Articles | Volume 9, issue 2
The Cryosphere, 9, 451–463, 2015
https://doi.org/10.5194/tc-9-451-2015
The Cryosphere, 9, 451–463, 2015
https://doi.org/10.5194/tc-9-451-2015

Research article 04 Mar 2015

Research article | 04 Mar 2015

Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data

A. Gafurov et al.

Related authors

Hydrometeorological data from a Remotely Operated Multi-Parameter Station network in Central Asia
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data, 13, 1289–1306, https://doi.org/10.5194/essd-13-1289-2021,https://doi.org/10.5194/essd-13-1289-2021, 2021
Short summary
Comparing Bayesian and traditional end-member mixing approaches for hydrograph separation in a glacierized basin
Zhihua He, Katy Unger-Shayesteh, Sergiy Vorogushyn, Stephan M. Weise, Doris Duethmann, Olga Kalashnikova, Abror Gafurov, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 3289–3309, https://doi.org/10.5194/hess-24-3289-2020,https://doi.org/10.5194/hess-24-3289-2020, 2020
Short summary
Statistical forecast of seasonal discharge in Central Asia using observational records: development of a generic linear modelling tool for operational water resource management
Heiko Apel, Zharkinay Abdykerimova, Marina Agalhanova, Azamat Baimaganbetov, Nadejda Gavrilenko, Lars Gerlitz, Olga Kalashnikova, Katy Unger-Shayesteh, Sergiy Vorogushyn, and Abror Gafurov
Hydrol. Earth Syst. Sci., 22, 2225–2254, https://doi.org/10.5194/hess-22-2225-2018,https://doi.org/10.5194/hess-22-2225-2018, 2018
Short summary
Identifying the connective strength between model parameters and performance criteria
Björn Guse, Matthias Pfannerstill, Abror Gafurov, Jens Kiesel, Christian Lehr, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 21, 5663–5679, https://doi.org/10.5194/hess-21-5663-2017,https://doi.org/10.5194/hess-21-5663-2017, 2017
Short summary
Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017,https://doi.org/10.5194/gi-6-397-2017, 2017

Related subject area

Seasonal Snow
Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing
Alicia A. Dauginis and Laura C. Brown
The Cryosphere, 15, 4781–4805, https://doi.org/10.5194/tc-15-4781-2021,https://doi.org/10.5194/tc-15-4781-2021, 2021
Short summary
Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021,https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Spatiotemporal distribution of seasonal snow water equivalent in High-Mountain Asia from an 18-year Landsat-MODIS era snow reanalysis dataset
Yufei Liu, Yiwen Fang, and Steven A. Margulis
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-139,https://doi.org/10.5194/tc-2021-139, 2021
Revised manuscript accepted for TC
Short summary
Multilayer observation and estimation of the snowpack cold content in a humid boreal coniferous forest in eastern Canada
Achut Parajuli, Daniel F. Nadeau, François Anctil, and Marco Alves
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-98,https://doi.org/10.5194/tc-2021-98, 2021
Revised manuscript accepted for TC
Short summary
Observed snow depth trends in the European Alps: 1971 to 2019
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021,https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary

Cited articles

Aizen, V., Aizen, E., and Melack, J.: Climate snow cover, glaciers and runoff in the Tien Shan, Central Asia, Water Resour. Bull., 31, 1113–1129, 1995.
Ault, T., Czajkowski, K., Benko, T., Coss, J., Struble, J., Spongberg, A., Templin, M., and Gross, C.: Validation of the MODIS snow product and cloud mask using student and NWS cooperative station observations in the Lower Great Lakes Region, Remote Sens. Environ., 105, 341–353, 2006.
Brown, R.: Northern Hemisphere Snow Cover Variability and Change, 1915–1997, J. Climate, 13, 2339–2355, 2000.
Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, 5, 219–229, https://doi.org/10.5194/tc-5-219-2011, 2011.
Corbari, C., Ravazzani, G., Martinelli, J., and Mancini, M.: Elevation based correction of snow coverage retrieved from satellite images to improve model calibration, Hydrol. Earth Syst. Sci., 13, 639-649, https://doi.org/10.5194/hess-13-639-2009, 2009.
Download
Short summary
Spatially distributed snow-cover data are available only for the recent past from remote sensing. Sometimes we need snow-cover data over a longer period for climate impact analysis for the calibration/validation of hydrological models. In this study we present a methodology to reconstruct snow cover in the past using available long-term in situ data and recently available remote sensing snow-cover data. The results show about 85% accuracy although only a limited number of stations (7) were used.