Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 9, issue 3
The Cryosphere, 9, 1249–1264, 2015
https://doi.org/10.5194/tc-9-1249-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 1249–1264, 2015
https://doi.org/10.5194/tc-9-1249-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Jun 2015

Research article | 19 Jun 2015

Theoretical analysis of errors when estimating snow distribution through point measurements

E. Trujillo and M. Lehning

Related authors

Radar measurements of blowing snow off a mountain ridge
Benjamin Walter, Hendrik Huwald, Josué Gehring, Yves Bühler, and Michael Lehning
The Cryosphere, 14, 1779–1794, https://doi.org/10.5194/tc-14-1779-2020,https://doi.org/10.5194/tc-14-1779-2020, 2020
Short summary
Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model
Nander Wever, Leonard Rossmann, Nina Maaß, Katherine C. Leonard, Lars Kaleschke, Marcel Nicolaus, and Michael Lehning
Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020,https://doi.org/10.5194/gmd-13-99-2020, 2020
Short summary
Understanding snow bedform formation by adding sintering to a cellular automata model
Varun Sharma, Louise Braud, and Michael Lehning
The Cryosphere, 13, 3239–3260, https://doi.org/10.5194/tc-13-3239-2019,https://doi.org/10.5194/tc-13-3239-2019, 2019
Short summary
On the suitability of the Thorpe–Mason model for calculating sublimation of saltating snow
Varun Sharma, Francesco Comola, and Michael Lehning
The Cryosphere, 12, 3499–3509, https://doi.org/10.5194/tc-12-3499-2018,https://doi.org/10.5194/tc-12-3499-2018, 2018
Short summary
Spatial variability in snow precipitation and accumulation in COSMO–WRF simulations and radar estimations over complex terrain
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018,https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary

Related subject area

Seasonal Snow
Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach
Jianwei Yang, Lingmei Jiang, Kari Luojus, Jinmei Pan, Juha Lemmetyinen, Matias Takala, and Shengli Wu
The Cryosphere, 14, 1763–1778, https://doi.org/10.5194/tc-14-1763-2020,https://doi.org/10.5194/tc-14-1763-2020, 2020
Short summary
Evaluation of long-term Northern Hemisphere snow water equivalent products
Colleen Mortimer, Lawrence Mudryk, Chris Derksen, Kari Luojus, Ross Brown, Richard Kelly, and Marco Tedesco
The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020,https://doi.org/10.5194/tc-14-1579-2020, 2020
Short summary
Towards a webcam-based snow cover monitoring network: methodology and evaluation
Céline Portenier, Fabia Hüsler, Stefan Härer, and Stefan Wunderle
The Cryosphere, 14, 1409–1423, https://doi.org/10.5194/tc-14-1409-2020,https://doi.org/10.5194/tc-14-1409-2020, 2020
Short summary
Simulated single-layer forest canopies delay Northern Hemisphere snowmelt
Markus Todt, Nick Rutter, Christopher G. Fletcher, and Leanne M. Wake
The Cryosphere, 13, 3077–3091, https://doi.org/10.5194/tc-13-3077-2019,https://doi.org/10.5194/tc-13-3077-2019, 2019
Short summary
Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers
Stefanie Arndt and Christian Haas
The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019,https://doi.org/10.5194/tc-13-1943-2019, 2019

Cited articles

Blöschl, G.: Scaling issues in snow hydrology, Hydrol. Process., 13, 2149–2175, 1999.
Chang, A. T. C., Kelly, R. E. J., Josberger, E. G., Armstrong, R. L., Foster, J. L., and Mognard, N. M.: Analysis of ground-measured and passive-microwave-derived snow depth variations in midwinter across the northern Great Plains, J. Hydrometeor., 6, 20–33, https://doi.org/10.1175/Jhm-405.1, 2005.
Cline, D., Yueh, S., Chapman, B., Stankov, B., Gasiewski, A., Masters, D., Elder, K., Kelly, R., Painter, T. H., Miller, S., Katzberg, S., and Mahrt, L.: NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne Remote Sensing, J. Hydrometeor., 10, 338–346, 2009.
Cressie, N.: Statistics for spatial data, John Wiley & Sons, Inc., USA, 900 pp., 1993.
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Interannual Consistency in Fractal Snow Depth Patterns at Two Colorado Mountain Sites, J. Hydrometeor., 9, 977–988, https://doi.org/10.1175/2008jhm901.1, 2008.
Publications Copernicus
Download
Short summary
In this article, we present a methodology for the objective evaluation of the error in capturing mean snow depths from point measurements. We demonstrate, using LIDAR snow depths, how the model can be used for assisting the design of survey strategies such that the error is minimized or an estimation threshold is achieved. Furthermore, the model can be extended to other spatially distributed snow variables (e.g., SWE) whose statistical properties are comparable to those of snow depth.
In this article, we present a methodology for the objective evaluation of the error in capturing...
Citation