Articles | Volume 18, issue 2
https://doi.org/10.5194/tc-18-575-2024
https://doi.org/10.5194/tc-18-575-2024
Research article
 | 
12 Feb 2024
Research article |  | 12 Feb 2024

Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry

Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich

Related authors

A cold laboratory hyperspectral imaging system to map grain size and ice layer distributions in firn cores
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024,https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Evaluating Snow Depth Retrievals from Sentinel-1 Volume Scattering over NASA SnowEx Sites
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1018,https://doi.org/10.5194/egusphere-2024-1018, 2024
Short summary
Automated snow cover detection on mountain glaciers using space-borne imagery
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
EGUsphere, https://doi.org/10.5194/egusphere-2024-548,https://doi.org/10.5194/egusphere-2024-548, 2024
Short summary
Extending the utility of space-borne snow water equivalent observations over vegetated areas with data assimilation
Justin M. Pflug, Melissa L. Wrzesien, Sujay V. Kumar, Eunsang Cho, Kristi R. Arsenault, Paul R. Houser, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024,https://doi.org/10.5194/hess-28-631-2024, 2024
Short summary
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024,https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
Snow depth in high-resolution regional climate model simulations over southern Germany – suitable for extremes and impact-related research?
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024,https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Spatiotemporal snow water storage uncertainty in the midlatitude American Cordillera
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023,https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023,https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023,https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023,https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary

Cited articles

Carriere, L.: Discover SCU Hardware, NASA, https://www.nccs.nasa.gov/systems/discover/scu-info (last access: March 2023), 2023. a
Cohen, J., Ye, H., and Jones, J.: Trends and variability in rain‐on‐snow events, Geophys. Res. Lett., 42, 7115–7122, 2015. a
Deeb, E., Forster, R., and Kane, D.: Monitoring snowpack evolution using interferometric synthetic aperture radar on the North Slope of Alaska, USA, Int. J. Remote Sens,, 32, 3985–4003, 2011. a
Doin, M. P., Lasserre, C., Peltzer, G., Cavalié, O., and Doubre, C.: Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models, J. Appl. Geophys., 69, 35–50, 2009. a
Dominguez, F., Rivera, E., Lettenmaier, D. P., and Castro, C. L.: Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models, Geophys. Res. Lett., 39, L05803, https://doi.org/10.1029/2011GL050762, 2012. a
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.