Articles | Volume 18, issue 2
https://doi.org/10.5194/tc-18-575-2024
https://doi.org/10.5194/tc-18-575-2024
Research article
 | 
12 Feb 2024
Research article |  | 12 Feb 2024

Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry

Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich

Related authors

Evaluating snow depth retrievals from Sentinel-1 volume scattering over NASA SnowEx sites
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024,https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024,https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
Leveraging snow probe data, lidar, and machine learning for snow depth estimation in complex-terrain environments
Dane Liljestrand, Ryan Johnson, Bethany Neilson, Patrick Strong, and Elizabeth Cotter
The Cryosphere, 19, 3123–3138, https://doi.org/10.5194/tc-19-3123-2025,https://doi.org/10.5194/tc-19-3123-2025, 2025
Short summary
A random-forest-derived 35-year snow phenology record reveals climate trends in the Yukon River Basin
Caleb G. Pan, Kristofer Lasko, Sean P. Griffin, John S. Kimball, Jinyang Du, Tate G. Meehan, and Peter B. Kirchner
The Cryosphere, 19, 2797–2819, https://doi.org/10.5194/tc-19-2797-2025,https://doi.org/10.5194/tc-19-2797-2025, 2025
Short summary
Insights into microphysical and optical properties of typical mineral dust within urban snowpack via wet and dry deposition in Changchun, northeastern China
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
The Cryosphere, 19, 2821–2835, https://doi.org/10.5194/tc-19-2821-2025,https://doi.org/10.5194/tc-19-2821-2025, 2025
Short summary
Dynamic identification of snow phenology in the Northern Hemisphere
Le Wang, Xin Miao, Xinyun Hu, Yizhuo Li, Bo Qiu, Jun Ge, and Weidong Guo
The Cryosphere, 19, 2733–2750, https://doi.org/10.5194/tc-19-2733-2025,https://doi.org/10.5194/tc-19-2733-2025, 2025
Short summary
Trends in the annual snow melt-out day over the French Alps and Pyrenees from 38 years of high-resolution satellite data (1986–2023)
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
The Cryosphere, 19, 2407–2429, https://doi.org/10.5194/tc-19-2407-2025,https://doi.org/10.5194/tc-19-2407-2025, 2025
Short summary

Cited articles

Carriere, L.: Discover SCU Hardware, NASA, https://www.nccs.nasa.gov/systems/discover/scu-info (last access: March 2023), 2023. a
Cohen, J., Ye, H., and Jones, J.: Trends and variability in rain‐on‐snow events, Geophys. Res. Lett., 42, 7115–7122, 2015. a
Deeb, E., Forster, R., and Kane, D.: Monitoring snowpack evolution using interferometric synthetic aperture radar on the North Slope of Alaska, USA, Int. J. Remote Sens,, 32, 3985–4003, 2011. a
Doin, M. P., Lasserre, C., Peltzer, G., Cavalié, O., and Doubre, C.: Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models, J. Appl. Geophys., 69, 35–50, 2009. a
Dominguez, F., Rivera, E., Lettenmaier, D. P., and Castro, C. L.: Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models, Geophys. Res. Lett., 39, L05803, https://doi.org/10.1029/2011GL050762, 2012. a
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.
Share