freitag, Helle Astrid Kjær, Paul Vallelonga, Bo Vinther, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Ilka Weikusat
Clim. Past, 18, 1011–1034, https://doi.org/10.5194/cp-18-1011-2022, https://doi.org/10.5194/cp-18-1011-2022, 2022
Short summary
Short summary
We present a melt event record from an ice core from central Greenland, which covers the past 10 000 years. Our record displays warm summer events, which can be used to enhance our understanding of the past climate. We compare our data to anomalies in tree ring width, which also represents summer temperatures, and find a good correlation. Furthermore, we investigate an outstandingly warm event in the year 986 AD or 991 AD, which has not been analyzed before.
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022, https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
Short summary
Radio waves transmitted through ice split up and inform us about the ice sheet interior and orientation of single ice crystals. This can be used to infer how ice flows and improve projections on how it will evolve in the future. Here we used an inverse approach and developed a new algorithm to infer ice properties from observed radar data. We applied this technique to the radar data obtained at two EPICA drilling sites, where ice cores were used to validate our results.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Helle Astrid Kjær, Lisa Lolk Hauge, Marius Simonsen, Zurine Yoldi, Iben Koldtoft, Maria Hörhold, Johannes Freitag, Sepp Kipfstuhl, Anders Svensson, and Paul Vallelonga
The Cryosphere, 15, 3719–3730, https://doi.org/10.5194/tc-15-3719-2021, https://doi.org/10.5194/tc-15-3719-2021, 2021
Short summary
Short summary
Ice core analyses are often done in home laboratories after costly transport of samples from the field. This limits the amount of sample that can be analysed.
Here, we present the first truly field-portable continuous flow analysis (CFA) system for the analysis of impurities in snow, firn and ice cores while still in the field: the lightweight in situ analysis (LISA) box.
LISA is demonstrated in Greenland to reconstruct accumulation, conductivity and peroxide in snow cores.
Delia Segato, Maria Del Carmen Villoslada Hidalgo, Ross Edwards, Elena Barbaro, Paul Vallelonga, Helle Astrid Kjær, Marius Simonsen, Bo Vinther, Niccolò Maffezzoli, Roberta Zangrando, Clara Turetta, Dario Battistel, Orri Vésteinsson, Carlo Barbante, and Andrea Spolaor
Clim. Past, 17, 1533–1545, https://doi.org/10.5194/cp-17-1533-2021, https://doi.org/10.5194/cp-17-1533-2021, 2021
Short summary
Short summary
Human influence on fire regimes in the past is poorly understood, especially at high latitudes. We present 5 kyr of fire proxies levoglucosan, black carbon, and ammonium in the RECAP ice core in Greenland and reconstruct for the first time the fire regime in the high North Atlantic region, comprising coastal east Greenland and Iceland. Climate is the main driver of the fire regime, but at 1.1 kyr BP a contribution may be made by the deforestation resulting from Viking colonization of Iceland.
Helle Astrid Kjær, Patrick Zens, Ross Edwards, Martin Olesen, Ruth Mottram, Gabriel Lewis, Christian Terkelsen Holme, Samuel Black, Kasper Holst Lund, Mikkel Schmidt, Dorthe Dahl-Jensen, Bo Vinther, Anders Svensson, Nanna Karlsson, Jason E. Box, Sepp Kipfstuhl, and Paul Vallelonga
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-337, https://doi.org/10.5194/tc-2020-337, 2021
Manuscript not accepted for further review
Short summary
Short summary
We have reconstructed accumulation in 6 firn cores and 8 snow cores in Northern Greenland and compared with a regional Climate model over Greenland. We find the model underestimate precipitation especially in north-eastern part of the ice cap- an important finding if aiming to reconstruct surface mass balance.
Temperatures at 10 meters depth at 6 sites in Greenland were also determined and show a significant warming since the 1990's of 0.9 to 2.5 °C.
Mirjam Schaller, Igor Dal Bo, Todd A. Ehlers, Anja Klotzsche, Reinhard Drews, Juan Pablo Fuentes Espoz, and Jan van der Kruk
SOIL, 6, 629–647, https://doi.org/10.5194/soil-6-629-2020, https://doi.org/10.5194/soil-6-629-2020, 2020
Short summary
Short summary
In this study geophysical observations from ground-penetrating radar with pedolith physical and geochemical properties from pedons excavated in four study areas of the climate and ecological gradient in the Chilean Coastal Cordillera are combined. Findings suggest that profiles with ground-penetrating radar along hillslopes can be used to infer lateral thickness variations in pedolith horizons and to some degree physical and chemical variations with depth.
Seyedhamidreza Mojtabavi, Frank Wilhelms, Eliza Cook, Siwan M. Davies, Giulia Sinnl, Mathias Skov Jensen, Dorthe Dahl-Jensen, Anders Svensson, Bo M. Vinther, Sepp Kipfstuhl, Gwydion Jones, Nanna B. Karlsson, Sergio Henrique Faria, Vasileios Gkinis, Helle Astrid Kjær, Tobias Erhardt, Sarah M. P. Berben, Kerim H. Nisancioglu, Iben Koldtoft, and Sune Olander Rasmussen
Clim. Past, 16, 2359–2380, https://doi.org/10.5194/cp-16-2359-2020, https://doi.org/10.5194/cp-16-2359-2020, 2020
Short summary
Short summary
We present a first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination. After field measurements and processing of the ice-core data, the GICC05 timescale is transferred from the NGRIP core to the EGRIP core by means of matching volcanic events and common patterns (381 match points) in the ECM and DEP records. The new timescale is named GICC05-EGRIP-1 and extends back to around 15 kyr b2k.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
Christine S. Hvidberg, Aslak Grinsted, Dorthe Dahl-Jensen, Shfaqat Abbas Khan, Anders Kusk, Jonas Kvist Andersen, Niklas Neckel, Anne Solgaard, Nanna B. Karlsson, Helle Astrid Kjær, and Paul Vallelonga
The Cryosphere, 14, 3487–3502, https://doi.org/10.5194/tc-14-3487-2020, https://doi.org/10.5194/tc-14-3487-2020, 2020
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) extends around 600 km from its onset in the interior of Greenland to the coast. Several maps of surface velocity and topography in Greenland exist, but accuracy is limited due to the lack of validation data. Here we present results from a 5-year GPS survey in an interior section of NEGIS. We use the data to assess a list of satellite-derived ice velocity and surface elevation products and discuss the implications for the ice stream flow in the area.
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Short summary
Ice rises are elevated parts of the otherwise flat ice shelf. Here we study the impact of an Antarctic ice rise on the surrounding snow accumulation by combining field data and modeling. Our results show a clear difference in average yearly snow accumulation between the windward side, the leeward side and the peak of the ice rise due to differences in snowfall and wind erosion. This is relevant for the interpretation of ice core records, which are often drilled on the peak of an ice rise.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Niels J. de Winter, Clemens V. Ullmann, Anne M. Sørensen, Nicolas Thibault, Steven Goderis, Stijn J. M. Van Malderen, Christophe Snoeck, Stijn Goolaerts, Frank Vanhaecke, and Philippe Claeys
Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, https://doi.org/10.5194/bg-17-2897-2020, 2020
Short summary
Short summary
In this study, we present a detailed investigation of the chemical composition of 12 specimens of very well preserved, 78-million-year-old oyster shells from southern Sweden. The chemical data show how the oysters grew, the environment in which they lived and how old they became and also provide valuable information about which chemical measurements we can use to learn more about ancient climate and environment from such shells. In turn, this can help improve climate reconstructions and models.
Alex Brisbourne, Bernd Kulessa, Thomas Hudson, Lianne Harrison, Paul Holland, Adrian Luckman, Suzanne Bevan, David Ashmore, Bryn Hubbard, Emma Pearce, James White, Adam Booth, Keith Nicholls, and Andrew Smith
Earth Syst. Sci. Data, 12, 887–896, https://doi.org/10.5194/essd-12-887-2020, https://doi.org/10.5194/essd-12-887-2020, 2020
Short summary
Short summary
Melting of the Larsen C Ice Shelf in Antarctica may lead to its collapse. To help estimate its lifespan we need to understand how the ocean can circulate beneath. This requires knowledge of the geometry of the sub-shelf cavity. New and existing measurements of seabed depth are integrated to produce a map of the ocean cavity beneath the ice shelf. The observed deep seabed may provide a pathway for circulation of warm ocean water but at the same time reduce rapid tidal melt at a critical location.
Heiko Goelzer, Violaine Coulon, Frank Pattyn, Bas de Boer, and Roderik van de Wal
The Cryosphere, 14, 833–840, https://doi.org/10.5194/tc-14-833-2020, https://doi.org/10.5194/tc-14-833-2020, 2020
Short summary
Short summary
In our ice-sheet modelling experience and from exchange with colleagues in different groups, we found that it is not always clear how to calculate the sea-level contribution from a marine ice-sheet model. This goes hand in hand with a lack of documentation and transparency in the published literature on how the sea-level contribution is estimated in different models. With this brief communication, we hope to stimulate awareness and discussion in the community to improve on this situation.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Stef Vansteenberge, Niels J. de Winter, Matthias Sinnesael, Sophie Verheyden, Steven Goderis, Stijn J. M. Van Malderen, Frank Vanhaecke, and Philippe Claeys
Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, https://doi.org/10.5194/cp-16-141-2020, 2020
Short summary
Short summary
We measured the chemical composition (trace-element concentrations and stable-isotope ratios) of a Belgian speleothem that deposited annual layers. Our sub-annual resolution dataset allows us to investigate how the chemistry of this speleothem recorded changes in the environment and climate in northwestern Europe. We then use this information to reconstruct climate change during the 16th and 17th century on the seasonal scale and demonstrate that environmental change drives speleothem chemistry.
Niccolò Maffezzoli, Paul Vallelonga, Ross Edwards, Alfonso Saiz-Lopez, Clara Turetta, Helle Astrid Kjær, Carlo Barbante, Bo Vinther, and Andrea Spolaor
Clim. Past, 15, 2031–2051, https://doi.org/10.5194/cp-15-2031-2019, https://doi.org/10.5194/cp-15-2031-2019, 2019
Short summary
Short summary
This study provides the first ice-core-based history of sea ice in the North Atlantic Ocean, reaching 120 000 years back in time. This record was obtained from bromine and sodium measurements in the RECAP ice core, drilled in east Greenland. We found that, during the last deglaciation, sea ice started to melt ~ 17 500 years ago. Over the 120 000 years of the last glacial cycle, sea ice extent was maximal during MIS2, while minimum sea ice extent exists for the Holocene.
Juan Pablo Corella, Niccolo Maffezzoli, Carlos Alberto Cuevas, Paul Vallelonga, Andrea Spolaor, Giulio Cozzi, Juliane Müller, Bo Vinther, Carlo Barbante, Helle Astrid Kjær, Ross Edwards, and Alfonso Saiz-Lopez
Clim. Past, 15, 2019–2030, https://doi.org/10.5194/cp-15-2019-2019, https://doi.org/10.5194/cp-15-2019-2019, 2019
Short summary
Short summary
This study provides the first reconstruction of atmospheric iodine levels in the Arctic during the last 11 700 years from an ice core record in coastal Greenland. Dramatic shifts in iodine level variability coincide with abrupt climatic transitions in the North Atlantic. Since atmospheric iodine levels have significant environmental and climatic implications, this study may serve as a past analog to predict future changes in Arctic climate in response to global warming.
Adam J. Hepburn, Tom Holt, Bryn Hubbard, and Felix Ng
Geosci. Instrum. Method. Data Syst., 8, 293–313, https://doi.org/10.5194/gi-8-293-2019, https://doi.org/10.5194/gi-8-293-2019, 2019
Short summary
Short summary
Currently, there exist thousands of unprocessed stereo pairs of satellite imagery which can be used to create models of the surface of Mars. This paper sets out a new open–source and free to use pipeline for creating these models. Our pipeline produces models of comparable quality to the limited number released to date but remains free to use and easily implemented by researchers, who may not necessarily have prior experience of DEM creation.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, and Fabien Gillet-Chaulet
The Cryosphere, 13, 2673–2691, https://doi.org/10.5194/tc-13-2673-2019, https://doi.org/10.5194/tc-13-2673-2019, 2019
Short summary
Short summary
Ice rises are important ice-sheet features that archive the ice sheet's history in their internal structure. Here we use a 3-D numerical ice-sheet model to simulate mechanisms that lead to changes in the geometry of the internal structure. We find that changes in snowfall result in much larger and faster changes than similar changes in ice-shelf geometry. This result is integral to fully unlocking the potential of ice rises as ice-dynamic archives and potential ice-core drilling sites.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Kevin Bulthuis, Maarten Arnst, Sainan Sun, and Frank Pattyn
The Cryosphere, 13, 1349–1380, https://doi.org/10.5194/tc-13-1349-2019, https://doi.org/10.5194/tc-13-1349-2019, 2019
Short summary
Short summary
Using probabilistic methods, we quantify the uncertainty in the Antarctic ice-sheet response to climate change over the next millennium under the four RCP scenarios and parametric uncertainty. We find that the ice sheet is stable in RCP 2.6 regardless of parametric uncertainty, while West Antarctica undergoes disintegration in RCP 8.5 almost regardless of parametric uncertainty. We also show a high sensitivity of the ice-sheet response to uncertainty in sub-shelf melting and sliding conditions.
Mai Winstrup, Paul Vallelonga, Helle A. Kjær, Tyler J. Fudge, James E. Lee, Marie H. Riis, Ross Edwards, Nancy A. N. Bertler, Thomas Blunier, Ed J. Brook, Christo Buizert, Gabriela Ciobanu, Howard Conway, Dorthe Dahl-Jensen, Aja Ellis, B. Daniel Emanuelsson, Richard C. A. Hindmarsh, Elizabeth D. Keller, Andrei V. Kurbatov, Paul A. Mayewski, Peter D. Neff, Rebecca L. Pyne, Marius F. Simonsen, Anders Svensson, Andrea Tuohy, Edwin D. Waddington, and Sarah Wheatley
Clim. Past, 15, 751–779, https://doi.org/10.5194/cp-15-751-2019, https://doi.org/10.5194/cp-15-751-2019, 2019
Short summary
Short summary
We present a 2700-year timescale and snow accumulation history for an ice core from Roosevelt Island, Ross Ice Shelf, Antarctica. We observe a long-term slightly decreasing trend in accumulation during most of the period but a rapid decline since the mid-1960s. The latter is linked to a recent strengthening of the Amundsen Sea Low and the expansion of regional sea ice. The year 1965 CE may thus mark the onset of significant increases in sea-ice extent in the eastern Ross Sea.
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018, https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary
Short summary
We use high-resolution satellite imagery and field visits to assess the growth and drainage of a lake on Changri Shar Glacier in the Everest region, and its impact. The lake filled and drained within 3 months, which is a shorter interval than would be detected by standard monitoring protocols, but forced re-routing of major trails in several locations. The water appears to have flowed beneath Changri Shar and Khumbu glaciers in an efficient manner, suggesting pre-existing developed flow paths.
Brice Van Liefferinge, Frank Pattyn, Marie G. P. Cavitte, Nanna B. Karlsson, Duncan A. Young, Johannes Sutter, and Olaf Eisen
The Cryosphere, 12, 2773–2787, https://doi.org/10.5194/tc-12-2773-2018, https://doi.org/10.5194/tc-12-2773-2018, 2018
Short summary
Short summary
Our paper provides an important review of the state of knowledge for oldest-ice prospection, but also adds new basal geothermal heat flux constraints from recently acquired high-definition radar data sets. This is the first paper to contrast the two primary target regions for oldest ice: Dome C and Dome Fuji. Moreover, we provide statistical comparisons of all available data sets and a summary of the community's criteria for the retrieval of interpretable oldest ice since the 2013 effort.
Nanna B. Karlsson, Tobias Binder, Graeme Eagles, Veit Helm, Frank Pattyn, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, https://doi.org/10.5194/tc-12-2413-2018, 2018
Short summary
Short summary
In this study, we investigate the probability that the Dome Fuji region in East Antarctica contains ice more than 1.5 Ma old. The retrieval of a continuous ice-core record extending beyond 1 Ma is imperative to understand why the frequency of ice ages changed from 40 to 100 ka approximately 1 Ma ago.
We use a new radar dataset to improve the ice thickness maps, and apply a thermokinematic model to predict basal temperature and age of the ice. Our results indicate several areas of interest.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
Marius Folden Simonsen, Llorenç Cremonesi, Giovanni Baccolo, Samuel Bosch, Barbara Delmonte, Tobias Erhardt, Helle Astrid Kjær, Marco Potenza, Anders Svensson, and Paul Vallelonga
Clim. Past, 14, 601–608, https://doi.org/10.5194/cp-14-601-2018, https://doi.org/10.5194/cp-14-601-2018, 2018
Short summary
Short summary
Ice core dust size distributions are more often measured today by an Abakus laser sensor than by the more technically demanding but also very accurate Coulter counter. However, Abakus measurements consistently give larger particle sizes. We show here that this bias exists because the particles are flat and elongated. Correcting for this gives more accurate Abakus measurements. Furthermore, the shape of the particles can be extracted from a combination of Coulter counter and Abakus measurements.
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Nancy A. N. Bertler, Howard Conway, Dorthe Dahl-Jensen, Daniel B. Emanuelsson, Mai Winstrup, Paul T. Vallelonga, James E. Lee, Ed J. Brook, Jeffrey P. Severinghaus, Taylor J. Fudge, Elizabeth D. Keller, W. Troy Baisden, Richard C. A. Hindmarsh, Peter D. Neff, Thomas Blunier, Ross Edwards, Paul A. Mayewski, Sepp Kipfstuhl, Christo Buizert, Silvia Canessa, Ruzica Dadic, Helle A. Kjær, Andrei Kurbatov, Dongqi Zhang, Edwin D. Waddington, Giovanni Baccolo, Thomas Beers, Hannah J. Brightley, Lionel Carter, David Clemens-Sewall, Viorela G. Ciobanu, Barbara Delmonte, Lukas Eling, Aja Ellis, Shruthi Ganesh, Nicholas R. Golledge, Skylar Haines, Michael Handley, Robert L. Hawley, Chad M. Hogan, Katelyn M. Johnson, Elena Korotkikh, Daniel P. Lowry, Darcy Mandeno, Robert M. McKay, James A. Menking, Timothy R. Naish, Caroline Noerling, Agathe Ollive, Anaïs Orsi, Bernadette C. Proemse, Alexander R. Pyne, Rebecca L. Pyne, James Renwick, Reed P. Scherer, Stefanie Semper, Marius Simonsen, Sharon B. Sneed, Eric J. Steig, Andrea Tuohy, Abhijith Ulayottil Venugopal, Fernando Valero-Delgado, Janani Venkatesh, Feitang Wang, Shimeng Wang, Dominic A. Winski, V. Holly L. Winton, Arran Whiteford, Cunde Xiao, Jiao Yang, and Xin Zhang
Clim. Past, 14, 193–214, https://doi.org/10.5194/cp-14-193-2018, https://doi.org/10.5194/cp-14-193-2018, 2018
Short summary
Short summary
Temperature and snow accumulation records from the annually dated Roosevelt Island Climate Evolution (RICE) ice core show that for the past 2 700 years, the eastern Ross Sea warmed, while the western Ross Sea showed no trend and West Antarctica cooled. From the 17th century onwards, this dipole relationship changed. Now all three regions show concurrent warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea.
Suzanne L. Bevan, Adrian Luckman, Bryn Hubbard, Bernd Kulessa, David Ashmore, Peter Kuipers Munneke, Martin O'Leary, Adam Booth, Heidi Sevestre, and Daniel McGrath
The Cryosphere, 11, 2743–2753, https://doi.org/10.5194/tc-11-2743-2017, https://doi.org/10.5194/tc-11-2743-2017, 2017
Short summary
Short summary
Five 90 m boreholes drilled into an Antarctic Peninsula ice shelf show units of ice that are denser than expected and must have formed from refrozen surface melt which has been buried and transported downstream. We used surface flow speeds and snow accumulation rates to work out where and when these units formed. Results show that, as well as recent surface melt, a period of strong melt occurred during the 18th century. Surface melt is thought to be a factor in causing recent ice-shelf break-up.
Sophie Berger, Reinhard Drews, Veit Helm, Sainan Sun, and Frank Pattyn
The Cryosphere, 11, 2675–2690, https://doi.org/10.5194/tc-11-2675-2017, https://doi.org/10.5194/tc-11-2675-2017, 2017
Short summary
Short summary
Floating ice shelves act as a plug for the Antarctic ice sheet. The efficiency of this ice plug depends on how and how much the ocean melts the ice from below. This study relies on satellite imagery and a Lagrangian approach to map in detail the basal mass balance of an Antarctic ice shelf. Although the large-scale melting pattern of the ice shelf agrees with previous studies, our technique successfully detects local variability (< 1 km) in the basal melting of the ice shelf.
Penelope How, Douglas I. Benn, Nicholas R. J. Hulton, Bryn Hubbard, Adrian Luckman, Heïdi Sevestre, Ward J. J. van Pelt, Katrin Lindbäck, Jack Kohler, and Wim Boot
The Cryosphere, 11, 2691–2710, https://doi.org/10.5194/tc-11-2691-2017, https://doi.org/10.5194/tc-11-2691-2017, 2017
Short summary
Short summary
This study provides valuable insight into subglacial hydrology and dynamics at tidewater glaciers, which remains a poorly understood area of glaciology. It is a unique study because of the wealth of information provided by simultaneous observations of glacier hydrology at Kronebreen, a tidewater glacier in Svalbard. All these elements build a strong conceptual picture of the glacier's hydrological regime over the 2014 melt season.
Katie E. Miles, Bryn Hubbard, Tristam D. L. Irvine-Fynn, Evan S. Miles, Duncan J. Quincey, and Ann V. Rowan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-210, https://doi.org/10.5194/tc-2017-210, 2017
Preprint withdrawn
Short summary
Short summary
The production and routing of meltwater through glaciers is important because that water influences glacier sliding, and represents a resource in some instances and a hazard in others. Despite this importance, very little is known about the hydrology of debris-covered glaciers, which are commonly located at high altitudes. Here, we present a review of the hydrology of debris-covered glaciers, summarizing the current state of knowledge and identify potential future research priorities.
Peter Kuipers Munneke, Daniel McGrath, Brooke Medley, Adrian Luckman, Suzanne Bevan, Bernd Kulessa, Daniela Jansen, Adam Booth, Paul Smeets, Bryn Hubbard, David Ashmore, Michiel Van den Broeke, Heidi Sevestre, Konrad Steffen, Andrew Shepherd, and Noel Gourmelen
The Cryosphere, 11, 2411–2426, https://doi.org/10.5194/tc-11-2411-2017, https://doi.org/10.5194/tc-11-2411-2017, 2017
Short summary
Short summary
How much snow falls on the Larsen C ice shelf? This is a relevant question, because this ice shelf might collapse sometime this century. To know if and when this could happen, we found out how much snow falls on its surface. This was difficult, because there are only very few measurements. Here, we used data from automatic weather stations, sled-pulled radars, and a climate model to find that melting the annual snowfall produces about 20 cm of water in the NE and over 70 cm in the SW.
Goulven G. Laruelle, Peter Landschützer, Nicolas Gruber, Jean-Louis Tison, Bruno Delille, and Pierre Regnier
Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, https://doi.org/10.5194/bg-14-4545-2017, 2017
Frank Pattyn
The Cryosphere, 11, 1851–1878, https://doi.org/10.5194/tc-11-1851-2017, https://doi.org/10.5194/tc-11-1851-2017, 2017
Short summary
Short summary
Marine Ice Sheet Instability is a mechanism that can potentially lead to collapse of marine sectors of the Antarctic ice sheet and floating ice shelves play a crucial role herein. Improved grounding line physics (interaction with subglacial sediment) are implemented in a new ice-sheet model and compared to traditional sliding laws. Ice shelf collapse leads to a significant higher sea-level contribution (up to 15 m in 500 years) compared to traditional grounding-line approaches.
Célia J. Sapart, Natalia Shakhova, Igor Semiletov, Joachim Jansen, Sönke Szidat, Denis Kosmach, Oleg Dudarev, Carina van der Veen, Matthias Egger, Valentine Sergienko, Anatoly Salyuk, Vladimir Tumskoy, Jean-Louis Tison, and Thomas Röckmann
Biogeosciences, 14, 2283–2292, https://doi.org/10.5194/bg-14-2283-2017, https://doi.org/10.5194/bg-14-2283-2017, 2017
Short summary
Short summary
The Arctic Ocean, especially the Siberian shelves, overlays large areas of subsea permafrost that is degrading. We show that methane with a biogenic origin is emitted from this permafrost. At locations where bubble plumes have been observed, methane can escape oxidation in the surface sediment and rapidly migrate through the very shallow water column of this region to escape to the atmosphere, generating a positive radiative feedback.
Stephen F. Price, Matthew J. Hoffman, Jennifer A. Bonin, Ian M. Howat, Thomas Neumann, Jack Saba, Irina Tezaur, Jeffrey Guerber, Don P. Chambers, Katherine J. Evans, Joseph H. Kennedy, Jan Lenaerts, William H. Lipscomb, Mauro Perego, Andrew G. Salinger, Raymond S. Tuminaro, Michiel R. van den Broeke, and Sophie M. J. Nowicki
Geosci. Model Dev., 10, 255–270, https://doi.org/10.5194/gmd-10-255-2017, https://doi.org/10.5194/gmd-10-255-2017, 2017
Short summary
Short summary
We introduce the Cryospheric Model Comparison Tool (CmCt) and propose qualitative and quantitative metrics for evaluating ice sheet model simulations against observations. Greenland simulations using the Community Ice Sheet Model are compared to gravimetry and altimetry observations from 2003 to 2013. We show that the CmCt can be used to score simulations of increasing complexity relative to observations of dynamic change in Greenland over the past decade.
Lionel Favier, Frank Pattyn, Sophie Berger, and Reinhard Drews
The Cryosphere, 10, 2623–2635, https://doi.org/10.5194/tc-10-2623-2016, https://doi.org/10.5194/tc-10-2623-2016, 2016
Short summary
Short summary
We demonstrate the short-term unstable retreat of an East Antarctic outlet glacier triggered by imposed sub-ice-shelf melt, compliant with current values, using a state-of-the-art ice-sheet model. We show that pinning points – topographic highs in contact with the ice-shelf base – have a major impact on ice-sheet stability and timing of grounding-line retreat. The study therefore calls for improving our knowledge of sub-ice-shelf bathymetry in order to reduce uncertainties in future ice loss.
Sietske J. Batenburg, David De Vleeschouwer, Mario Sprovieri, Frederik J. Hilgen, Andrew S. Gale, Brad S. Singer, Christian Koeberl, Rodolfo Coccioni, Philippe Claeys, and Alessandro Montanari
Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, https://doi.org/10.5194/cp-12-1995-2016, 2016
Short summary
Short summary
The relative contributions of astronomical forcing and tectonics to ocean anoxia in the Cretaceous are unclear. This study establishes the pacing of Late Cretaceous black cherts and shales. We present a 6-million-year astrochronology from the Furlo and Bottaccione sections in Italy that spans the Cenomanian–Turonian transition and OAE2. Together with a new radioisotopic age for the mid-Cenomanian event, we show that astronomical forcing determined the timing of these carbon cycle perturbations.
Matthias Sinnesael, Miroslav Zivanovic, David De Vleeschouwer, Philippe Claeys, and Johan Schoukens
Geosci. Model Dev., 9, 3517–3531, https://doi.org/10.5194/gmd-9-3517-2016, https://doi.org/10.5194/gmd-9-3517-2016, 2016
Short summary
Short summary
Classical spectral analysis often relies on methods based on (Fast) Fourier Transformation. This technique has no unique solution separating variations in amplitude and frequency. This drawback is circumvented by using a polynomial approach (ACE v.1 model) to estimate instantaneous amplitude and frequency in orbital components. The model is illustrated and validated using a synthetic insolation signal and tested on two case studies: a benthic δ18O record and a magnetic susceptibility record.
Xylar S. Asay-Davis, Stephen L. Cornford, Gaël Durand, Benjamin K. Galton-Fenzi, Rupert M. Gladstone, G. Hilmar Gudmundsson, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, Daniel F. Martin, Pierre Mathiot, Frank Pattyn, and Hélène Seroussi
Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, https://doi.org/10.5194/gmd-9-2471-2016, 2016
Short summary
Short summary
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of ice sheets and glaciers, including assessing their contributions to sea level change. Here we describe the idealized experiments that make up three interrelated Model Intercomparison Projects (MIPs) for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities.
Stef Vansteenberge, Sophie Verheyden, Hai Cheng, R. Lawrence Edwards, Eddy Keppens, and Philippe Claeys
Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, https://doi.org/10.5194/cp-12-1445-2016, 2016
Short summary
Short summary
The use of stalagmites for last interglacial continental climate reconstructions in Europe has been successful in the past; however to expand the geographical coverage, additional data from Belgium is presented. It has been shown that stalagmite growth, morphology and stable isotope content reflect regional and local climate conditions, with Eemian optimum climate occurring between 125.3 and 117.3 ka. The start the Weichselian is expressed by a stop of growth caused by a drying climate.
Odile Crabeck, Ryan Galley, Bruno Delille, Brent Else, Nicolas-Xavier Geilfus, Marcos Lemes, Mathieu Des Roches, Pierre Francus, Jean-Louis Tison, and Søren Rysgaard
The Cryosphere, 10, 1125–1145, https://doi.org/10.5194/tc-10-1125-2016, https://doi.org/10.5194/tc-10-1125-2016, 2016
Short summary
Short summary
We present a new non-destructive X-ray-computed tomography technique to quantify the air volume fraction and produce separate 3-D images of air-volume inclusions in sea ice. While the internal layers showed air-volume fractions < 2 %, the ice–air interface (top 2 cm) showed values up to 5 %. As a result of the presence of large bubbles and higher air volume fraction measurements in sea ice, we introduce new perspectives on processes regulating gas exchange at the ice–atmosphere interface.
Reinhard Drews, Joel Brown, Kenichi Matsuoka, Emmanuel Witrant, Morgane Philippe, Bryn Hubbard, and Frank Pattyn
The Cryosphere, 10, 811–823, https://doi.org/10.5194/tc-10-811-2016, https://doi.org/10.5194/tc-10-811-2016, 2016
Short summary
Short summary
The thickness of ice shelves is typically inferred using hydrostatic equilibrium which requires knowledge of the firn density. Here, we infer density from wide-angle radar using a novel algorithm including traveltime inversion and ray tracing. We find that firn is denser inside a 2 km wide ice-shelf channel which is confirmed by optical televiewing of two boreholes. Such horizontal density variations must be accounted for when using the hydrostatic ice thickness for determining basal melt rate.
Thomas Goossens, Célia J. Sapart, Dorthe Dahl-Jensen, Trevor Popp, Saïda El Amri, and Jean-Louis Tison
The Cryosphere, 10, 553–567, https://doi.org/10.5194/tc-10-553-2016, https://doi.org/10.5194/tc-10-553-2016, 2016
Short summary
Short summary
This first multi-parametric analysis of the basal ice layer of the NEEM ice core reveals that its formation does not result from a mixing process between local relict ice and the deepest ice layers of the advancing ice sheet during its growth phase. Instead, it is shown that the basal sequence partly originates from melting and refreezing processes acting at the ice/bedrock interface under a well-developed ice sheet. These have partially destroyed the paleoclimatic records of the ice.
C. Nehme, S. Verheyden, S. R. Noble, A. R. Farrant, D. Sahy, J. Hellstrom, J. J. Delannoy, and P. Claeys
Clim. Past, 11, 1785–1799, https://doi.org/10.5194/cp-11-1785-2015, https://doi.org/10.5194/cp-11-1785-2015, 2015
Short summary
Short summary
The Levant is a key area to study palaeoclimatic responses over G-IG cycles. A precisely dated MIS 5 stalagmite (129–84ka) from Kanaan Cave, Lebanon, with growth rate and isotopic records variations indicate a warm humid phase at the last interglacial (~129-125ka). A shift in δ18O values (125-122ka) is driven by the source effect of the eastern Med. during sapropel 5 (S5). Low growth rates and high δ18O-δ13C values (~122-84ka) mark the onset of glacial inception and transition to drier phase.
G. Durand and F. Pattyn
The Cryosphere, 9, 2043–2055, https://doi.org/10.5194/tc-9-2043-2015, https://doi.org/10.5194/tc-9-2043-2015, 2015
Short summary
Short summary
Projections of Antarctic dynamics and contribution to sea-level rise are evaluated in the light of intercomparison exercises dedicated to evaluate models' ability of representing coastal changes. Uncertainties in projections can be substantially decreased if a selection of models is made and models that are unqualified for the representation of coastal dynamics are excluded.
A. Svensson, S. Fujita, M. Bigler, M. Braun, R. Dallmayr, V. Gkinis, K. Goto-Azuma, M. Hirabayashi, K. Kawamura, S. Kipfstuhl, H. A. Kjær, T. Popp, M. Simonsen, J. P. Steffensen, P. Vallelonga, and B. M. Vinther
Clim. Past, 11, 1127–1137, https://doi.org/10.5194/cp-11-1127-2015, https://doi.org/10.5194/cp-11-1127-2015, 2015
J.-L. Tison, M. de Angelis, G. Littot, E. Wolff, H. Fischer, M. Hansson, M. Bigler, R. Udisti, A. Wegner, J. Jouzel, B. Stenni, S. Johnsen, V. Masson-Delmotte, A. Landais, V. Lipenkov, L. Loulergue, J.-M. Barnola, J.-R. Petit, B. Delmonte, G. Dreyfus, D. Dahl-Jensen, G. Durand, B. Bereiter, A. Schilt, R. Spahni, K. Pol, R. Lorrain, R. Souchez, and D. Samyn
The Cryosphere, 9, 1633–1648, https://doi.org/10.5194/tc-9-1633-2015, https://doi.org/10.5194/tc-9-1633-2015, 2015
Short summary
Short summary
The oldest paleoclimatic information is buried within the lowermost layers of deep ice cores. It is therefore essential to judge how deep these records remain unaltered. We study the bottom 60 meters of the EPICA Dome C ice core from central Antarctica to show that the paleoclimatic signal is only affected at the small scale (decimeters) in terms of some of the global ice properties. However our data suggest that the time scale has been considerably distorted by mechanical stretching.
D. Jansen, A. J. Luckman, A. Cook, S. Bevan, B. Kulessa, B. Hubbard, and P. R. Holland
The Cryosphere, 9, 1223–1227, https://doi.org/10.5194/tc-9-1223-2015, https://doi.org/10.5194/tc-9-1223-2015, 2015
Short summary
Short summary
Within the last year, a large rift in the southern part of the Larsen C Ice Shelf, Antarctic Peninsula, propagated towards the inner part of the ice shelf. In this study we present the development of the rift as derived from remote sensing data and assess the impact of possible calving scenarios on the future stability of the Larsen C Ice Shelf, using a numerical model. We find that the calving front is likely to become unstable after the anticipated calving events.
R. Drews
The Cryosphere, 9, 1169–1181, https://doi.org/10.5194/tc-9-1169-2015, https://doi.org/10.5194/tc-9-1169-2015, 2015
Short summary
Short summary
Floating ice shelves extend the continental ice of Antarctica seawards and mediate ice-ocean interactions. Many ice shelves are incised with channels where basal melting is enhanced. With data and modeling it is shown how the channel geometry depends on basal melting and along-flow advection (also for channels which are not freely floating), and how channel formation imprints the general flow pattern. This opens up the opportunity to map the channel formation from surface velocities only.
M. Van Rampelbergh, S. Verheyden, M. Allan, Y. Quinif, H. Cheng, L. R. Edwards, E. Keppens, and P. Claeys
Clim. Past, 11, 789–802, https://doi.org/10.5194/cp-11-789-2015, https://doi.org/10.5194/cp-11-789-2015, 2015
N. F. Glasser, S. J. A. Jennings, M. J. Hambrey, and B. Hubbard
Earth Surf. Dynam., 3, 239–249, https://doi.org/10.5194/esurf-3-239-2015, https://doi.org/10.5194/esurf-3-239-2015, 2015
Short summary
Short summary
We present a new map of the surface features of the entire Antarctic Ice Sheet. The map was compiled from satellite images. It shows many flow-parallel structures that we call "longitudinal ice-surface structures". Their location mirrors the location of fast-flowing glaciers and ice streams in the ice sheet. Their distribution indicates that the major ice-flow configuration of the ice sheet may have remained largely unchanged for the last few hundred years, and possibly even longer.
N.-X. Geilfus, R. J. Galley, O. Crabeck, T. Papakyriakou, J. Landy, J.-L. Tison, and S. Rysgaard
Biogeosciences, 12, 2047–2061, https://doi.org/10.5194/bg-12-2047-2015, https://doi.org/10.5194/bg-12-2047-2015, 2015
Short summary
Short summary
We investigated the evolution of inorganic carbon within landfast sea ice in Resolute Passage during the spring and summer melt period.
Low TA and TCO2 concentrations observed in sea ice and brine were associated with the percolation of meltwater from melt ponds. Meltwater was continuously supplied to the ponds which prevented melt ponds from fully equilibrating with the atmospheric CO2 concentration, promoting a continuous uptake of CO2 from the atmosphere.
N.-X. Geilfus, J.-L. Tison, S. F. Ackley, R. J. Galley, S. Rysgaard, L. A. Miller, and B. Delille
The Cryosphere, 8, 2395–2407, https://doi.org/10.5194/tc-8-2395-2014, https://doi.org/10.5194/tc-8-2395-2014, 2014
Short summary
Short summary
Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica (Oct. 2007), shows that physical and thermodynamic processes control the CO2 system in the ice. We show that each cooling/warming event was associated with an increase/decrease in the brine salinity, TA, TCO2, and in situ brine and bulk ice pCO2. Thicker snow covers reduced the amplitude of these changes. Both brine and bulk ice pCO2 were undersaturated, causing the sea ice to act as a sink for atmospheric CO2.
O. Crabeck, B. Delille, D. Thomas, N.-X. Geilfus, S. Rysgaard, and J.-L. Tison
Biogeosciences, 11, 6525–6538, https://doi.org/10.5194/bg-11-6525-2014, https://doi.org/10.5194/bg-11-6525-2014, 2014
B. Hubbard, C. Souness, and S. Brough
The Cryosphere, 8, 2047–2061, https://doi.org/10.5194/tc-8-2047-2014, https://doi.org/10.5194/tc-8-2047-2014, 2014
Short summary
Short summary
We address the dynamic glaciology of glacier-like forms (GLFs) on Mars, over 1300 of which are located in the planet's midlatitude regions. We present case studies to gain insight into (i) the former extent of GLFs, (ii) GLF motion and surface crevassing, (iii) GLF debris transfer (suggesting a best-estimate surface velocity of 7.5 mm/a over the past 2 Ma), and (iv) putative GLF surface hydrology. Finally, we present several possible research directions for the future study of Martian GLFs.
M. Van Rampelbergh, S. Verheyden, M Allan, Y. Quinif, E. Keppens, and P. Claeys
Clim. Past, 10, 1871–1885, https://doi.org/10.5194/cp-10-1871-2014, https://doi.org/10.5194/cp-10-1871-2014, 2014
J. Zhou, B. Delille, F. Brabant, and J.-L. Tison
Biogeosciences, 11, 5007–5020, https://doi.org/10.5194/bg-11-5007-2014, https://doi.org/10.5194/bg-11-5007-2014, 2014
A. Spolaor, P. Vallelonga, J. Gabrieli, T. Martma, M. P. Björkman, E. Isaksson, G. Cozzi, C. Turetta, H. A. Kjær, M. A. J. Curran, A. D. Moy, A. Schönhardt, A.-M. Blechschmidt, J. P. Burrows, J. M. C. Plane, and C. Barbante
Atmos. Chem. Phys., 14, 9613–9622, https://doi.org/10.5194/acp-14-9613-2014, https://doi.org/10.5194/acp-14-9613-2014, 2014
J. Zhou, J.-L. Tison, G. Carnat, N.-X. Geilfus, and B. Delille
The Cryosphere, 8, 1019–1029, https://doi.org/10.5194/tc-8-1019-2014, https://doi.org/10.5194/tc-8-1019-2014, 2014
D. Callens, K. Matsuoka, D. Steinhage, B. Smith, E. Witrant, and F. Pattyn
The Cryosphere, 8, 867–875, https://doi.org/10.5194/tc-8-867-2014, https://doi.org/10.5194/tc-8-867-2014, 2014
L. L. Sørensen, B. Jensen, R. N. Glud, D. F. McGinnis, M. K. Sejr, J. Sievers, D. H. Søgaard, J.-L. Tison, and S. Rysgaard
The Cryosphere, 8, 853–866, https://doi.org/10.5194/tc-8-853-2014, https://doi.org/10.5194/tc-8-853-2014, 2014
D. Di Nitto, G. Neukermans, N. Koedam, H. Defever, F. Pattyn, J. G. Kairo, and F. Dahdouh-Guebas
Biogeosciences, 11, 857–871, https://doi.org/10.5194/bg-11-857-2014, https://doi.org/10.5194/bg-11-857-2014, 2014
M. Thoma, K. Grosfeld, D. Barbi, J. Determann, S. Goeller, C. Mayer, and F. Pattyn
Geosci. Model Dev., 7, 1–21, https://doi.org/10.5194/gmd-7-1-2014, https://doi.org/10.5194/gmd-7-1-2014, 2014
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, https://doi.org/10.5194/cp-9-2489-2013, 2013
B. Van Liefferinge and F. Pattyn
Clim. Past, 9, 2335–2345, https://doi.org/10.5194/cp-9-2335-2013, https://doi.org/10.5194/cp-9-2335-2013, 2013
M. Vancoppenolle, D. Notz, F. Vivier, J. Tison, B. Delille, G. Carnat, J. Zhou, F. Jardon, P. Griewank, A. Lourenço, and T. Haskell
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-3209-2013, https://doi.org/10.5194/tcd-7-3209-2013, 2013
Revised manuscript not accepted
A. S. Drouet, D. Docquier, G. Durand, R. Hindmarsh, F. Pattyn, O. Gagliardini, and T. Zwinger
The Cryosphere, 7, 395–406, https://doi.org/10.5194/tc-7-395-2013, https://doi.org/10.5194/tc-7-395-2013, 2013
Related subject area
Ice Cores
Laser ablation inductively coupled plasma mass spectrometry measurements for high-resolution chemical ice core analyses with a first application to an ice core from Skytrain Ice Rise (Antarctica)
The grain-scale signature of isotopic diffusion in ice
Combining traditional and novel techniques to increase our understanding of the lock-in depth of atmospheric gases in polar ice cores – results from the EastGRIP region
Scientific history, sampling approach, and physical characterization of the Camp Century subglacial material, a rare archive from beneath the Greenland Ice Sheet
Novel approach to estimate the water isotope diffusion length in deep ice cores with an application to Marine Isotope Stage 19 in the Dome C ice core
The potential of in situ cosmogenic 14CO in ice cores as a proxy for galactic cosmic ray flux variations
Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland
Research into mechanical modeling based on characteristics of the fracture mechanics of ice cutting for scientific drilling in polar regions
Temporal markers in a temperate ice core: insights from 3H and 137Cs profiles from the Adamello Glacier
Review article: Melt-affected ice cores for polar research in a warming world
Impact of subsurface crevassing on the depth–age relationship of high-Alpine ice cores extracted at Col du Dôme between 1994 and 2012
Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan
Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers
Identifying atmospheric processes favouring the formation of bubble-free layers in the Law Dome ice core, East Antarctica
Millennial and orbital-scale variability in a 54 000-year record of total air content from the South Pole ice core
Investigating the spatial representativeness of East Antarctic ice cores: a comparison of ice core and radar-derived surface mass balance over coastal ice rises and Dome Fuji
Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core 14C age constraints
Greenland and Canadian Arctic ice temperature profiles database
Isotopic diffusion in ice enhanced by vein-water flow
A one-dimensional temperature and age modeling study for selecting the drill site of the oldest ice core near Dome Fuji, Antarctica
Chemical and visual characterisation of EGRIP glacial ice and cloudy bands within
Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons
Detection of ice core particles via deep neural networks
Development of crystal orientation fabric in the Dome Fuji ice core in East Antarctica: implications for the deformation regime in ice sheets
Gas isotope thermometry in the South Pole and Dome Fuji ice cores provides evidence for seasonal rectification of ice core gas records
Chronostratigraphy of the Larsen blue-ice area in northern Victoria Land, East Antarctica, and its implications for paleoclimate
A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores
Regional variability of diatoms in ice cores from the Antarctic Peninsula and Ellsworth Land, Antarctica
Microstructure, micro-inclusions, and mineralogy along the EGRIP (East Greenland Ice Core Project) ice core – Part 2: Implications for palaeo-mineralogy
Microstructure, micro-inclusions, and mineralogy along the EGRIP ice core – Part 1: Localisation of inclusions and deformation patterns
Fractionation of O2∕N2 and Ar∕N2 in the Antarctic ice sheet during bubble formation and bubble–clathrate hydrate transition from precise gas measurements of the Dome Fuji ice core
Deep ice as a geochemical reactor: insights from iron speciation and mineralogy of dust in the Talos Dome ice core (East Antarctica)
Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation
Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core
Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene
Brief communication: New radar constraints support presence of ice older than 1.5 Myr at Little Dome C
Pervasive diffusion of climate signals recorded in ice-vein ionic impurities
Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction
Giant dust particles at Nevado Illimani: a proxy of summertime deep convection over the Bolivian Altiplano
Physical properties of shallow ice cores from Antarctic and sub-Antarctic islands
Stable water isotopes and accumulation rates in the Union Glacier region, Ellsworth Mountains, West Antarctica, over the last 35 years
Multi-tracer study of gas trapping in an East Antarctic ice core
Very old firn air linked to strong density layering at Styx Glacier, coastal Victoria Land, East Antarctica
Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology
Challenges associated with the climatic interpretation of water stable isotope records from a highly resolved firn core from Adélie Land, coastal Antarctica
Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”
Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains
On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits
The first luminescence dating of Tibetan glacier basal sediment
Methanesulfonic acid (MSA) migration in polar ice: data synthesis and theory
Helene Hoffmann, Jason Day, Rachael H. Rhodes, Mackenzie Grieman, Jack Humby, Isobel Rowell, Christoph Nehrbass-Ahles, Robert Mulvaney, Sally Gibson, and Eric Wolff
The Cryosphere, 18, 4993–5013, https://doi.org/10.5194/tc-18-4993-2024, https://doi.org/10.5194/tc-18-4993-2024, 2024
Short summary
Short summary
Ice cores are archives of past atmospheric conditions. In deep and old ice, the layers containing this information get thinned to the millimetre scale or below. We installed a setup for high-resolution (182 μm) chemical impurity measurements in ice cores using the laser ablation technique at the University of Cambridge. In a first application to the Skytrain ice core from Antarctica, we discuss the potential to detect fine-layered structures in ice up to an age of 26 000 years.
Felix S. L. Ng
The Cryosphere, 18, 4645–4669, https://doi.org/10.5194/tc-18-4645-2024, https://doi.org/10.5194/tc-18-4645-2024, 2024
Short summary
Short summary
Liquid veins and grain boundaries in ice can accelerate the decay of climate signals in δ18O and δD by short-circuiting the slow isotopic diffusion in crystal grains. This theory for "excess diffusion" has not been confirmed experimentally. We show that, if the mechanism occurs, then distinct isotopic patterns must form near grain junctions, offering a testable prediction of the theory. We calculate the patterns and describe an experimental scheme for testing ice-core samples for the mechanism.
Julien Westhoff, Johannes Freitag, Anaïs Orsi, Patricia Martinerie, Ilka Weikusat, Michael Dyonisius, Xavier Faïn, Kevin Fourteau, and Thomas Blunier
The Cryosphere, 18, 4379–4397, https://doi.org/10.5194/tc-18-4379-2024, https://doi.org/10.5194/tc-18-4379-2024, 2024
Short summary
Short summary
We study the EastGRIP area, Greenland, in detail with traditional and novel techniques. Due to the compaction of the ice, at a certain depth, atmospheric gases can no longer exchange, and the atmosphere is trapped in air bubbles in the ice. We find this depth by pumping air from a borehole, modeling, and using a new technique based on the optical appearance of the ice. Our results suggest that the close-off depth lies at around 58–61 m depth and more precisely at 58.3 m depth.
Paul R. Bierman, Andrew J. Christ, Catherine M. Collins, Halley M. Mastro, Juliana Souza, Pierre-Henri Blard, Stefanie Brachfeld, Zoe R. Courville, Tammy M. Rittenour, Elizabeth K. Thomas, Jean-Louis Tison, and François Fripiat
The Cryosphere, 18, 4029–4052, https://doi.org/10.5194/tc-18-4029-2024, https://doi.org/10.5194/tc-18-4029-2024, 2024
Short summary
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
Fyntan Shaw, Andrew M. Dolman, Torben Kunz, Vasileios Gkinis, and Thomas Laepple
The Cryosphere, 18, 3685–3698, https://doi.org/10.5194/tc-18-3685-2024, https://doi.org/10.5194/tc-18-3685-2024, 2024
Short summary
Short summary
Fast variability of water isotopes in ice cores is attenuated by diffusion but can be restored if the diffusion length is accurately estimated. Current estimation methods are inadequate for deep ice, mischaracterising millennial-scale climate variability. We address this using variability estimates from shallower ice. The estimated diffusion length of 31 cm for the bottom of the Dome C ice core is 20 cm less than the old method, enabling signal recovery on timescales previously considered lost.
Vasilii V. Petrenko, Segev BenZvi, Michael Dyonisius, Benjamin Hmiel, Andrew M. Smith, and Christo Buizert
The Cryosphere, 18, 3439–3451, https://doi.org/10.5194/tc-18-3439-2024, https://doi.org/10.5194/tc-18-3439-2024, 2024
Short summary
Short summary
This manuscript presents the concept for a new proxy for past variations in the galactic cosmic ray flux (GCR). Past variations in GCR flux are important to understand for interpretation of records of isotopes produced by cosmic rays; these records are used for reconstructing solar variations and past land ice extent. The proxy involves using measurements of 14CO in ice cores, which should provide an uncomplicated and precise estimate of past GCR flux variations for the past few thousand years.
Benjamin Hmiel, Vasilii V. Petrenko, Christo Buizert, Andrew M. Smith, Michael N. Dyonisius, Philip Place, Bin Yang, Quan Hua, Ross Beaudette, Jeffrey P. Severinghaus, Christina Harth, Ray F. Weiss, Lindsey Davidge, Melisa Diaz, Matthew Pacicco, James A. Menking, Michael Kalk, Xavier Faïn, Alden Adolph, Isaac Vimont, and Lee T. Murray
The Cryosphere, 18, 3363–3382, https://doi.org/10.5194/tc-18-3363-2024, https://doi.org/10.5194/tc-18-3363-2024, 2024
Short summary
Short summary
The main aim of this research is to improve understanding of carbon-14 that is produced by cosmic rays in ice sheets. Measurements of carbon-14 in ice cores can provide a range of useful information (age of ice, past atmospheric chemistry, past cosmic ray intensity). Our results show that almost all (>99 %) of carbon-14 that is produced in the upper layer of ice sheets is rapidly lost to the atmosphere. Our results also provide better estimates of carbon-14 production rates in deeper ice.
Xinyu Lv, Zhihao Cui, Ting Wang, Yumin Wen, An Liu, and Rusheng Wang
The Cryosphere, 18, 3351–3362, https://doi.org/10.5194/tc-18-3351-2024, https://doi.org/10.5194/tc-18-3351-2024, 2024
Short summary
Short summary
In this study, the formation process of ice chips was observed and the fracture mechanics characteristics of the ice during the cutting process were analyzed. Additionally, a mechanical model for the cutting force was established based on the observation and analysis results. Finally, influencing factors and laws of the cutting force were verified by cutting force test results generated under various experimental conditions.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Dorothea Elisabeth Moser, Elizabeth R. Thomas, Christoph Nehrbass-Ahles, Anja Eichler, and Eric Wolff
The Cryosphere, 18, 2691–2718, https://doi.org/10.5194/tc-18-2691-2024, https://doi.org/10.5194/tc-18-2691-2024, 2024
Short summary
Short summary
Increasing temperatures worldwide lead to more melting of glaciers and ice caps, even in the polar regions. This is why ice-core scientists need to prepare to analyse records affected by melting and refreezing. In this paper, we present a summary of how near-surface melt forms, what structural imprints it leaves in snow, how various signatures used for ice-core climate reconstruction are altered, and how we can still extract valuable insights from melt-affected ice cores.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Erin C. Pettit, Jon S. Edwards, John M. Fegyveresi, Todd A. Sowers, Jeffrey P. Severinghaus, and Emma C. Kahle
The Cryosphere, 17, 4837–4851, https://doi.org/10.5194/tc-17-4837-2023, https://doi.org/10.5194/tc-17-4837-2023, 2023
Short summary
Short summary
The total air content (TAC) of polar ice cores has long been considered a potential proxy for past ice sheet elevation. This study presents a high-resolution record of TAC from the South Pole ice core. The record reveals orbital- and millennial-scale variability that cannot be explained by elevation changes. The orbital- and millennial-scale changes are likely a product of firn grain metamorphism near the surface of the ice sheet, due to summer insolation changes or local accumulation changes.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023, https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary
Short summary
Understanding the behavior of ocean–atmosphere teleconnections in the North Pacific during warm intervals can aid in predicting future warming scenarios. However, majority ice core records from Alaska–Yukon region only provide data for the last few centuries. This study introduces a continuous chronology for Denali ice core from Begguya, Alaska, using multiple dating methods. The early-Holocene-origin Denali ice core will facilitate future investigations of hydroclimate in the North Pacific.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Felix S. L. Ng
The Cryosphere, 17, 3063–3082, https://doi.org/10.5194/tc-17-3063-2023, https://doi.org/10.5194/tc-17-3063-2023, 2023
Short summary
Short summary
The stable isotopes of oxygen and hydrogen in ice cores are routinely analysed for the climate signals which they carry. It has long been known that the system of water veins in ice facilitates isotopic diffusion. Here, mathematical modelling shows that water flow in the veins strongly accelerates the diffusion and the decay of climate signals. The process hampers methods using the variations in signal decay with depth to reconstruct past climatic temperature.
Takashi Obase, Ayako Abe-Ouchi, Fuyuki Saito, Shun Tsutaki, Shuji Fujita, Kenji Kawamura, and Hideaki Motoyama
The Cryosphere, 17, 2543–2562, https://doi.org/10.5194/tc-17-2543-2023, https://doi.org/10.5194/tc-17-2543-2023, 2023
Short summary
Short summary
We use a one-dimensional ice-flow model to examine the most suitable core location near Dome Fuji (DF), Antarctica. This model computes the temporal evolution of age and temperature from past to present. We investigate the influence of different parameters of climate and ice sheet on the ice's basal age and compare the results with ground radar surveys. We find that the local ice thickness primarily controls the age because it is critical to the basal melting, which can eliminate the old ice.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Tomotaka Saruya, Shuji Fujita, Yoshinori Iizuka, Atsushi Miyamoto, Hiroshi Ohno, Akira Hori, Wataru Shigeyama, Motohiro Hirabayashi, and Kumiko Goto-Azuma
The Cryosphere, 16, 2985–3003, https://doi.org/10.5194/tc-16-2985-2022, https://doi.org/10.5194/tc-16-2985-2022, 2022
Short summary
Short summary
Crystal orientation fabrics (COF) of the Dome Fuji ice core were investigated with an innovative method with unprecedentedly high statistical significance and dense depth coverage. The COF profile and its fluctuation were found to be highly dependent on concentrations of chloride ion and dust. The data suggest deformation of ice at the deepest zone is highly influenced by COF fluctuations that progressively develop from the near-surface firn toward the deepest zone within ice sheets.
Jacob D. Morgan, Christo Buizert, Tyler J. Fudge, Kenji Kawamura, Jeffrey P. Severinghaus, and Cathy M. Trudinger
The Cryosphere, 16, 2947–2966, https://doi.org/10.5194/tc-16-2947-2022, https://doi.org/10.5194/tc-16-2947-2022, 2022
Short summary
Short summary
The composition of air bubbles in Antarctic ice cores records information about past changes in properties of the snowpack. We find that, near the South Pole, thinner snowpack in the past is often due to steeper surface topography, in which faster winds erode the snow and deposit it in flatter areas. The slope and wind seem to also cause a seasonal bias in the composition of air bubbles in the ice core. These findings will improve interpretation of other ice cores from places with steep slopes.
Giyoon Lee, Jinho Ahn, Hyeontae Ju, Florian Ritterbusch, Ikumi Oyabu, Christo Buizert, Songyi Kim, Jangil Moon, Sambit Ghosh, Kenji Kawamura, Zheng-Tian Lu, Sangbum Hong, Chang Hee Han, Soon Do Hur, Wei Jiang, and Guo-Min Yang
The Cryosphere, 16, 2301–2324, https://doi.org/10.5194/tc-16-2301-2022, https://doi.org/10.5194/tc-16-2301-2022, 2022
Short summary
Short summary
Blue-ice areas (BIAs) have several advantages for reconstructing past climate. However, the complicated ice flow in the area hinders constraining the age. We applied state-of-the-art techniques and found that the ages cover the last deglaciation period. Our study demonstrates that the BIA in northern Victoria Land may help reconstruct the past climate during the termination of the last glacial period.
Wangbin Zhang, Shugui Hou, Shuang-Ye Wu, Hongxi Pang, Sharon B. Sneed, Elena V. Korotkikh, Paul A. Mayewski, Theo M. Jenk, and Margit Schwikowski
The Cryosphere, 16, 1997–2008, https://doi.org/10.5194/tc-16-1997-2022, https://doi.org/10.5194/tc-16-1997-2022, 2022
Short summary
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
Dieter R. Tetzner, Claire S. Allen, and Elizabeth R. Thomas
The Cryosphere, 16, 779–798, https://doi.org/10.5194/tc-16-779-2022, https://doi.org/10.5194/tc-16-779-2022, 2022
Short summary
Short summary
The presence of diatoms in Antarctic ice cores has been scarcely documented and poorly understood. Here we present a detailed analysis of the spatial and temporal distribution of the diatom record preserved in a set of Antarctic ice cores. Our results reveal that the timing and amount of diatoms deposited present a strong geographical division. This study highlights the potential of the diatom record preserved in Antarctic ice cores to provide useful information about past environmental changes.
Nicolas Stoll, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 16, 667–688, https://doi.org/10.5194/tc-16-667-2022, https://doi.org/10.5194/tc-16-667-2022, 2022
Short summary
Short summary
We mapped and analysed solid inclusion in the upper 1340 m of the EGRIP ice core with Raman spectroscopy and microstructure mapping, based on bulk dust content derived via continuous flow analysis. We observe a large variety in mineralogy throughout the core and samples. The main minerals are sulfates, especially gypsum, and terrestrial dust minerals, such as quartz, mica, and feldspar. A change in mineralogy occurs around 900 m depth indicating a climate-related imprint.
Nicolas Stoll, Jan Eichler, Maria Hörhold, Tobias Erhardt, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 15, 5717–5737, https://doi.org/10.5194/tc-15-5717-2021, https://doi.org/10.5194/tc-15-5717-2021, 2021
Short summary
Short summary
We did a systematic analysis of the location of inclusions in the EGRIP ice core, the first ice core from an ice stream. We combine this with crystal orientation and grain size data, enabling the first overview about the microstructure of this unique ice core. Micro-inclusions show a strong spatial variability and patterns (clusters or horizontal layers); roughly one-third is located at grain boundaries. More holistic approaches are needed to understand deformation processes in the ice better.
Ikumi Oyabu, Kenji Kawamura, Tsutomu Uchida, Shuji Fujita, Kyotaro Kitamura, Motohiro Hirabayashi, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Jeffrey P. Severinghaus, and Jacob D. Morgan
The Cryosphere, 15, 5529–5555, https://doi.org/10.5194/tc-15-5529-2021, https://doi.org/10.5194/tc-15-5529-2021, 2021
Short summary
Short summary
We present O2/N2 and Ar/N2 records from the Dome Fuji ice core through the bubbly ice, bubble–clathrate transition, and clathrate ice zones without gas-loss fractionation. The insolation signal is preserved through the clathrate formation. The relationship between Ar/Ν2 and Ο2/Ν2 suggests that the fractionation for the bubble–clathrate transition is mass independent, while the bubble close-off process involves a combination of mass-independent and mass-dependent fractionation for O2 and Ar.
Giovanni Baccolo, Barbara Delmonte, Elena Di Stefano, Giannantonio Cibin, Ilaria Crotti, Massimo Frezzotti, Dariush Hampai, Yoshinori Iizuka, Augusto Marcelli, and Valter Maggi
The Cryosphere, 15, 4807–4822, https://doi.org/10.5194/tc-15-4807-2021, https://doi.org/10.5194/tc-15-4807-2021, 2021
Short summary
Short summary
As scientists are pushing efforts to recover deep ice cores to extend paleoclimatic reconstructions, it is now essential to explore deep ice. The latter was considered a relatively stable environment, but this view is changing. This study shows that the conditions of deep ice promote the interaction between soluble and insoluble impurities, favoring complex geochemical reactions that lead to the englacial dissolution and precipitation of specific minerals present in atmospheric mineral dust.
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Short summary
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers micro-destructive, micrometer-scale impurity analysis of ice cores. For improved understanding of the LA-ICP-MS signals, novel 2D impurity imaging is applied to selected glacial and interglacial samples of Antarctic deep ice cores. This allows evaluating the 2D impurity distribution in relation to ice crystal features and assessing implications for investigating highly thinned climate proxy signals in deep polar ice.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021, https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Short summary
We collected radar data between EDC, an ice core spanning ~800 000 years, and BELDC, the site chosen for a new
oldest icecore at nearby Little Dome C. These data allow us to identify 50 % older internal horizons than previously traced in the area. We fit a model to the ages of those horizons at BELDC to determine the age of deep ice there. We find that there is likely to be 1.5 Myr old ice ~265 m above the bed, with sufficient resolution to preserve desired climatic information.
Felix S. L. Ng
The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021, https://doi.org/10.5194/tc-15-1787-2021, 2021
Short summary
Short summary
Current theory predicts climate signals in the vein chemistry of ice cores to migrate, hampering their dating. I show that the Gibbs–Thomson effect, which has been overlooked, causes fast diffusion that prevents signals from surviving into deep ice. Hence the deep climatic peaks in Antarctic and Greenlandic ice must be due to impurities in the ice matrix (outside veins) and safe from migration. These findings reset our understanding of postdepositional changes of ice-core climate signals.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021, https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
Short summary
Information about the past climate variability in tropical South America is stored in the snow layers of the tropical Andean glaciers. Here we show evidence that the presence of very large aeolian mineral dust particles at Nevado Illimani (Bolivia) is strictly controlled by the occurrence of summer storms in the Bolivian Altiplano. Therefore, based on the snow dust content and its composition of stable water isotopes, we propose a new proxy for information on previous summer storms.
Elizabeth Ruth Thomas, Guisella Gacitúa, Joel B. Pedro, Amy Constance Faith King, Bradley Markle, Mariusz Potocki, and Dorothea Elisabeth Moser
The Cryosphere, 15, 1173–1186, https://doi.org/10.5194/tc-15-1173-2021, https://doi.org/10.5194/tc-15-1173-2021, 2021
Short summary
Short summary
Here we present the first-ever radar and ice core data from the sub-Antarctic islands of Bouvet Island, Peter I Island, and Young Island. These islands have the potential to record past climate in one of the most data-sparse regions on earth. Despite their northerly location, surface melting is generally low, and the upper layer of the ice at most sites is undisturbed. We estimate that a 100 m ice core drilled on these islands could capture climate over the past 100–200 years.
Kirstin Hoffmann, Francisco Fernandoy, Hanno Meyer, Elizabeth R. Thomas, Marcelo Aliaga, Dieter Tetzner, Johannes Freitag, Thomas Opel, Jorge Arigony-Neto, Christian Florian Göbel, Ricardo Jaña, Delia Rodríguez Oroz, Rebecca Tuckwell, Emily Ludlow, Joseph R. McConnell, and Christoph Schneider
The Cryosphere, 14, 881–904, https://doi.org/10.5194/tc-14-881-2020, https://doi.org/10.5194/tc-14-881-2020, 2020
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Christoph F. Schaller, Rebecca J. Tuckwell, Henning Löwe, Laurent Arnaud, Olivier Magand, Elizabeth R. Thomas, Johannes Freitag, Robert Mulvaney, Martin Schneebeli, and Vladimir Ya. Lipenkov
The Cryosphere, 13, 3383–3403, https://doi.org/10.5194/tc-13-3383-2019, https://doi.org/10.5194/tc-13-3383-2019, 2019
Short summary
Short summary
Understanding gas trapping in polar ice is essential to study the relationship between greenhouse gases and past climates. New data of bubble closure, used in a simple gas-trapping model, show inconsistency with the final air content in ice. This suggests gas trapping is not fully understood. We also use a combination of high-resolution measurements to investigate the effect of polar snow stratification on gas trapping and find that all strata have similar pores, but that some close in advance.
Youngjoon Jang, Sang Bum Hong, Christo Buizert, Hun-Gyu Lee, Sang-Young Han, Ji-Woong Yang, Yoshinori Iizuka, Akira Hori, Yeongcheol Han, Seong Joon Jun, Pieter Tans, Taejin Choi, Seong-Joong Kim, Soon Do Hur, and Jinho Ahn
The Cryosphere, 13, 2407–2419, https://doi.org/10.5194/tc-13-2407-2019, https://doi.org/10.5194/tc-13-2407-2019, 2019
Short summary
Short summary
We can learn how human activity altered atmospheric air from the interstitial air in the porous snow layer (firn) on top of glaciers. However, old firn air (> 55 years) was observed only at sites where surface temperatures and snow accumulation rates are very low, such as the South Pole. In this study, we report an unusually old firn air with CO2 age of 93 years from Styx Glacier, near the Ross Sea coast in Antarctica. We hypothesize that the large snow density variations increase firn air ages.
Shugui Hou, Wangbin Zhang, Hongxi Pang, Shuang-Ye Wu, Theo M. Jenk, Margit Schwikowski, and Yetang Wang
The Cryosphere, 13, 1743–1752, https://doi.org/10.5194/tc-13-1743-2019, https://doi.org/10.5194/tc-13-1743-2019, 2019
Short summary
Short summary
The apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Suzanne Preunkert, Michel Legrand, Bénédicte Minster, and Martin Werner
The Cryosphere, 13, 1297–1324, https://doi.org/10.5194/tc-13-1297-2019, https://doi.org/10.5194/tc-13-1297-2019, 2019
Short summary
Short summary
We report new water stable isotope records from the first highly resolved firn core drilled in Adélie Land and covering 1998–2014. Using an updated database, we show that mean values are in line with the range of coastal values. Statistical analyses show no relationship between our record and local surface air temperature. Atmospheric back trajectories and isotopic simulations suggest that water stable isotopes in Adélie provide a fingerprint of the variability of atmospheric dynamics.
Nanna B. Karlsson, Tobias Binder, Graeme Eagles, Veit Helm, Frank Pattyn, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, https://doi.org/10.5194/tc-12-2413-2018, 2018
Short summary
Short summary
In this study, we investigate the probability that the Dome Fuji region in East Antarctica contains ice more than 1.5 Ma old. The retrieval of a continuous ice-core record extending beyond 1 Ma is imperative to understand why the frequency of ice ages changed from 40 to 100 ka approximately 1 Ma ago.
We use a new radar dataset to improve the ice thickness maps, and apply a thermokinematic model to predict basal temperature and age of the ice. Our results indicate several areas of interest.
Shugui Hou, Theo M. Jenk, Wangbin Zhang, Chaomin Wang, Shuangye Wu, Yetang Wang, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018, https://doi.org/10.5194/tc-12-2341-2018, 2018
Short summary
Short summary
We present multiple lines of evidence indicating that the Chongce ice cores drilled from the northwestern Tibetan Plateau reaches back only to the early Holocene. This result is at least, 1 order of magnitude younger than the nearby Guliya ice core (~30 km away from the Chongce ice core drilling site) but similar to other Tibetan ice cores. Thus it is necessary to explore multiple dating techniques to confirm the age ranges of the Tibetan ice cores.
Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hoerhold, Amaelle Landais, and Sepp Kipfstuhl
The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, https://doi.org/10.5194/tc-12-169-2018, 2018
Short summary
Short summary
We explain why snow pits across different sites in East Antarctica show visually similar isotopic variations. We argue that the similarity and the apparent cycles of around 20 cm in the δD and δ18O variations are the result of a seasonal cycle in isotopes, noise, for example from precipitation intermittency, and diffusion. The near constancy of the diffusion length across many ice-coring sites explains why the structure and cycle length is largely independent of the accumulation conditions.
Zhu Zhang, Shugui Hou, and Shuangwen Yi
The Cryosphere, 12, 163–168, https://doi.org/10.5194/tc-12-163-2018, https://doi.org/10.5194/tc-12-163-2018, 2018
Short summary
Short summary
We provide the first luminescence dating of the basal sediment of the Chongce ice cap in the western Kunlun Mountains on the north-western Tibetan Plateau (TP), which gives an upper constraint for the age of the bottom ice at the drilling site. The age is more than 1 order of magnitude younger than the previously suggested age of the basal ice of the nearby Guliya ice cap (~ 40 km away from the Chongce ice cap). This work provides an important step towards better understanding the TP ice cores.
Matthew Osman, Sarah B. Das, Olivier Marchal, and Matthew J. Evans
The Cryosphere, 11, 2439–2462, https://doi.org/10.5194/tc-11-2439-2017, https://doi.org/10.5194/tc-11-2439-2017, 2017
Short summary
Short summary
We combine a synthesis of 22 ice core records and a model of soluble impurity transport to investigate the enigmatic, post-depositional migration of methanesulfonic acid in polar ice. Our findings suggest that migration may be universal across coastal regions of Greenland and Antarctica, though it is mitigated at sites with higher accumulation and (or) lower impurity content. Records exhibiting severe migration may still be useful for inferring decadal and lower-frequency climate variability.
Cited articles
Altnau, S., Schlosser, E., Isaksson, E., and Divine, D.: Climatic signals from 76 shallow firn cores in Dronning Maud Land, East Antarctica, The Cryosphere, 9, 925–944, https://doi.org/10.5194/tc-9-925-2015, 2015.
Anschütz, H., Sinisalo, A., Isaksson, E., McConnell, J. R., Hamran, S.-E., Bisiaux, M. M., Pasteris, D., Neumann, T. A., and Winther, J.-G.: Variation of accumulation rates over the last eight centuries on the East Antarctic Plateau derived from volcanic signals in ice cores, J. Geophys. Res., 116, D20103, https://doi.org/10.1029/2011JD015753, 2011.
Aristarain, A. J., Delmas, R. J., and Stievenard, M.: Ice-core study of the link between sea-salt aerosol, sea-ice cover and climate in the Antarctic Peninsula area, Clim. Change, 67, 63–86, https://doi.org/10.1007/s10584-004-0708-6, 2004.
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res., 115, F03011, https://doi.org/10.1029/2009JF001306, 2010.
Boening, C., Lebsock, M., Landerer, F., and Stephens, G.: Snowfall driven mass change on the East Antarctic ice sheet, Geophys. Res. Lett., 39, L21501, https://doi.org/10.1029/2012GL053316, 2012.
Bromwich, D. H., Nicolas, J. P., and Monaghan, A. J.: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses, J. Clim., 24, 4189–4209, https://doi.org/10.1175/2011jcli4074.1, 2011.
Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L. M., Weidner, G. A., and Wilson, A. B.: Corrigendum: Central West Antarctica among the most rapidly warming regions on Earth, Nat. Geosci., 7, 76–76, https://doi.org/10.1038/ngeo2016, 2014.
Callens, D., Drews, R., Witrant, E., Philippe, M., and Pattyn, F.: Temporally stable surface mass balance asymmetry across an ice rise derived from radar internal reflection horizons through inverse modeling, J. Glaciol., 1, 1–10, https://doi.org/10.1017/jog.2016.41, 2016.
Cuffey, K. M. and Paterson, W.: The Physics of Glaciers, Elsevier, 693 pp., https://doi.org/10.1016/c2009-0-14802-x, 2010.
Dansgaard, W. and Johnsen, S.: A flow model and a time scale for the ice core from Camp Century, Greenland, J. Glaciol., 8, 215–223, 1969.
Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M., and Hanna, E.: Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise, Science, 308, 1898–1901, https://doi.org/10.1126/science.1110662, 2005.
Dee, D. P. and Uppala, S. M.: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis, Q. J. Roy. Meteorol. Soc., 135, 1830–1841, https://doi.org/10.1002/qj.493, 2009.
Ding, M., Xiao, C., Li, Y., Ren, J., Hou, S., Jin, B., and Sun, B.: Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica, J. Glaciol., 57, 658–666, https://doi.org/10.3189/002214311797409820, 2011.
Drews, R., Steinhage, D., Martín, C., and Eisen, O.: Characterization of glaciological conditions at Halvfarryggen ice dome, Dronning Maud Land, Antarctica, J. Glaciol., 59, 9–20, https://doi.org/10.3189/2013JoG12J134, 2013.
Drews, R., Matsuoka, K., Martín, C., Callens, D., Bergeot, N., and Pattyn, F.: Evolution of Derwael Ice Rise in Dronning Maud Land, Antarctica, over the last millennia, J. Geophys. Res.-Earth, 120, 564–579, https://doi.org/10.1002/2014JF003246, 2015.
Fernandoy, F., Meyer, H., Oerter, H., Wilhelms, F., Graf, W., and Schwander, J.: Temporal and spatial variation of stable-isotope ratios and accumulation rates in the hinterland of Neumayer station, East Antarctica, J. Glaciol., 56, 673–687, https://doi.org/10.3189/002214310793146296, 2010.
Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S., Vincent, C., Becagli, S., Gragnani, R., Proposito, M., Severi, M., Traversi, R., Udisti, R., and Fily, M.: New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements, Clim. Dynam., 23, 803–813, https://doi.org/10.1007/s00382-00004-00462-0038500803-00813, 2004.
Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S., Vincent, C., Becagli, S., Gragnani, R., Proposito, M., Severi, M., Traversi, R., Udisti, R., and Fily, M.: Spatial and temporal variability of snow accumulation in East Antarctica from traverse data, J. Glaciol., 51, 113–124, https://doi.org/10.3189/172756505781829502, 2005.
Frezzotti, M., Scarchilli, C., Becagli, S., Proposito, M., and Urbini, S.: A synthesis of the Antarctic surface mass balance during the last 800 yr, The Cryosphere, 7, 303–319, https://doi.org/10.5194/tc-7-303-2013, 2013.
Frieler, K., Clark, P. U., He, F., Buizert, C., Reese, R., Ligtenberg, S. R., van den Broeke, M. R., Winkelmann, R., and Levermann, A.: Consistent evidence of increasing Antarctic accumulation with warming, Nat. Clim. Change, 5, 348–352, https://doi.org/10.1038/nclimate2574, 2015.
Fudge, T. J., Markle, B. R., Cuffey, K. M., Buizert, C., Taylor, K. C., Steig, E. J., Waddington, E. D., Conway, H., and Koutnik, M.: Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years, Geophys. Res. Lett., 43, 3795–3803, https://doi.org/10.1002/2016GL068356, 2016.
Fujita, S., Holmlund, P., Andersson, I., Brown, I., Enomoto, H., Fujii, Y., Fujita, K., Fukui, K., Furukawa, T., Hansson, M., Hara, K., Hoshina, Y., Igarashi, M., Iizuka, Y., Imura, S., Ingvander, S., Karlin, T., Motoyama, H., Nakazawa, F., Oerter, H., Sjöberg, L. E., Sugiyama, S., Surdyk, S., Ström, J., Uemura, R., and Wilhelms, F.: Spatial and temporal variability of snow accumulation rate on the East Antarctic ice divide between Dome Fuji and EPICA DML, The Cryosphere, 5, 1057–1081, https://doi.org/10.5194/tc-5-1057-2011, 2011.
Genthon, C., Krinner, G., and Castebrunet, H.: Antarctic precipitation and climate-change predictions: horizontal resolution and margin vs plateau issues, Ann. Glaciol., 50, 55–60, https://doi.org/10.3189/172756409787769681, 2009.
Gorodetskaya, I. V., Van Lipzig, N. P. M., Van den Broeke, M. R., Mangold, A., Boot, W., and Reijmer, C. H.: Meteorological regimes and accumulation patterns at Utsteinen, Dronning Maud Land, East Antarctica: Analysis of two contrasting years, J. Geophys. Res.-Atmos., 118, 1700–1715, https://doi.org/10.1002/jgrd.50177, 2013.
Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., and Van Lipzig, N. P. M.: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica, Geophys. Res. Lett., 41, 6199–6206, https://doi.org/10.1002/2014GL060881, 2014.
Gorodetskaya, I. V., Kneifel, S., Maahn, M., Van Tricht, K., Thiery, W., Schween, J. H., Mangold, A., Crewell, S., and Van Lipzig, N. P. M.: Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica, The Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015, 2015.
Hammer, C. U.: Acidity of polar ice cores in relation to absolute dating, past volcanism, and radio-echoes, J. Glaciol., 25, 359–372, https://doi.org/10.3198/1980JoG25-93-359-372, 1980.
Hammer, C. U., Clausen, H. B., and Langway Jr., C. C.: Electrical conductivity method (ECM) stratigraphic dating of the Byrd Station ice core, Antarctica, Ann. Glaciol., 20, 115–120, https://doi.org/10.3189/172756409787769681, 1994.
Hofstede, C. M., van de Wal, R. S. W., Kaspers, K. A., van den Broeke, M. R., Karlöf, L., Winther, J. G., Isaksson, E., Lappegard, G., Mulvaney, R., Oerther, H., and Wilhelms, F.: Firn accumulation records for the past 1000 years on the basis of dielectric profiling of six firn cores from Dronning Maud Land, Antarctica, J. Glaciol., 50, 279–291, https://doi.org/10.3189/172756504781830169, 2004.
Hubbard, B., Tison, J.-L., Philippe, M., Heene, B., Pattyn, F., Malone, T., and Freitag, J. J.: Ice shelf density reconstructed from optical televiewer borehole logging, Geophys. Res. Lett., 40, 5882–5887, https://doi.org/10.1002/2013gl058023, 2013.
Isaksson, E. and Melvold, K.: Trends and patterns in the recent accumulation and oxygen isotope in coastal Dronning Maud Land, Antarctica: interpretations from shallow ice cores, Ann. Glaciol., 35, 175–180, https://doi.org/10.3189/172756402781817356, 2002.
Isaksson, E., Karlén, W., Gundestrup, N., Mayewski, P., Whitlow, S., and Twickler, M.: A century of accumulation and temperature changes in Dronning Maud Land, Antarctica, J. Geophys. Res., 101, 7085–7094, https://doi.org/10.1029/95jd03232, 1996.
Isaksson, E., van den Broeke, M. R., Winther, J.-G., Karlöf, L., Pinglot, J. F., and Gundestrup, N.: Accumulation and proxytemperature variability in Dronning Maud Land, Antarctica, determined from shallow firn cores, Ann. Glaciol., 29, 17–22, https://doi.org/10.3189/172756499781821445, 1999.
ISMASS Committee: Recommendations for the collection and synthesis of Antarctic Ice Sheet mass balance data, Global Planet. Change, 42, 1–15, https://doi.org/10.1016/j.gloplacha.2003.11.008, 2004.
Kaczmarska, M., Isaksson, E., Karlöf, K., Winther, J.-G., Kohler, J., Godtliebsen, F., Ringstad Olsen, L., Hofstede, C. M., van den Broeke, M. R., Van DeWal, R. S. W., and Gundestrup, N.: Accumulation variability derived from an ice core from coastal Dronning Maud Land, Antarctica, Ann. Glaciol., 39, 339–345, https://doi.org/10.3189/172756404781814186, 2004.
Karlöf, L., Winther, J. G., Isaksson, E., Kohler, J., Pinglot, J. F., Wilhelms, F., Hansson, M., Holmlund, P., Nyman, M., Pettersson, R., Stenberg, M., Thomassen, M. P. A., van der Veen, C., and van de Wal, R. S. W.: A 1500 year record of accumulation at Amundsenisen western Dronning Maud Land, Antarctica, derived from electrical and radioactive measurements on a 120 m ice core, J. Geophys. Res., 105, 12471–12483, https://doi.org/10.1029/1999JD901119, 2000.
Karlöf, L., Isakson, E., Winther, J. G., Gundestrup, N., Meijer, H. A. J., Mulvaney, R., Pourcher, M., Hofstede, C., Lappegard, G., Petterson, R., van den Broecke, M. R., and van de Wal, R. S. W.: Accumulation variability over a small area in east Dronning Maud Land, Antarctica, as determined from shallow firn cores and snow pits: some implications for ice, J. Glaciol., 51, 343–352, https://doi.org/10.3189/172756505781829232, 2005.
Kaspari, S., Mayewski, P. A., Dixon, D. A., Spikes, V. B., Sneed, S. B., Handley, M. J., and Hamilton, G. S.: Climate variability in west Antarctica derived from annual accumulation-rate records from ITASE firn/ice cores, Ann. Glaciol., 39, 585–594, https://doi.org/10.3189/172756404781814447, 2004.
King, M. A., Bingham, R. J., Moore, P., Whitehouse, P. L., Bentley, M. J., and Milne, G. A.: Lower satellite-gravimetry estimates of Antarctic sea-level contribution, Nature, 491, 586–589, https://doi.org/10.1038/nature11621, 2012.
Kingslake, J., Hindmarsh, R. C. A., Aðalgeirsdóttir, G., Conway, H., Corr, H. F. J., Gillet-Chaulet, F., Martín, C., King, E. C., Mulvaney, R., and Pritchard, H. D.: Full-depth englacial vertical ice sheet velocities measured using phase-sensitive radar, J. Geophys. Res.-Earth, 119, 2604–2618, https://doi.org/10.1002/2014jf003275, 2014.
Kjær, H., Vallelonga, P., Svensson, A., Elleskov, L., Kristensen, M., Tibuleac, C., Winstrup, M., and Kipfstuhl, S.: An optical dye method for continuous determination of acidity in ice cores, Environ. Sci. Technol., 50, 10485–10493, https://doi.org/10.1021/acs.est.6b00026, 2016.
Krinner, G., Magand, O., Simmonds, I., Genthon, C., and Dufresne, J. L.: Simulated Antarctic precipitation and surface mass balance at the end of the 20th and 21th centuries, Clim. Dynam., 28, 215–230, https://doi.org/10.1007/s00382-006-0177-x, 2007.
Lenaerts, J. T. M., van den Broeke, M. R., van den Berg, W. J., van Meijgaard, E., and Munneke, P. K.: A new, high resolution surface mass balance map of Antarctica (1979–2010) based on regional climate modeling, Geophys. Res. Lett., 39, L04501, https://doi.org/10.1029/2011GL050713, 2012.
Lenaerts, J. T. M., van Meijgaard, E., van den Broeke, M. R., Ligtenberg, S. R. M., Horwath, M., and Isaksson, E.: Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective, Geophys. Res. Lett., 40, 1–5, https://doi.org/10.1002/grl.50559, 2013.
Lenaerts, J. T. M., Brownvan, J., den Broeke, M. R., Matsuoka, K., Drews, R., Callens, D., Philippe, M., Gorodetskaya, I., van Meijgaard, E., Reymer, C., Pattyn, F., and van Lipzig, N. P.: High variability of climate and surface mass balance induced by Antarctic ice rises, J. Glaciol., 60, 1101–1110, https://doi.org/10.3189/2014jog14j040, 2014.
Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L., and van den Broeke, M. R.: Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model, Clim. Dynam., 47, 1367–1381, https://doi.org/10.1007/s00382-015-2907-4, 2016.
Levasseur, M.: Impact of Arctic meltdown on the microbial cycling of sulphur, Nat. Geosci., 6, 691–700, https://doi.org/10.1038/ngeo1910, 2013.
Ludescher, J., Bunde, A., Franzke, C. L., and Schellnhuber, H. J.: Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica, Clim. Dynam., 46, 263–271, https://doi.org/10.1007/s00382-015-2582-5, 2015.
Magand, O., Genthon, C., Fily, M., Krinner, G., Picard, G., Frezzotti, M., and Ekaykin, A. A.: An up-to-date quality-controlled surface mass balance data set for the 90–180E Antarctica sector and 1950–2005 period, J. Geophys. Res., 112, D12106, https://doi.org/10.1029/2006JD007691, 2007.
Marshall, G. J.: Trends in the southern annular mode from observations and reanalyses, J. Climate, 16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:titsam>2.0.co;2, 2003.
Matsuoka, K., Hindmarsh, R. C., Moholdt, G., Bentley, M. J., Pritchard, H. D., Brown, J., Conway, H., Drews, R., Durand, G., Goldberg, D., Hattermann, T., Kingslake, J., Lenearts, J., Martin, C., Mulvaney, R., Nicholls, K., Pattyn, F., Ross, N., Scambos, T., and Whitehouse, P.: Antarctic ice rises and rumples: their properties and significance for ice-sheet dynamics and evolution, Earth-Sci. Rev., 150, 724–745, https://doi.org/10.1016/j.earscirev.2015.09.004, 2015.
Medley, B., Joughin, I., Das, S. B., Steig, E. J., Conway, H., Gogineni, S., Criscitiello, A. S., McConnell, J. R., Smith, B. E., van den Broeke, M. R., Lenaerts, J. T. M., Bromwich, D. H., and Nicolas, J. P.: Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models, Geophys. Res. Lett., 40, 3649–3654, https://doi.org/10.1002/grl.50706, 2013.
Monaghan, A. J., Bromwich, D. H., Fogt, R. L., Wang, S., Mayewski, P. A., Dixon, D. A., Ekaykin, A., Frezzotti, M., Goodwin, I., Isaksson, E., Kaspari, S. D., Morgan, V. I., Oerter, H., Van Ommen, T. D., van der Veen, C. J., and Wen, J.: Insignificant change in Antarctic snowfall since the International Geophysical Year, Science, 313, 827–831, https://doi.org/10.1126/science.1128243, 2006.
Moore, J. C., Narita, H., and Maeno, N.: A continuous 770-year record of volcanic activity from East Antarctica, J. Geophys. Res., 96, 17353–17359, https://doi.org/10.1029/91jd01283, 1991.
Mosley-Thompson, E., Paskievitch, J. F., Gow, A. J., and Thompson, L. G.: Late 20th century increase in South Pole snow accumulation, J. Geophys. Res., 104, 3877–3886, https://doi.org/10.1029/1998jd200092, 1999.
Mulvaney, R., Pasteur, E. C., and Peel, D. A.: The ratio of MSA to non sea-salt sulphate in Antarctic peninsula ice cores, Tellus, 44b, 293–303, https://doi.org/10.3402/tellusb.v44i4.15457, 1992.
Nishio, F., Furukawa, T., Hashida, G., Igarashi, M., Kameda, T., Kohno, M., Motoyama, H., Naoki, K., Satow, K., Suzuki, K., Morimasa, T., Toyama, Y., Yamada, T., and Watanabe, O.: Annual-layer determinations and 167 year records of past climate of H72 ice core in east Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 471–479, https://doi.org/10.3189/172756402781817086, 2002.
Oerter, H., Graf, W., Wilhelms, F., Minikin, A., and Miller, H.: Accumulation studies on Amundsenisen, Dronning Maud Land, by means of tritium, DEP and stable isotope measurements: first results from the 1995/96 and 1996/97 field seasons, Ann. Glaciol., 29, 1–9, https://doi.org/10.3189/172756499781820914, 1999.
Oerter, H., Wilhelms, F., Jung-Rothenhausler, F., Goktas, F., Miller, H., Graf, W., and Sommer, S.: Accumulation rates in Dronning Maud Land as revealed by DEP measurements at shallow firn cores, Ann. Glaciol., 30, 27–34, https://doi.org/10.3189/172756400781820705, 2000.
Palerme, C., Genthon, C., Claud, C., Kay, J. E., Wood, N. B., and L'Ecuyer, T.: Evaluation of current and projected Antarctic precipitation in CMIP5 models, Clim. Dynam., online first, https://doi.org/10.1007/s00382-016-3071-1, 2016.
Parrenin, F., Dreyfus, G., Durand, G., Fujita, S., Gagliardini, O., Gillet, F., Jouzel, J., Kawamura, K., Lhomme, N., Masson-Delmotte, V., Ritz, C., Schwander, J., Shoji, H., Uemura, R., Watanabe, O., and Yoshida, N.: 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica, Clim. Past, 3, 243–259, https://doi.org/10.5194/cp-3-243-2007, 2007.
Philippe, M., Tison, J.-L., Fjøsne, K., Hubbard, B., Kjær, H. A., Lenaerts, J. T. M., Drews, R., Sheldon, S. G., De Bondt, K., Claeys, P., and Pattyn, F.: Annual layer thicknesses and age-depth (oldest estimate) of Derwael Ice Rise (IC12), Dronning Maud Land, East Antarctica, https://doi.org/10.1594/PANGAEA.857574, 2016a.
Philippe, M., Hubbard, B., Pattyn, F., Fjøsne, K., Drews, R., Bruyninx, C., Bergeot, N., and Tison, J.-L.: Vertical velocities of firn and ice reconstructed from optical televiewer borehole logging at Derwael ice rise, Princess Ragnhild Coast, Antarctica, in preparation, 2016b.
Ren, J., Li, C., Hou, S., Xiao, C., Qin, D., Li, Y., and Ding, M.: A 2680 year volcanic record from the DT-401 East Antarctic ice core, J. Geophys. Res., 115, D11301, https://doi.org/10.1029/2009JD012892, 2010.
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J.: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise, Geophys. Res. Lett., 38, L05503, https://doi.org/10.1029/2011GL046583, 2011.
Rupper, S., Christensen, W. F., Bickmore, B. R., Burgener, L., Koenig, L. S., Koutnik, M. R., Miège, C., and Forster, R. R.: The effects of dating uncertainties on net accumulation estimates from firn cores, J. Glaciol., 61, 163–172, https://doi.org/10.3189/2015jog14j042, 2015.
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639, https://doi.org/10.1021/ac60214a047, 1964.
Schlosser, E. and Oerter, H.: Shallow firn cores from Neumayer, Ekströmisen, Antarctica: a comparison of accumulation rates and stable-isotope ratios, Ann. Glaciol., 35, 91–96, https://doi.org/10.3189/172756402781816915, 2002.
Schlosser, E., Manning, K. W., Powers, J. G., Duda, M. G., Birnbaum, G., and Fujita, K.: Characteristics of high-precipitation events in Dronning Maud Land, Antarctica, J. Geophys. Res., 115, D14107, https://doi.org/10.1029/2009JD013410, 2010.
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A reconciled estimate of ice-sheet mass balance, Science, 338, 1183–1189, https://doi.org/10.1126/science.1228102, 2012.
Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris, D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney, R., and Kipfstuhl, S.: A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J. Geophys. Res.-Atmos., 118, 1151–1169, https://doi.org/10.1029/2012jd018603, 2013.
Steig, E., Fischer, H., Fisher, D., Frezzotti, M., Mulvaney, R., Taylor, K., and Wolff, E.: The IPICS 2k Array: a network of ice core climate and climate forcing records for the last two millennia, http://pages-igbp.org/download/docs/working_groups/ipics/white-papers/IPICS_2kArray.pdf (last access: 14 October 2016), IPICS (International Partnership in Ice Core Science), 2005.
Thomas, E. R., Marshall, G. J., and McConnell, J. R.: A doubling in snow accumulation in the western Antarctic Peninsula since 1850, Geophys. Res. Lett., 35, L01706, https://doi.org/10.1029/2007GL032529, 2008.
Thomas, E. R., Hosking, J. S., Tuckwell, R. R., Warren, R. A., and Ludlow, E. C.: Twentieth century increase in snowfall in coastal West Antarctica, Geophys. Res. Lett., 42, 9387–9393, https://doi.org/10.1002/2015GL065750, 2015.
Traufetter, F., Oerter, H., Fischer, H., Weller, R., and Miller, H.: Spatio-temporal variability in volcanic sulphate deposition over the past 2 kyr in snow pits and firn cores from Amundsenisen, Antarctica, J. Glaciol., 50, 137–146, https://doi.org/10.3189/172756504781830222, 2004.
Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., and Iagovkina, S.: Antarctic climate change during the last 50 years, Int. J. Climatol., 25, 279–294, https://doi.org/10.1002/joc.1130, 2005.
van de Berg, W. J., van den Broeke, M. R., Reijmer, C. H., and van Meijgaard, E.: Reassessment of the Antarctic SMB using calibrated output of a regional atmospheric climate model, J. Geophys. Res., 111, D11104, https://doi.org/10.1029/2005JD006495, 2006.
van den Broeke, M., van de Berg, W. J., and van Meijgaard, E.: Snowfall in coastal West Antarctica much greater than previously assumed, Geophys. Res. Lett., 33, L02505, https://doi.org/10.1029/2005GL025239, 2006.
Vaughan, D. G., Comiso, J.C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T.: Observations: Cryosphere, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Wang, Y., Ding, M., van Wessem, J., Schlosser, E., Altnau, S., van den Broeke, M., Lenaerts, J., Thomas, E., Isaksson, E., Wang, J., and Sun, W.: A comparison of Antarctic Ice Sheet surface mass balance from atmospheric climate models and in situ observations, J. Climate, https://doi.org/10.1175/JCLI-D-15-0642.1, early online release, 2016.
Wolff, E. W., Jones, A. E., Bauguitte, S. J.-B., and Salmon, R. A.: The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements, Atmos. Chem. Phys., 8, 5627–5634, https://doi.org/10.5194/acp-8-5627-2008, 2008.
Zhang, M., Li, Z., Ren, J., Xiao, C., Qin, D., Kang, J., and Li, J.: 250 years of accumulation, oxygen isotope and chemical records in a firn core from Princess Elizabeth Land, East Antarctica, J. Geogr. Sci., 16, 23–33, https://doi.org/10.1007/s11442-006-0103-5, 2006.
Short summary
The reconstruction of past snow accumulation rates is crucial in the context of recent climate change and sea level rise. We measured ~ 250 years of snow accumulation using a 120 m ice core drilled in coastal East Antarctica, where such long records are very scarce. This study is the first to show an increase in snow accumulation, beginning in the 20th and particularly marked in the last 50 years, thereby confirming model predictions of increased snowfall associated with climate change.
The reconstruction of past snow accumulation rates is crucial in the context of recent climate...