
The Cryosphere, 9, 1249–1264, 2015

www.the-cryosphere.net/9/1249/2015/

doi:10.5194/tc-9-1249-2015

© Author(s) 2015. CC Attribution 3.0 License.

Theoretical analysis of errors when estimating snow distribution

through point measurements

E. Trujillo1,2 and M. Lehning2,1

1School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne,

Lausanne, Switzerland
2WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

Correspondence to: E. Trujillo (ernesto.trujillo@epfl.ch)

Received: 28 November 2014 – Published in The Cryosphere Discuss.: 5 January 2015

Revised: 19 May 2015 – Accepted: 25 May 2015 – Published: 19 June 2015

Abstract. In recent years, marked improvements in our

knowledge of the statistical properties of the spatial dis-

tribution of snow properties have been achieved thanks

to improvements in measuring technologies (e.g., LIDAR,

terrestrial laser scanning (TLS), and ground-penetrating

radar (GPR)). Despite this, objective and quantitative frame-

works for the evaluation of errors in snow measurements

have been lacking. Here, we present a theoretical framework

for quantitative evaluations of the uncertainty in average

snow depth derived from point measurements over a profile

section or an area. The error is defined as the expected value

of the squared difference between the real mean of the pro-

file/field and the sample mean from a limited number of mea-

surements. The model is tested for one- and two-dimensional

survey designs that range from a single measurement to an

increasing number of regularly spaced measurements. Using

high-resolution (∼ 1 m) LIDAR snow depths at two loca-

tions in Colorado, we show that the sample errors follow the

theoretical behavior. Furthermore, we show how the deter-

mination of the spatial location of the measurements can be

reduced to an optimization problem for the case of the pre-

defined number of measurements, or to the designation of an

acceptable uncertainty level to determine the total number of

regularly spaced measurements required to achieve such an

error. On this basis, a series of figures are presented as an aid

for snow survey design under the conditions described, and

under the assumption of prior knowledge of the spatial co-

variance/correlation properties. With this methodology, bet-

ter objective survey designs can be accomplished that are

tailored to the specific applications for which the measure-

ments are going to be used. The theoretical framework can be

extended to other spatially distributed snow variables (e.g.,

SWE – snow water equivalent) whose statistical properties

are comparable to those of snow depth.

1 Introduction

The assessment of uncertainties of snow measurements re-

mains a challenging problem in snow science. Snow cover

properties are highly heterogeneous over space and time and

the representativeness of measurements of snow stage vari-

ables (e.g., snow depth, snow density, and snow water equiv-

alent (SWE)) is often overlooked due to difficulties associ-

ated with the assessment of such uncertainties. This has been,

at least in part, due to the limited knowledge of the charac-

teristics of the spatial statistical properties of variables such

as snow depth and SWE, particularly at the small scale (sub-

meter to tens of meters). However, recent improvements in

remote sensing of snow (e.g., light detection and ranging

(LIDAR) and radar technologies) have allowed significant

progress in the quantitative understanding of the small-scale

heterogeneity of snow covers in different environments (e.g.,

Trujillo et al., 2007, 2009; Mott et al., 2011).

Point or local measurements of snow properties will con-

tinue to be necessary for purposes ranging from inexpen-

sive evaluation of the amount of snow over a particular

area, to validation of models and remote sensing measure-

ments. Such measurements have a footprint representative of

a very small area surrounding the measurement location (i.e.,

support, following the nomenclature proposed by Blöschl,

1999), and the integration of several measurements is neces-
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sary for a better representation of the snow variable in ques-

tion over a given area. Because of this, tools for quantitative

evaluations of the representativeness and uncertainty of mea-

surements need to be introduced, and the uncertainty of such

measurements should be more widely discussed in the field

of snow sciences.

Currently, efforts to assess the reliability and uncertainty

of snow measurements have focused on statistical analyses

using point measurements (e.g., Pomeroy and Gray, 1995;

Yang and Woo, 1999; Watson et al., 2006; Rice and Bales,

2010; Lopez-Moreno et al., 2011; Meromy et al., 2013) or

synthetically generated fields in a Monte Carlo framework

(e.g., Kronholm and Birkeland, 2007; Shea and Jamieson,

2010), comparisons between remotely sensed and ground

data (e.g., Chang et al., 2005; Grünewald and Lehning,

2014), and analyses of subsets drawn from spatially dis-

tributed remotely sensed data (e.g., McCreight et al., 2014).

These studies have been useful to empirically quantify un-

certainties associated with point measurements. For exam-

ple, Pomeroy and Gray (1995) present an equation for de-

termining the minimum number of surveys points required

to be confident that the mean falls within a certain envelop

around the sample mean based on the CV of SWE or snow

depth. McCreight et al. (2014) use the NASA’s Cold Land

Processes Experiment (CLPX) LIDAR snow depth data set

(also used in this study) to empirically address questions re-

garding the inference of larger-scale snow depths from sparse

observations. They evaluate estimation uncertainty from ran-

dom sampling for varying sample size. Their conclusions in-

dicate that adding observations to a randomly distributed sur-

vey pattern leads to a reduction in both percent-error in snow

volume over the study areas, as well as its uncertainty. They

also add that with a few hundred observations, one can expect

to infer the true mean snow depth over the 1 km2 domains

to within 2 % error. Despite of these insights, these types of

empirical approaches can be site-dependent, they do not pro-

vide a theoretical quantitative framework for the assessment

of uncertainties associated with a particular sampling design,

they do not allow for an optimal sampling strategy (e.g., se-

lecting the number of points and locations for a desired accu-

racy level), and they do not take advantage of the increased

knowledge of the characteristics of the heterogeneity of snow

cover properties.

Another possible approach is one in which the expected

error in the estimation of a particular statistical moment of

a field over a defined domain (e.g., areal mean or standard

deviation from a finite number of measurements) is deter-

mined on the basis of known statistical properties of the field

in question. Such an approach uses geostatistical principles

that have been proposed by Matheron (1955, 1970) and oth-

ers, and that have been applied in mining geostatistics (Jour-

nel and Huijbregts, 1978), the analysis of uncertainties in

measuring precipitation (Rodríguez-Iturbe and Mejía, 1974),

and for a more general analysis of the effects of sampling of

random fields as examples of environmental variables (e.g.,

Skøien and Blöschl, 2006). Implementation of these types

of approaches appear to be lacking in the numerous stud-

ies using point measurements to represent snow distribution.

Often in these studies, the spatial snow distribution derived

from point measurements is addressed as the “true” distribu-

tion, which is then used for evaluating the performance of in-

terpolation methodologies, regressions trees, and hydrologi-

cal models. These comparisons ignore the intrinsic error in-

curred when extrapolating the original point measurements,

leaving a proportion of uncertainty unaccounted for that can

be significant. The principal motivation of the present study

is to encourage the use of more objective and quantitative

methodologies for error evaluation in snow sciences. The ap-

proach presented below can be used for objective survey de-

sign to estimate snow distribution from point measurements.

We do not intend to present our approach as novel in the

general geostatistical sense; instead, we present the deriva-

tion with the specific application for snow sciences in mind.

However, because of the general nature of the random fields’

theory the development is based on, similar developments

can indeed be applied to other environmental variables that

can be described as a random field.

On this basis, the error in the estimation of spatial means

from point measurements over a particular domain (e.g., a

profile, or an area) can be quantified as the expected value of

the squared difference between the real mean and the sam-

ple mean obtained from a limited number of point measure-

ments. Such an approach, as it will be shown here, uses spa-

tial statistical properties of snow depth fields in a way that

allows for an objective evaluation of the estimation error

for snow depth measurements. The sections below illustrate

the use of such methodology for optimal design of sample

strategies in the specific context of snow depth. However, the

methodology can also be implemented for other snow vari-

ables such as snow water equivalent.

2 Background

Let Z(x) denote a random field function of the coordinates

x in the n-dimensional space R. Bold-italic letters represent

a location vector from hereon. In our case, the field can rep-

resent, e.g., snow depth or snow water equivalent (SWE) at a

given time of the year. The mean of the process over a domain

A (e.g., a profile section or an area) is defined as follows:

µz(A)=
1

A

∫
A

z(x)dx. (1)

In practice, the mean is often obtained from the arithmetic

average of measurements at a finite number of locations, N ,

within the domain as follows:

Z =
1

N

N∑
i=1

z(xi). (2)
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The performance of the estimator Z can be evaluated by cal-

culating the expected value of the square difference between

the estimator Z and the true mean µz(A)

σ 2

Z
(A)= E


 1

N

N∑
i=1

z(xi)−
1

A

∫
A

z(x)dx

2
 . (3)

For a 1st order stationary process (i.e., the mean indepen-

dent of location; e.g., Cressie (1993), Sect. 2; and Journel

and Huijbregts (1978), Sect. 2), (Eq. 3) can be expressed as

σ 2

Z
(A)=

1

N2

N∑
i=1

VAR[z(xi)]

+
2

N2

N−1∑
i=1

N∑
j=i+1

COV
[
z(xi)z

(
xj
)]

−
2

N ·A

N∑
i=1

∫
A

COV
[
z(xi)z

(
xj
)]
dxj

+
1

A2

∫
A

∫
A

COV
[
z(xi)z

(
xj
)]
dxidxj

, (4)

where VAR[ ] and COV[ ] are the variance and the covari-

ance, respectively. If we further assume that the process is

second order stationary (e.g., Cressie (1993), Sect. 2; and

Journel and Huijbregts (1978), Sect. 2), that is, if the mean

and the variance are independent of the location, and the

covariance function depends only on the vector difference

xi − xj . Equation (3) can be expressed as

σ 2

Z
(A)= σ 2

p



1

N
+

2

N2

N−1∑
i=1

N∑
j=i+1

CORR
[
xi − xj

]
−

2

NA

N∑
i=1

∫
A

CORR
[
xi − xj

]
dxj

+
1

A2

∫
A

∫
A

CORR
[
xi − xj

]
dxidxj


, (5)

where CORR[ ] is the correlation function, and σ 2
p is the vari-

ance of the point process.

The first two terms in Eq. (5) are the total sum of the co-

variances (or correlation as σ 2
p has been factored out) be-

tween all point locations i = 1, . . .,N (e.g., measurement lo-

cations). The first of the two terms is only a function of the

number of points, while the second is a function of the num-

ber of points, N , and the correlations between the locations.

Such correlations are themselves a function of the separation

vectors (both in magnitude and direction), and the parame-

ters of the correlation function. These two terms are inde-

pendent of the size of the area A, and can be thought of as

the portion of the error caused by the correlation between the

point processes at the locations i = 1, . . .,N (e.g., measure-

ment locations). Term 3 accounts for the correlation between

the measurement locations and the continuous process over

the domain A. This term can be seen as a negative contribu-

tion to the total error assuming that the sum of the integrals

is positive. The term is a function of the number of points,

N , the domain area, A, the location of the points and the cor-

relation structure, characterized using the parameters of the

correlation function. Lastly, term 4 is the contribution to the

error caused by the intrinsic correlation structure of the con-

tinuous process over the domain. This term is a function of

the domain (e.g., size and shape of A) and the correlation

structure (e.g., parameters of the correlation function).

3 Data

For the analyses and tests of the methodology presented here,

light detection and ranging (LIDAR) snow depths obtained as

part of the NASA’s Cold Land Processes Experiment (CLPX)

will be used (Cline et al., 2009). The data set consists of

spatially distributed snow depths for 1 km× 1 km areas (in-

tensive study areas – ISAs) in the Colorado Rocky Moun-

tains close to maximum snow accumulation in April 2003.

The data were processed from snow-on (8–9 April 2013) and

snow-off (18–19 September 2013) LIDAR elevation returns

with an average horizontal spacing of 1.5 m and vertical tol-

erance of 0.05 m. The final CLPX snow depth contour prod-

uct (0.10 m vertical spacing) was generated from these re-

turns. This product was used to generate gridded snow depth

surfaces with 1024× 1024 elements over the ISAs, for a grid

resolution of 0.977 m. For this study two areas will be used:

the Fraser–St Louis Creek ISA (FS) and the Rabbit Ears–

Walton Creek ISA (RW) (Fig. 1). The FS ISA is covered by

a moderate density coniferous (lodgepole pine) forest on a

flat aspect with low relief. The RW ISA is characterized by a

broad meadow interspersed with small, dense stands of conif-

erous forest and with low rolling topography. The snow depth

distributions in these ISAs show differences that are relevant

for the analysis of the methodology introduced here. At the

FS ISA, the snow depth distribution is relatively isotropic

(Fig. 1b), with short spatial correlation memory and little

variation in the spatial scaling properties (i.e., power-spectral

exponents and scaling breaks) with direction (Trujillo et al.,

2007). On the other hand, the spatial distribution of snow

depth in the RW ISA is more anisotropic (Fig. 1c), with

longer spatial correlation memory along a principal direc-

tion aligned with the predominant wind direction vs. shorter

memory along the perpendicular direction, and with varia-

tions in the power-spectral exponents and scaling breaks ac-

cording to the predominant wind directions (Trujillo et al.,

2007).

4 One-dimensional process

The spatial representation of the snow cover requires a ba-

sic assumption on the scale or resolution at which a field or

www.the-cryosphere.net/9/1249/2015/ The Cryosphere, 9, 1249–1264, 2015



1252 E. Trujillo and M. Lehning: Theoretical analysis of errors when estimating snow distribution

Figure 1. (a) Location of the Fraser and Rabbit Ears study areas

in the state of Colorado. (b) LIDAR Snow depth distributions on 8

April 2003, at the Saint Louis Creek intensive study area (ISA) and

(c) on 9 April at the Rabbit Ears ISA.

profile is going to be represented. This relies on the spatial

support of the measurements. For the case of snow depths,

point measurements from local surveys using a snow depth

probe are frequently used for this representation. Generally,

there are additional sources of uncertainty associated with

these types of measurements, such as the accuracy of the po-

sition of the measurement in space or deviations in the verti-

cal angle of penetration of the probe through the snow pack.

These uncertainties are additional to any of the uncertainties

estimated using the methodology discussed here.

The one-dimensional case provides a good opportunity to

illustrate the limitations of point measurements. Consider the

case of a snow depth profile that is measured using a snow

depth probe at a regular spacing “d”. Each of these point

measurements is meant to represent the mean snow depth

over a particular distance surrounding the measurement. The

question is, over what distance is this assumption valid? In

this case, the intrinsic assumption is that the measurement

is representative over the distance “d”, but at this point the

validity of such an assumption is not proven.

The answer to this question is conditioned to how vari-

able the profile is and over what distances. To address this,

let us look at two snow depth profiles, one in a forested en-

vironment (FS) and another in an open environment (RW)

in the Colorado Rocky Mountains (Figs. 2a and 3a, respec-

tively). The variability in the profiles is markedly different,

with variations over shorter distances in the forested area,

and a smoother profile in the open and wind influenced envi-

ronment. This is reflected in the spatial correlation structure

of these snow depth profiles, with stronger correlations over

longer distances in open and wind-influenced environments

with respect to that in forested environments (Trujillo et al.,

2007, 2009). These differences should be considered when

selecting the sampling frequency required to capture the vari-

ability and accurately represent the mean conditions within a

particular sampling spacing. This is illustrated by compar-

ing the mean snow depth for a particular resolution to the

point value at the center of the interval (Fig. 2b in a forested

environment and Fig. 3b in an open and wind-influenced en-

vironment). In the figures, average vs. point values at sev-

eral sampling intervals are compared for normalized profiles

(µ= 0, σ = 1) separated every 30 m in both the x (east) and

y (north) directions and for an area of 500 m× 500 m. The

30 m separation between profiles is chosen to reduce the spa-

tial correlation between them.

Firstly, the resulting comparison shows that the point val-

ues generally overestimate the variability in mean snow

depths if we replace the mean snow depth distribution by its

point sample. To clarify this, let us consider here two snow

depth profiles, one with the snow depths at the nominal scale

(∼ 1 m), and a second one with a moving average (MA) of

the first one with an averaging window equal to the sampling

spacing. Ultimately, the variance/standard deviation of the

first profile (∼ 1 m) is larger than that of the MA, with a dis-

tribution that reflects these differences. The samples drawn

from the first profile will reflect a larger variance than that

of the samples from the MA profile as they are drawn from

these distributions, and this is what is reflected in Figs. 2 and

3. The degree of overestimation can be quantified through

the slope of the regression line (in red in Figs. 2b and 3b).

In the forested environment (Fig. 2b), the slopes range be-

tween 0.8 and 0.13, with decreasing slopes with increasing

spacing. These slopes indicate that, on average, the magni-

tudes of the mean values are 0.8 times the magnitudes of the

point values for the 5 m spacing and 0.1 times for the 100 m

spacing. In the open and wind-dominated environment, the

slopes are higher and range between 0.97 and 0.23 from 5 m

spacing and 100 m spacing, respectively. A clear difference

emerges: forested environments require shorter separation

between single measurements if the snow depth profile is to

be accurately captured by the measurements. The variability

within the size of the interval determines the degree of un-

certainty associated with the point measurements, as the sub-

interval variability is related to the degree of overestimation

of the mean value within the interval.

Secondly, the differences between average and point val-

ues for each spacing distance are generally more scattered

in the forested environment than in the open environment,

and in both environments the degree of scattering increases

with spacing (Figs. 2c and 3c). However, it is important to

note here that we are comparing normalized profiles (µ= 0,

σ = 1), allowing us to focus on the rescaled spatial varia-

tions. What is highlighted is the relevance of the spatial struc-

ture of the profile rather than the absolute variance. This spa-
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Figure 2. (a) Sample normalized snow depth profile (mean= 0, standard deviation = 1) in a forested environment from LIDAR (1 m reso-

lution) at the Fraser–St. Louis Creek (FS) intensive study area (ISA) of the Cold Land Processes Experiment (CLPX) (Trujillo et al., 2007;

Cline et al., 2009). The profile is sampled with regular separations (spacing) of 5, 10, 25, 50, and 100 m (from top to bottom, respectively).

(b) Average values within sampling intervals (same as in a) vs. point samples for normalized snow depth profiles in the FS ISA. The red line

is a linear regression fit, with slope β and r2 as indicated in each plot. (c) Histograms of the difference between the point and average values

for each of the sampling intervals. The vertical red line marks the mean difference.

tial structure can be quantified by, for example, the spatial

covariance/correlation function.

In addition to differences in correlation structure, there

are also differences in the absolute variability in snow depth

in these environments (Fig. 4). Contrary to the normalized

snow depth discussed above, the subinterval standard devia-

tion as a function of interval size along the profiles is higher

in the open and wind-influenced environment at RW vs. the

forested environment at FS (Fig. 4a). Mean standard devi-

ation values in the open environment are twice as large as

those at the forested environment towards the larger interval

sizes (∼ 100 m). The standard deviation increases with inter-

val size in both environments, with the steepest increase at

the lower interval sizes. Furthermore, the standard deviation

tends to stabilize more rapidly in the forested environments,

with an increase of only 1.8 cm between 30 and 100 m. On

the other hand, the standard deviation continues to increase

in the open environment at RW, with less of an asymptotical

behavior for the scales analyzed. Complementary, the shaded

areas (25 to 75 % quantiles) give an idea of the variability of

standard deviation values, with a much wider range in RW

vs. FS, and an increase in the range between quantiles with

interval size in RW.

Consistent with the standard deviation, the sub-interval

mean range (range defined as the difference between the

maximum and minimum snow depths within an interval) in-

creases with interval size in both FS and RW (Fig. 4b). How-

ever, the mean range is larger in the open environment at RW

and the rate of increase with interval size is also steeper. Sim-

ilarly, the shaded areas indicate wider distribution of range

values in the open environment at RW, while they are rel-

atively uniformly distributed around the mean across inter-

val sizes in the forested environment at FS. The results in

Figs. 2–4 illustrate this contrasting behavior between the

snow covers in these environments and their influence on

measurement strategies: that is, the forested environments

requires shorter separation between measurements for accu-

rate representation of the snow cover; however, in the wind-

influence and open environment, the subinterval variability is

higher indicating wider variations around any sampled mea-

surement within the interval.
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Figure 3. (a) As Fig. 2 but for an open and wind influenced environment at the Rabbit Ears–Walton Creek (RW) ISA of the CLPX (Trujillo

et al., 2007; Cline et al., 2009). (b) Average values within sampling intervals (same as in a) vs. point samples for normalized snow depth

profiles in the RW ISA. The red line is a linear regression fit, with slope β and r2 as indicated in each plot. (c) Histograms of the difference

between the point and average values for each of the sampling intervals. The vertical red line marks the mean difference.

Figure 4. Sub-interval standard deviation (a) and range (b) for varying interval lengths for profiles of snow depth in a forested environment

(FS) and an open and wind-influenced environment (RW) in the Colorado Rocky Mountains (same regions as those in Figs. 2 and 3). The

mean standard deviation and mean range for the study areas are shown by the solid lines, while the shaded areas cover the quantiles between

25 and 75 % of the values for all the intervals in these areas.

Ultimately, the number and distance between measure-

ments and the specific arrangement of the measurements are

all conditioned to what the measurements are needed for. Hy-

drologic applications may not require a highly detail repre-

sentation of a snow depth profile (or a field), and represent-

ing the average conditions over a given distance (or area)

is sufficient, but small-scale process-based studies may re-

quire a more detailed characterization over shorter distances

(or smaller areas). This implies that the decision depends on

the particular usage that the measurements will support. In

the following sections, the equations presented in the back-

ground (Sect. 2) will be applied to evaluate the uncertainty

The Cryosphere, 9, 1249–1264, 2015 www.the-cryosphere.net/9/1249/2015/
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Figure 5. Survey designs for the sampling of a snow profile.

associated with multiple measurement designs for profiles

and fields of snow depth.

4.1 Case 1: single measurement along a profile section

Equation (2) can be used to evaluate the uncertainty of a sin-

gle measurement along a profile section of length L. For this

case, as well as for the following cases in this article, an ex-

ponential covariance with a decay exponent ν (ν > 0) will be

assumed:

COV(h,σ,ν)= σ 2 exp(−ν ‖h‖) for σ 2 > 0, and ν > 0,, (6)

where σ 2 is the variance, and ‖h‖ is the length of the vector

h. For this one-dimensional case and combining Eqs. (6) and

(5), the following expression is obtained:

σ 2

Z
(x,L,ν)

/
σ 2
p = 1−

2

Lν

[
2− exp(−νx)−

exp(−ν · [L− x])
]
+

1

L2ν

[
2L+

2

ν
exp(−νL)−

2

ν

]
, (7)

where x is the distance from one extreme of the section to

the location of the measurement (Fig. 5a). The normalized

squared error σ 2

Z
(x,L,v)

/
σ 2
p is minimized at x equal to

half of the section length, L/ 2, regardless of ν. The exis-

tence of a correlation in the profile leads to this solution, as

the middle location contains more information about its sur-

roundings. Also, this solution is different from the solution

for an uncorrelated profile (e.g., white noise), for which the

squared error would be equal to the variance, independent of

the location of the measurement.

The results here are confirmed with an analysis of LIDAR

snow depths profiles in FS and RW (Fig. 6). The analysis

consists of calculating the difference between the mean and

the point value for sections of a given length (varied between

10–50 m) and for x (Fig. 5a) between 0 and L along the pro-

file sections. Each sample section of length L will provide

a single difference for each of the x values. These sample

differences are then used to calculate the mean normalized

squared error for each x, and the same is repeated for each

section lengthL. The results indicate that the real snow depth

profiles behave as predicted by the model of the error, with

a minimum error at x equal to half of the section length.

Another difference highlighted by these results is the differ-

ence between the sample errors in the forested environment

(FS) vs. the open environment (RW) for the larger interval

sizes (e.g., 50 m). The sampled normalized squared error in

the forested environment shows only a mild decrease in the

square error to around 0.7–0.8 towards the inside of the sec-

tion length. However, this decrease is achieved for the mea-

surement along most of the interval length with the exception

of the extremes. This can be explained by the relationship be-

tween the spatial memory of snow depth (e.g., the correlation

function) and the section length. Densely forested environ-

ments exhibit correlation lengths that are shorter than those

in open and wind influenced environments (e.g., Trujillo et

al., 2007, 2009). As the section length increases beyond such

correlation lengths, a measurement location towards the mid-

dle of the interval contains less information of the surround-

ing snow depths in a forested environment (e.g., FS) vs. an

open and wind influenced environment (e.g., RW). This is

observed in Fig. 6c vs. Fig. 6f, with the results in RW show-

ing a more clear minimum towards the center of the profile

section. The results also show a poorer performance of the

model in RW vs. FS, as the exponential correlation model

has a poorer fit in RW at the shorter-lag range; However,

model performance is improved for longer section lengths

(e.g., Fig. 6c and f)

Model and sampled results thus support that the measure-

ment location can be fixed in the middle of the interval, and

the normalized squared error can then be described as a func-

tion of both the exponential decay exponent, ν, and the length

of the section, L (Fig. 7a). The normalized squared error in-

creases with interval length, with a steeper increase for larger

exponential decay exponents, for which the squared error ap-

proaches that of an uncorrelated field more rapidly. The the-

oretical model is tested on the snow depth fields at FS and

RW. The test consists of calculating the sampled normal-

ized squared error as the average of all squared differences

between the mid-section snow depth and the mean from all

LIDAR grid points within each interval of length L. This is

done for profiles separated every 30 m, similar to the analysis

above, and for profiles along the x and y directions. The the-

oretical normalized squared error is estimated from Eq. (7)

using the exponential decay exponent from the model fitted

to the sampled correlation function. The results show that the

theoretical model reproduces the sampled squared error re-

markably well, even reproducing the anisotropic properties

of the correlograms, represented by the different exponents

of the exponential model along x and y directions (Fig. 7b
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Figure 6. Comparison of the theoretical and sampled normalized squared error (σ 2

Z

/
σ 2
p ) for the case of a single measurement along a

profile section of length L, as in Fig. 5a. The survey case applied to profiles in FS and RW along the x and y directions. Solid lines are the

theoretical error using exponential decay exponents derived from the functions fitted to the sampled correlation functions of the two surfaces

in the x and y directions.

and c). The model also reproduces the different behavior

of the squared error between both fields (i.e., FS and RW),

showing that the normalized squared error increases more

rapidly and is larger in the forested environment (Fig. 7b) vs.

the open environment (Fig. 7c). However, it should be noted

here that as the error is normalized and as the variance of the

field in the open environment is larger (Fig. 4a), the absolute

squared error could reach higher values in the open environ-

ment (RW). In this regard, one feature to discuss here is the

assumption that the point variance of snow depth in these

environments has been estimated as the spatial variance over

the entire study area, as it is generally practiced in time series

analysis and geostatistics. In practice, this is the only possi-

ble approach because there is limited information to estimate

the point variance from multiple realizations of the process at

each spatial location, as inter-annual and intra-annual snow

depth fields are not available, not only for these areas, but for

almost any area where this methodology may be applied.

4.2 Case 2: three measurements along a profile section

From Eq. (5) it is also evident that increasing the number

of measurements will reduce the squared error. In the case

of three measurements separated by a distance “a”, with

the middle measurement centered in the section of length L

(Fig. 5b), and for an exponential covariance function with

parameter ν, Eq. (5) leads to the following expression:

σ 2

Z
(a,L,ν)

/
σ 2
p =

1

3
+

2

9

[
2exp(−νa)− exp(−2νa)

]
−

4

3Lν

[
3− exp

(
−
νL

2

)
(1+ exp(−νa)+ exp(νa))

]
(8)

+
1

L2ν

[
2L+

2

ν
exp(−νL)−

2

ν

]
.

Equation (8) can be minimized to determine the optimal sep-

aration distance between points, a, as a function of L and

ν:

aoptimal =−
1

ν
ln(t) , (9)

where

t =
B +
√
B2− 4AB

2A

A=
4ν

9

and B =−
4

3L
exp

(
−
νL

2

)
.

The combination of Eqs. (8) and (9) can be used to deter-

mine the normalized squared error, σ 2

Z

/
σ 2
p , and the opti-

mal distance, aoptimal, for the measurement pattern in Fig. 5b.
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Figure 7. (a) Theoretical normalized squared error for a single measurement in the middle of a section of length, L, and for an exponential

correlation function with a decay exponent, ν. (b) and (c) Comparison of the theoretical and sampled normalized squared error for the same

survey case applied to profiles in FS and RW along the x and y directions. Dashed lines are the theoretical error from Eq. (7) using exponential

decay exponents derived from the functions fitted to the sampled correlation functions of the two surfaces in the x and y directions.

The model predicts that the normalized squared error is mini-

mized at an intermediate location between 0 and L/ 2 (black

lines in Fig. 8a and b). The results show an increase in the er-

ror with interval size, L, as well as little sensitivity of aoptimal

to ν. This latter feature can be seen as an advantage since

small biases in the estimation of ν will not result in signif-

icant biases in the estimation of aoptimal. One could almost

assume a value of aoptimal without prior knowledge of the ex-

ponential decay exponent, selecting aoptimal within the range

of values indicated by the model for a rage of possible expo-

nential decay exponents. Note that aoptimal is located close to

the 60 % distance from the center towards the outer boundary

of the profile section for all section lengths (Fig. 8a and b).

On the other hand, the measurement error displays a higher

sensitivity to ν around aoptimal, indicating that biases in the

estimation of ν would have a more noticeable effect on the

estimation of the measurement error. This is further clari-

fied in Fig. 8c, in which the normalized error (not squared)

and aoptimal can be obtained for corresponding profile sec-

tion lengths (L) and exponential decay exponents (ν) based

on the isolines shown. For example, for a profile section of

30 m, and an exponential decay exponent of 0.2 m−1, the nor-

malized error is 0.32 and aoptimal is 9.63 m (see intersect of

the two isolines in Fig. 8c). The normalized error in Fig. 8c

is not squared, highlighting the sensitivity of the measure-

ment error to ν, which represents the degree of spatial cor-

relation of the profile in this case (e.g., lower values indicate

stronger spatial memory/correlation, hence lower measure-

ment errors).

The performance of the model is tested against the nor-

malized squared error obtained from the same snow depth

profiles in FS and RW. The test consists of estimating the

normalized squared error for profiles sections of length be-

tween 10 and 80 m, with a being varied between 0 and L/ 2

(Fig. 9). For each value of a, the normalized squared error is

estimated based on the means obtained using the three snow

depth samples for each section. All squared differences are

then averaged to obtain the values presented in the figure.

Sampled and modeled errors follow the same trend across all

a values and for the different L values in Fig. 9. The mini-
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Figure 8. (a) and (b) Theoretical normalized squared error for the three-point pattern along a profile section in Fig. 5b, and for profile section

lengths (L) of 1 (a) and 25 (b). Each of the colored lines corresponds to a specific decay exponent, ν, and the black line marks the theoretical

solution for aoptimal. (c) Theoretical normalized error and aoptimal for isolines of profile section lengths (L) and exponential decay exponents

(ν) for the three-point pattern along a profile section of length L in Fig. 5b.

mum error is also reproduced by the model proving the ap-

plicability of the model for estimating the optimal separation

between measurements. The model does perform better in

the forested environment of FS vs. RW, particularly for lower

a values. This can be justified as the exponential covariance

model displays a better fit in FS over RW, particularly over

the lower range of lag values. Also, note that both the mod-

eled and sampled normalized squared errors are lower for

the snow depth profiles at RW because of the longer spatial

memory of the snow depth distribution in this environment

(higher spatial correlations) when compared to that in FS.

4.3 Case 3: N measurements along a profile section

As stated above, the measurement error can be reduced by

increasing the number of measurements taken over a given

section of length L. Let us focus on the case of stratified

sampling where N regularly spaced measurements are taken

over the interval (Fig. 5c), and to quantify this reduction we

can use Eq. (5) and the exponential covariance model. Equa-

tion (5) can then be reduced to the following:

σ 2

Z
(N,L,ν)

/
σ 2
p =

1

N
+

2

N2

N−1∑
k=1

k exp

(
−ν

[
L−

kL

N

])

−
4

Lν

[
1−

1

N

N∑
k=1

exp

(
−ν

L

N

[
N − k+

1

2

])]
(10)

−
2

L2ν2

[
1−Lν− exp(−νL)

]
.

The normalized squared error (σ 2

Z

/
σ 2
p ) obtained with

Eq. (10) for profiles sections of lengths between 10 and 80

shows a steep decrease with N (Fig. 10), with a steeper de-

crease for higher exponential decay exponents. For the longer

profile sections (e.g., 80, Fig. 10d), small reductions in the

squared error are achieved beyond only a few measurements

(e.g., N = 16). Equation (10) and the results in Fig. 10 can

be used to determine the number of measurements necessary

to achieve a desired accuracy level. One could, for exam-

ple, design a survey to sample a snow depth profile with a

mean value every 10 m. The number of measurements re-

quired to achieve a desired level of accuracy can be obtained

from Fig. 10a, based on previous knowledge of the sam-
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Figure 9. Theoretical and sampled normalized squared error

(σ 2

Z

/
σ 2
p ) for the three-point pattern along a profile section in

Fig. 5b, and for profile section lengths (L) between 10 and 80 m

in FS and RW. The solid lines are the theoretical error from Eq. (8)

using exponential decay exponents derived from the functions fit-

ted to the sampled correlation functions of the two surfaces in the x

and y directions, while the dots correspond to the sampled error for

profiles in FS (a–d) and RW (e–h).

Figure 10. Theoretical normalized squared error (σ 2

Z

/
σ 2
p ) for the

N -point pattern along a profile section in Fig. 5c, and for profile

section lengths (L) between 10 and 80 obtained from Eq. (10).

Figure 11. Theoretical and sampled normalized squared error

(σ 2

Z

/
σ 2
p ) for the N -point pattern along a profile section in Fig. 5c,

and for profile section lengths (L) between 10 and 80 m in FS and

RW. The solid point markers are the theoretical error from (10) us-

ing exponential decay exponents derived from the functions fitted

to the sampled correlograms of the two surfaces in the x and y di-

rections, while the circle markers with the dotted lines correspond

to the sampled error for profiles in FS (a–d) and RW (e–h).

ple estimate of the exponential decay exponent. This can be

achieved thanks to the intra-annual and inter-annual persis-

tence of the spatial patterns, and hence, the spatial statistical

properties of snow depth fields in mountain environments,

as shown in previous studies using both manual surveys and

LIDAR measurements (e.g., Deems et al., 2008; Sturm and

Wagner, 2010; Schirmer et al., 2011; Melvold and Skau-

gen, 2013; Helfrich et al., 2014). A detailed spatial survey

(e.g., dense manual measurements or TLS), sampling differ-

ent portions of an area can be used to determine the covari-

ance/correlation characteristics of the snow depth distribu-

tion, with which the model for the error can be applied. An

a priori estimate of the exponential decay exponent may also

be possible and will be tested in future applications of the

framework, given the relative insensitivity of the error with

respect to ν.

Following the method described in the previous section,

we test the performance of the model against the normalized
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Figure 12. Sample survey designs with (a) a five-point pattern cen-

tered in the area, and (b) a regularly spaced pattern. For the five-

point pattern, a can vary between 0 and L/ 2, while for the N × N

points pattern, the separation between the measurements is deter-

mined by the number of points.

squared error obtained from the same snow depth profiles in

FS and RW. In this case, the sampled squared error is esti-

mated for N measurements distributed along profile sections

of length L. As the snow depth fields are gridded at ∼ 1 m

resolution, the location of the measurements is approximated

to the closest coordinate in the profile section following the

pattern in Fig. 5c. Once again, sampled and modeled errors

follow closely the same trend for the different L values in

both FS and RW (Fig. 11). The error decreases with N , with

a rapid decay at the lower N values, illustrating that the error

can be drastically reduced by simply increasing the number

of measurements by a small amount. The normalized squared

error across allN values is lower for RW than for FS, consis-

tent with the higher spatial correlations observed in the snow

depth fields of RW vs. FS. Once again, there are some differ-

ences between the sampled and modeled normalized squared

error in RW for the shorter profile lengths and for small N

values: a consequence of the poorer fit of the exponential

model for the shorter lag range in RW. However, the model

is still able to reproduce the error in both fields, and the ap-

plicability of the model is illustrated even when the fit of the

correlation model can be improved.

5 Two-dimensional process

Similar to the one-dimensional process, Eq. (5) can be for-

mulated to calculate the squared error in the two-dimensional

space. To exemplify this, we apply the methodology to an

isotropic process over the x− y plane for three cases in a

square area: (a) one single measurement in the center of the

area, (b) five measurements radiating out from the center

(Fig. 12a), and (c) N by N measurements regularly spaced

in the x and y directions (Fig. 12b).

For the isotropic case, the covariance/correlation function

is only dependent on the magnitude of the lag vector,

hi,j =
∣∣xi − xj

∣∣ , (11)

and, consequently, the error is represented by,

σ 2

Z
(A)= σ 2

p



1

N
+

2

N2

N−1∑
i=1

N∑
j=i+1

CORR
[
hi,j

]
−

2

NA

N∑
i=1

∫
A

CORR
[
hi,j

]
dxj

+
1

A2

∫
A

∫
A

CORR
[
hi,j

]
dxidxj


. (12)

The exponential correlation function for the isotropic case

takes the following form:

CORR(h,ν)= exp(−νh), (13)

where h is the magnitude of the lag vector. Replacing the

correlation function in the expression for σ 2

Z
, we obtain,

σ 2

Z
= σ 2

p
1
/
N + 2

/
N2

N−1∑
i=1

N∑
j=i+1

exp
(
−ν

∣∣xi − xj
∣∣)

−2
/
NA

N∑
i=1

∫
A

exp
(
−ν

∣∣xi − xj
∣∣)dxj

+1
/
A2

∫
A

∫
A

exp
(
−ν

∣∣xi − xj
∣∣)dxj dxi

 . (14)

For the case of a rectangular area of side dimension Lx and

Ly in the corresponding x and y directions, the equation be-

comes,

σ 2

Z
= σ 2

p (15)

1
/
N + 2

/
N2

N−1∑
i=1

N∑
j=i+1

exp

(
−ν
((
xi − xj

)2
+
(
yi − yj

)2) 1
2

)

−2
/
NA

N∑
i=1

Ly∫
0

Lx∫
0

exp

(
−ν
((
xi − x

)2
+
(
yi − y

)2) 1
2

)
dxdy

+1
/
A2

Ly∫
0

Lx∫
0

Ly∫
0

Lx∫
0

exp

(
−ν
((
x′ − x

)2
+
(
y′ − y

)2) 1
2

)
dxdydx′dy′


.

The limits of the integrals can be changed depending on the

desired location of the origin. In this case, the origin is lo-

cated at the lower-left corner.

As discussed earlier, the first term is only a function of N ,

such that the base error is the variance of the point process di-

vided by the number of points. The second term is a function

of N , the location of the points, and the decay rate ν. The

third term is a function of N , A, the location of the points,

and the decay rate ν. The fourth term is a function of A and

ν, but is independent of the location of the points and N (i.e.,

independent of the survey design, and only a function of the

correlation structure of the continuous process).
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Figure 13. (a) Theoretical normalized squared error (σ 2

Z

/
σ 2
p ) for the two-dimensional case with a single measurement in the middle of a

square area with side dimension L. (b) Theoretical and sampled normalized squared error for the same two-dimensional survey applied to the

snow depth field in FS. The dashed line is the theoretical error derived for an exponential decay exponent of 0.17 derived from the sampled

correlation function of snow depth in FS, while the solid line is the sampled normalized squared error for the snow cover in FS.

Figure 14. Theoretical normalized squared error (σ 2

Z

/
σ 2
p ) as a

function of the distance a from the center of the area for square areas

of side dimensions (L) between 10 and 80. Each curve corresponds

to an exponential decay (ν) between 0.1 and 5.

5.1 Case 1: single measurement in the center of the

area

In this case, we focus on a single measurement in the middle

of a square area of side dimension L. Numerical solution of

Eq. (15) shows that the normalized squared error increases

rapidly with L, with a steeper increase for higher exponen-

tial decay exponents (Fig. 13a), which approach a normalized

squared error of 1 for L values less than 10 (e.g., 1≤ ν ≤ 5).

The theoretical results in Fig. 13a can be used to determine

the discrepancy between a single measurement in the mid-

dle of an area and the areal mean for a second order sta-

tionary and anisotropic process with an exponential covari-

ance/correlation function. Comparison of the modeled and

sampled normalized square errors for the FS snow depth field

indicate very good agreement between modeled and sample

Figure 15. Theoretical and sampled normalized squared error

(σ 2

Z

/
σ 2
p ) for the 5-point pattern in Fig. 12a over square areas of

side dimensions (L) between 10.7 and 79.1 m. The separation dis-

tance (a) is varied from the center outwards. The solid line is the

theoretical error derived for an exponential decay exponent of 0.17

derived from the sampled correlation function of snow depth in

FS, while the solid red point markers are the sampled normalized

squared error for the snow cover in FS.

errors (Fig. 13b). The sample error is estimated following

the same procedure explained for the one-dimensional cases,

although in the two-dimensional space. Both sampled and

modeled errors show the same behavior across L values be-

tween 1 and 100 m, although the scatter in the sampled error

increases for larger L values. This can be explained by the

smaller number of samples to estimate the mean normalized

squared error and the fact that the correlation structure de-

cays rapidly and a single sample becomes less correlated to

the surrounding area for these larger areas. The model intro-

duced here can then be used to assess the representativeness

of a single measurement over an area objectively and accu-

rately, and it can be extended for other covariance/correlation

functions as needed.
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Figure 16. Theoretical normalized squared error (σ 2

Z

/
σ 2
p ) for the

N by N point pattern in Fig. 12b, and for areas of side dimension

(L) between 10 and 80. The exponential exponent is varied between

0.1 and 5.

Figure 17. Theoretical and sampled normalized squared error

(σ 2

Z

/
σ 2
p ) for theN byN point pattern in Fig. 12b, and over square

areas of side dimensions (L) between 10.7 and 79.1 m. The solid

black point markers are the theoretical error for an exponential de-

cay exponent of 0.17 derived from the sampled correlogram of snow

depth in FS. The dotted red lines with circle markers are the sam-

pled normalized squared error for the snow cover in FS.

5.2 Case 2: five measurements radiating out from the

center of the area

The case of five measurements radiating out from the cen-

ter (Fig. 12a), with a point in the middle of the area and

four points separated by a distance a from the center leads

to a similar optimization problem as illustrated in case 2

of the one-dimensional examples (Sect. 4.2). In the two-

dimensional case, Eq. (15) does not have an explicit solution

for a, and numerical implementation is required. The equa-

tion can be solved by simply replacing the point coordinates

and the correlation function parameters. Following this ap-

proach, the normalized squared error can be obtained for ar-

eas of varying sizes (Fig. 14). Similar to the one-dimensional

example (case 2, Sect. 4.2), σ 2

Z

/
σ 2
p decreases with a, reach-

ing a minimum at an intermediate distance from the mid-

dle point outwards. The decay in σ 2

Z

/
σ 2
p is more rapid for

the least correlated processes (i.e., higher decay exponents)

reaching a value close to the base normalized square error

that is a function of the number of points (i.e., 1/N = 1/5

in this case). An extended analysis of the effect of each of

the terms in the equation is included in the Supplement. The

error, as shown in Fig. 14, is minimized as a consequence

of two balancing terms that lead to this intermediate solu-

tion. The optimal solution is a balance between reducing the

correlation between the individual measurements (e.g., in-

creasing the separation between the location of the measure-

ments) but increasing the correlation between the measure-

ments and the surrounding area (e.g., locating the measure-

ments closer to the middle of the area). These two competing

effects lead to an optimization problem based on the loca-

tion of the point measurements. For the least correlated pro-

cesses, the error resembles the behavior of an uncorrelated

field once the measurements become effectively decorrelated

(e.g., a > 1 in Fig. 14b for ν = 5). Figure 14 exemplifies how

Eq. (14) can be used to determine the optimal measurement

location for areas of different sizes, and to determine the as-

sociated error with configurations other than the optimal.

The performance of the model is tested against the normal-

ized squared error obtained from the snow depth field in FS.

The test consists of estimating the normalized squared error

for a square area with side length (L) between 10 and 79 m,

with a being varied between 0 and L/ 2 (Fig. 15). For each

value of a, the normalized squared error is estimated based

on the means obtained using the five snow depth samples

for each section. All squared differences are then averaged

to obtain the values presented in the figure. Once again, the

sampled and modeled errors follow the same trend across all

a values and for the different L values. The minimum error

and aoptimal are also reproduced closely by the model, and

as the area size increases, the sampled and modeled error ap-

proach the error for an uncorrelated field at larger separations

(i.e., 0.2). These results illustrate that the performance of the

model in the two-dimensional space is remarkable, similar to

what was observed in the one-dimensional case.

5.3 Case 3: N by N measurements regularly spaced in

the x and y directions

Similarly to the one-dimensional case, the two-dimensional

case of N by N regularly spaced measurements (Fig. 12b)

leads to a decreasing normalized squared error with N

(Fig. 16). There is a sharp decrease in the error by just in-

creasing the number of measurements in the lower range of

N . The analysis illustrates that stratified sampling, as shown

here, is an excellent approach for minimizing the error. For
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a 10 by 10 area for example, increasing N to 4 (N2
= 16)

reduces the normalized squared error to less than 0.05. It is

also worth noting here that for this two-dimensional case, the

error is less sensitive to the value of the exponential decay ex-

ponent (ν) for the higher N values as the mean is accurately

captured regardless of the correlation of the field. Beyond a

certain number of measurements regularly distributed in the

area, the measurements gather enough information such that

there are only very minor improvements with the addition

of new measurements, regardless of the exponent value. Fig-

ure 16 serves as an example of how the methodology can

be used for objective selection of the number of measure-

ments necessary to achieve a desired accuracy level using

prior knowledge of the spatial covariance function.

The performance of the model is tested again for a square

area with side length (L) between 10 and 79 m using the

snow depth field in FS, and for an increasing number of

rows/columns of measurements leading to a total number of

measurements ofN2 (Fig. 17). The results illustrate again the

accurate performance of the theoretical model, with sampled

and model errors following closely the same squared errors.

Both sampled and modeled errors increase as the size of the

area increases, as expected. These results complete the model

performance tests for the two-dimensional isotropic case.

6 Summary and conclusions

A methodology for an objective evaluation of the error in

capturing mean snow depths from point measurements is pre-

sented based on the expected value of the squared difference

between the real average snow depth and the mean of a fi-

nite number of snow depth samples within a defined domain

(e.g., a profile section or an area). The model can be used

for assisting the design of survey strategies such that the er-

ror is minimized in the case of a limited and predetermined

number of measurements, or such that the desired number of

measurements is determined based on a predefined accept-

able uncertainty level. The model is applied to one- and two-

dimensional survey examples using LIDAR snow depths col-

lected in the Colorado Rockies. The results confirm that the

model is capable of reproducing the estimation error of the

mean from a finite number of samples for real snow depth

fields.

Here, we should highlight some of the implications of

the assumptions made in the model. In simplified terms, the

second-order stationarity assumption implies that the mean

and the variance of the process/variable (e.g., snow depth)

are independent of the spatial location, and that the covari-

ance is dependent only on the separation vector (i.e., lag). Al-

though these assumptions may be less valid over larger scales

(e.g., greater than 100 m), in the context of the model applica-

tion to snow depth the assumption should be valid at smaller

scales. We present these examples to show how the error can

be quantified with good accuracy at such smaller scales. Ap-

plication of these types of approaches at larger scales will

require additional evaluation with particular attention as to

what the specific demands of the application are. Also, the

methodology presented here is not suitable for discontinu-

ous snow cover if both snow-covered and snow-free areas

are considered in the error estimation. This case has not been

considered in the development here.

Implementation of the model in practice requires prior as-

sumption of a correlation/covariance model and estimates of

the model parameters (e.g., the decay exponent for the expo-

nential case). In the examples presented here we use LIDAR

data for the parameter estimation to illustrate the applicabil-

ity of the model and its ability to estimate the error using

real snow depth data. Snow distributions in mountain envi-

ronments have been shown to be consistent intra- and inter-

annually because the controlling processes are relatively con-

sistent during the season and from season to season. Such

consistency suggests that the correlation/covariance model

should also be consistent, as well as the parameters of the

model. These parameters can be estimated via a dense sur-

vey either manually or with TLS of one or more small plots

of a size similar to the size that is aimed to be represented.

These surveys would not necessarily have to be repeated as

the parameters and covariance models should be preserved.

Detailed surveys can be conducted under different conditions

to characterize the range of the correlation models and pa-

rameters (e.g., after a snow storm, or close to peak accumula-

tion). Also here, we should point out that although we show

results for a wide range of the exponential decay exponent

values, we are finding that most of the values that we have

observed are in the lower range of those presented (e.g., 0.1–

0.2 m−1). Hence, the biases in the estimated error and the

survey design remain small.

Currently, remote sensing technologies (e.g., TLS, Air-

borne LIDAR, and ground penetrating radar) are allowing

for the characterization of snow cover properties at increas-

ing resolutions in both space and time. Such improvements

can be utilized in the context presented here providing infor-

mation about the range of best fitting covariance/correlation

models and parameters for different conditions, supporting

the application of methodologies such as the one presented

here. With such improvements, survey designs can be opti-

mized such that estimation errors can be explicitly addressed

and accounted for, particularly when extrapolating a limited

number of measurements to estimate the spatial distribution

of snow. Such applications will continue to be relevant de-

spite of the aforementioned improvements, as access to these

technologies is limited by their cost and the expertise that is

required for their application.
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