Articles | Volume 8, issue 6
https://doi.org/10.5194/tc-8-2381-2014
https://doi.org/10.5194/tc-8-2381-2014
Research article
 | 
20 Dec 2014
Research article |  | 20 Dec 2014

Elevation dependency of mountain snow depth

T. Grünewald, Y. Bühler, and M. Lehning

Related authors

Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study
Rebecca Mott, Andreas Wolf, Maximilian Kehl, Harald Kunstmann, Michael Warscher, and Thomas Grünewald
The Cryosphere, 13, 1247–1265, https://doi.org/10.5194/tc-13-1247-2019,https://doi.org/10.5194/tc-13-1247-2019, 2019
Short summary
Snow farming: conserving snow over the summer season
Thomas Grünewald, Fabian Wolfsperger, and Michael Lehning
The Cryosphere, 12, 385–400, https://doi.org/10.5194/tc-12-385-2018,https://doi.org/10.5194/tc-12-385-2018, 2018
Short summary
Statistical modelling of the snow depth distribution in open alpine terrain
T. Grünewald, J. Stötter, J. W. Pomeroy, R. Dadic, I. Moreno Baños, J. Marturià, M. Spross, C. Hopkinson, P. Burlando, and M. Lehning
Hydrol. Earth Syst. Sci., 17, 3005–3021, https://doi.org/10.5194/hess-17-3005-2013,https://doi.org/10.5194/hess-17-3005-2013, 2013

Related subject area

Seasonal Snow
From snow accumulation to snow depth distributions by quantifying meteoric ice fractions in the Weddell Sea
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
The Cryosphere, 18, 2001–2015, https://doi.org/10.5194/tc-18-2001-2024,https://doi.org/10.5194/tc-18-2001-2024, 2024
Short summary
Snow depth in high-resolution regional climate model simulations over southern Germany – suitable for extremes and impact-related research?
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024,https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Which global reanalysis dataset represents better in snow cover on the Tibetan Plateau?
Shirui Yan, Wei Pu, Yang Chen, Yaliang Hou, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, and Xin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-82,https://doi.org/10.5194/egusphere-2024-82, 2024
Short summary
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024,https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
Vilna Tyystjärvi, Pekka Niittynen, Julia Kemppinen, Miska Luoto, Tuuli Rissanen, and Juha Aalto
The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024,https://doi.org/10.5194/tc-18-403-2024, 2024
Short summary

Cited articles

Alpert, P.: Mesoscale Indexing of the Distribution of Orographic Precipitation over High Mountains, J. Clim. Appl. Meteorol., 25, 532–545, https://doi.org/10.1175/1520-0450(1986)025<0532:miotdo>2.0.co;2, 1986.
Arakawa, O. and Kitoh, A.: Intercomparison of the relationship between precipitation and elevation among gridded precipitation datasets over the Asian summer monsoon region, Global Environ. Res, 15, 109–118, 2011.
Asaoka, Y. and Kominami, Y.: Spatial snowfall distribution in mountainous areas estimated with a snow model and satellite remote sensing, Hydrol. Res. Lett., 6, 1–6, 2012.
Basist, A., Bell, G. D., and Meentemeyer, V.: Statistical Relationships between Topography and Precipitation Patterns, J. Climate, 7, 1305–1315, https://doi.org/10.1175/1520-0442(1994)007<1305:srbtap>2.0.co;2, 1994.
Bavera, D. and De Michele, C.: Snow water equivalent estimation in the Mallero basin using snow gauge data and MODIS images and fieldwork validation, Hydrol Proc., 23, 1961–1972, https://doi.org/10.1002/hyp.7328, 2009.
Download
Short summary
Elevation dependencies of snow depth are analysed based on snow depth maps obtained from airborne remote sensing. Elevation gradients are characterised by a specific shape: an increase of snow depth with elevation is followed by a distinct peak at a certain level and a decrease in the highest elevations. We attribute this shape to an increase of precipitation with altitude, which is modified by topographical-induced redistribution processes of the snow on the ground (wind, gravitation).