Articles | Volume 10, issue 3
The Cryosphere, 10, 1279–1295, 2016
https://doi.org/10.5194/tc-10-1279-2016
The Cryosphere, 10, 1279–1295, 2016
https://doi.org/10.5194/tc-10-1279-2016

Research article 20 Jun 2016

Research article | 20 Jun 2016

Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps

Mauro Fischer et al.

Related authors

Surface elevation and mass changes of all Swiss glaciers 1980–2010
M. Fischer, M. Huss, and M. Hoelzle
The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015,https://doi.org/10.5194/tc-9-525-2015, 2015

Related subject area

Mass Balance Obs
Assimilating near-real-time mass balance stake readings into a model ensemble using a particle filter
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021,https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Characteristics of mountain glaciers in the northern Japanese Alps
Kenshiro Arie, Chiyuki Narama, Ryohei Yamamoto, Kotaro Fukui, and Hajime Iida
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-182,https://doi.org/10.5194/tc-2021-182, 2021
Revised manuscript accepted for TC
Short summary
The regional-scale surface mass balance of Pine Island Glacier, West Antarctica, over the period 2005–2014, derived from airborne radar soundings and neutron probe measurements
Stefan Kowalewski, Veit Helm, Elizabeth Mary Morris, and Olaf Eisen
The Cryosphere, 15, 1285–1305, https://doi.org/10.5194/tc-15-1285-2021,https://doi.org/10.5194/tc-15-1285-2021, 2021
Short summary
Geodetic point surface mass balances: a new approach to determine point surface mass balances on glaciers from remote sensing measurements
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021,https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Review article: Earth's ice imbalance
Thomas Slater, Isobel R. Lawrence, Inès N. Otosaka, Andrew Shepherd, Noel Gourmelen, Livia Jakob, Paul Tepes, Lin Gilbert, and Peter Nienow
The Cryosphere, 15, 233–246, https://doi.org/10.5194/tc-15-233-2021,https://doi.org/10.5194/tc-15-233-2021, 2021
Short summary

Cited articles

Abellán, A., Jaboyedoff, M., Oppikofer, T., and Vilaplana, J. M.: Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event, Nat. Hazards Earth Syst. Sci., 9, 365–372, https://doi.org/10.5194/nhess-9-365-2009, 2009.
Andreassen, L. M., Elvehøy, H., Kjøllmoen, B., and Engeset, R. V.: Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers, The Cryosphere, 10, 535–552, https://doi.org/10.5194/tc-10-535-2016, 2016.
Arnold, N. S., Rees, W. G., Devereux, B. J., and Amable, G. S.: Evaluating the potential of high-resolution airborne LiDAR data in glaciology, Int. J. Remote Sens., 27, 1233–1251, https://doi.org/10.1080/01431160500353817, 2006.
Avian, M. and Bauer, A.: First Results on Monitoring Glacier Dynamics with the Aid of Terrestrial Laser Scanning on Pasterze Glacier (Hohe Tauern, Austria), 8th International Symposium on High Mountain Remote Sensing Cartography, La Paz, Bolivia, 27–35, 2006.
Avian, M., Kellerer-Pirklbauer, A., and Bauer, A.: LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008, Nat. Hazards Earth Syst. Sci., 9, 1087–1094, https://doi.org/10.5194/nhess-9-1087-2009, 2009.
Download
Short summary
This study provides the first thorough validation of geodetic glacier mass changes derived from close-range high-resolution remote sensing techniques, and highlights the potential of terrestrial laser scanning for repeated mass balance monitoring of very small alpine glaciers. The presented methodology is promising, as laborious and potentially dangerous in situ measurements as well as the spatial inter- and extrapolation of point measurements over the entire glacier can be circumvented.