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Abstract. This study evaluates using interferometry on low-
frequency synthetic aperture radar (SAR) images to mon-
itor snow water equivalent (SWE) over seasonal and syn-
optic scales. We retrieved SWE changes from nine pairs
of SAR images, mean 8 d temporal baseline, captured by
an L-band aerial platform, NASA’s Uninhabited Aerial Ve-
hicle Synthetic Aperture Radar (UAVSAR), over central
Idaho as part of the NASA SnowEx 2020 and 2021 cam-
paigns. The retrieved SWE changes were compared against
coincident in situ measurements (SNOTEL and snow pits
from the SnowEx field campaign) and to 100 m gridded
SnowModel modeled SWE changes. The comparison of
in situ to retrieved measurements shows a strong Pearson
correlation (R = 0.80) and low RMSE (0.1 m, n= 64) for
snow depth change and similar results for SWE change
(RMSE= 0.04 m, R = 0.52, n= 57). The comparison be-
tween retrieved SWE changes to SnowModel SWE change
also showed good correlation (R = 0.60, RMSD= 0.023 m,
n= 3.2× 106) and especially high correlation for a sub-
set of pixels with no modeled melt and low tree coverage
(R = 0.72, RMSD= 0.013 m, n= 6.5×104). Finally, we bin
the retrievals for a variety of factors and show decreasing cor-
relation between the modeled and retrieved values for lower
elevations, higher incidence angles, higher tree percentages
and heights, and greater cumulative melt. This study builds
on previous interferometry work by using a full winter season

time series of L-band SAR images over a large spatial extent
to evaluate the accuracy of SWE change retrievals against
both in situ and modeled results and the controlling factors
of the retrieval accuracy.

1 Introduction

Seasonal snow is a critical resource providing drinking wa-
ter for millions, providing clean hydro-electric power gen-
eration, and supporting multi-billion dollar agricultural and
recreation industries, with the total value of seasonal snow
estimated in the trillions of dollars (Li et al., 2017; Sturm
et al., 2017). Consequently, understanding the distribution of
seasonal snow water storage and subsequent runoff is essen-
tial.

Current techniques fail to effectively resolve snow proper-
ties for water forecasters and managers in the face of a chang-
ing global climate that will fundamentally alter previous
relationships between snowpack monitoring sites (SNOw-
pack TELemetry Network, SNOTEL), point-based automatic
weather stations, and runoff forecasts. Climate change will
bring shifts in the timing and intensity of melt rates (Kunkel,
2016), more frequent rain-on-snow events (Cohen, 2015),
and complex region-specific evolution in snowfall patterns
(Strapazzon et al., 2021; Domingues et al., 2012). These
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changes are altering the relationship between point obser-
vations (e.g., SNOTEL sites) and snow conditions at other
elevations, and therefore the statistical techniques for using
sparse in situ snow measurements to predict spring runoff are
becoming less accurate (Livneh and Badger, 2020). A shift
to spatially distributed snow estimates is required; however,
due to the short length scale of variability in snow, increas-
ing the in situ network to the necessary station density is not
logistically or economically feasible. Remote sensing and
modeling represent a promising method of determining spa-
tially distributed snow estimates to capture the complexities
of snow distributions. Remote sensing of snow water storage
currently relies primarily on passive microwave systems with
coarse tens of kilometer-scale resolution. Additionally, pas-
sive microwave systems can only measure snow depths up
to a meter and, therefore, are not valuable for mountainous
areas where most of the water available for water resource
usage is stored. Active-microwave-based synthetic aperture
radar (SAR) does not have depth limitations or resolution
constraints, making it useful for measuring and resolving
complex global snow water storage patterns.

1.1 SAR overview

SAR sensors actively emit electromagnetic energy in the mi-
crowave range, frequencies from 1 to 40 GHz, and measure
the backscattered (returning) energy and phase. For lower-
frequency, longer-wavelength microwave SAR systems over
snow-covered ground, the electromagnetic waves are re-
fracted across the air–snow interface and then reflected from
the snow–ground interface with limited snow grain interac-
tions (Naderpour et al., 2022). Passing through the snowpack
leads to two competing effects: shorter two-way travel dis-
tance but slower wave speeds. These effects combine to cre-
ate phase shifts, due to the changes in travel time, between
repeat SAR images that we can analyze to quantify snow
height and snow water equivalent changes (Fig. 1). Analyz-
ing phase changes between SAR images, called interferomet-
ric SAR (InSAR), allows us to retrieve changes in the snow-
pack volume using these SAR-observed snow height changes
and modeled or observed densities.

Since the returned phases are measurements of sinusoidal
wave offsets, there is a “wrapping” effect where as the phase
approaches and then passes 2π it returns to zero again. This
causes an 2π modulo ambiguity that has be resolved by un-
wrapping the phase and adding or subtracting increments of
2π to the phase to recover the absolute or unwrapped phase
(Goldstein et al., 1988; Rosen et al., 2000). This unwrap-
ping process is relatively simple in high-coherence regions
but may be impossible in lower-coherence regions. Conse-
quently, InSAR analysis may use either the wrapped phase,
when continuous data are required and the expected phase
change is less than 2π , or unwrapped data, when the ex-
pected phase change may exceed 2π .

In this study, we use Eq. (1), proposed by Guneriussen et
al. (2001), to retrieve snow height changes (1d) at a spe-
cific wavelength (λ) from incidence angle (α), phase change
(1φ), and the real component of the dielectric permittivity
(εs). εs measures the wave speed through the snowpack and
depends on only the snowpack density and liquid water con-
tent. We estimated the real component of the dielectric per-
mittivity from snowpack density (ρs) in kg m−3 using Eq. (2),
assuming no liquid water in the snowpack (Matzler, 1996).

1d =−
1φλ

4π
1

cosα−
√
εs− sin2α

(1)

εs = 1+ 1.6× 10−3
· ρs+ 1.8× 10−9

· ρ3
s (2)

InSAR retrievals of the amount of water stored in the snow-
pack, snow water equivalent (SWE), are generally preferred
to capturing snow height changes for two reasons. First, most
water managers are primarily interested in the volume of
water stored within the snowpack rather than the height of
snow. Secondly, conversion to SWE should minimize the ef-
fects of errors in the estimation of ρs in Eq. (2). For exam-
ple, an overestimation of ρs will lead to a slower estimated
wave speed through the snowpack and an underestimation of
snow depth. However, when we convert the retrieved snow
depth to SWE using this higher density, this underestimation
of depth is counteracted, minimizing the impact of errors in
density. This means using even the edge cases of snow den-
sity have a limited impact on SWE retrievals (< 7%; Leinss
et al., 2015). Some studies have used approximations of SWE
change directly from phase (Leinss et al., 2015; Guneriussen
et al., 2001; Oveisgharan et al., 2024). Since we wanted to
compare to our snow depth measurements and errors in den-
sity should have limited impacts on the retrievals we use
a density estimate to calculate both snow depth and SWE
changes (see Sect. 3.4).

1.2 Previous work

Previous research has demonstrated promising retrievals of
snow height and SWE changes using InSAR phase shifts in
seasonal mountain snowpacks. However, these studies have
focused on simple topography with limited numbers of In-
SAR pairs and have yet to explore the accuracy or control-
ling factors of InSAR retrievals in complex mountain terrain
(Marshall et al., 2021; Deeb et al., 2011).

Guneriussen et al. (2001) showed fringe patterns consis-
tent with snow accumulation in a pair of March ERS-1,
C-band (λ≈ 0.05 m), images that captured a 4 cm change
in SWE but did not have in situ observations to validate
the change. Marshall et al. (2021) explored L-band (λ≈
0.231 m) snow depth inversion over a 4 km2 region on Grand
Mesa, Colorado, using lidar and Uninhabited Aerial Vehicle
Synthetic Aperture Radar (UAVSAR) imagery from 1 and
12 February 2020, and showed good agreement between lidar
depth change and UAVSAR estimated depth change (r2

=
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Figure 1. Conceptual model of phase differences between two SAR
images with an increase in snow height between image acquisitions.
1d is the increase in snow height between the first and second im-
ages, 1φ is the corresponding shift in phase due to changes in path
length and wave speed, α is the incidence angle, λ is the wave-
length, and εs is the real component of the dielectric constant of the
new snow.

0.76, RMSE< 0.05 m). Tarricone et al. (2023) used three L-
band InSAR pairs to estimate both accumulation and abla-
tion in the Jemez River, New Mexico, with accumulation and
ablation patterns showing agreement with both in situ depth
sensors and changes in fractional snow-covered area. Ruiz
et al. (2021) successfully captured a season-long SWE accu-
mulation at a tower-based site using InSAR phase changes
at L-band with temporal baselines up to 12 d in length at L-
band. Comparison to in situ SWE showed RMSEs between
8.77–26.07 mm depending on the temporal baseline used in
the analysis. Additionally, they showed an overestimation of
SWE by 7–21 mm of SWE from the tower-based L-band In-
SAR compared to the in situ SWE measurements. Finally,
Nagler et al. (2022) measured SWE changes using a C- and
L-band airborne InSAR instrument for a pair of snowfall
events. The in situ measurements captured 66.4 mm of SWE
change, and the L-band InSAR captured a mean SWE change
of 70.3 mm with a root mean squared difference of 11.2 mm.
These studies demonstrate the promise of InSAR SWE and
depth retrievals at both C- and L-band. We expand on these
previous studies by increasing the number of in situ observa-
tions and image pairs analyzed and utilizing the large study
areas which include complex topography and a large eleva-
tion range to explore controlling factors on the accuracy of
InSAR retrievals.

1.3 Research questions

We explore two research questions to clarify the ability of
lower-frequency L-band radars to retrieve snow properties:

1. How accurate are snow depth and SWE change re-
trievals over complex mountain terrain using L-band in-
terferometric radar analysis?

2. How does tree coverage, total snow depth, incidence an-
gle, coherence, and snow wetness impact the accuracy
of L-band interferometric retrievals?

2 Methods

2.1 Data sets

This research combines in situ, modeled, and aerial data sets
of snow properties over the central mountains of Idaho to
address our research questions (Fig. 2) (Liston and Elder,
2006; Liston et al., 2020). We use the weekly to biweekly
time series of L-band SAR observations from UAVSAR
collected for the 2020 and 2021 NASA SnowEx mission
to retrieve snow depth and SWE. The validation data in-
cluded in situ observation from weekly snow pits (depth,
SWE, wetness), telemetered snow station measurements, in-
terval boards (Greene et al., 2022), and spatially distributed
model results of both SWE and SWE melt. Additionally, we
explored how the retrieval accuracy changed with vegeta-
tion and topography, using geomorphological and vegetation
data from the 10 m USGS National Elevation Dataset (NED)
(Gesch et al., 2018), 2016 National Land Cover Database
30 m vegetation percentage maps (Jin et al., 2019) and 2019
30 m Global Land Analysis and Discovery forest height data
set (Potapov et al., 2021).

2.2 UAVSAR imagery

The UAVSAR platform is a fully polarimetric L-band In-
SAR instrument mounted on a NASA Gulfstream III aircraft
(Hensley, 2008; Rosen et al., 2006). It flies at ≈ 13700 m
with a sensor center frequency of 1.26 GHz (λ= 0.2384 m).
UAVSAR was tasked to perform weekly to biweekly obser-
vations over 14 sites in the western United States from Jan-
uary to March for the 2020 and 2021 NASA SnowEx mis-
sion. The UAVSAR imagery was processed by the NASA
Jet Propulsion Laboratory, including SAR focusing and geo-
referencing with the Shuttle Radar Topography Mission
(SRTM) DEM, radiometric calibration, motion compensa-
tion, and phase unwrapping using the integrated correlation
and unwrapping (ICU) algorithm (Rosen et al., 2006; Fore et
al., 2015). The InSAR phase between images was calculated
by multiplying the phase of one image against the complex
conjugate of another image. The imagery was downloaded
and converted to netCDFs using uavsar_pytools (Hoppinen
et al., 2022).

This study used 12 UAVSAR image pairs from the 2019–
2020 and 2020–2021 winters over central Idaho from re-
peated flight paths at a heading of 232◦ (Table 1). These
image pairs were all nearest temporal neighbors from 14
image acquisitions. For most analyses we only utilized the
nine image pairs that successfully unwrapped (see Sect. 1.1
for discussion of phase wrapping) (Table 1). We utilized the
wrapped images when complete spatial or temporal cover-
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Table 1. UAVSAR flight dates.

Flight 1 date Flight 2 date Unwrapped?

20 Dec 2019 31 Jan 2020 N
31 Jan 2020 13 Feb 2020 N
13 Feb 2020 21 Feb 2020 Y
21 Feb 2020 11 Mar 2020 Y
15 Jan 2021 20 Jan 2021 Y
20 Jan 2021 27 Jan 2021 Y
27 Jan 2021 3 Feb 2021 Y
3 Feb 2021 10 Feb 2021 Y
10 Feb 2021 3 Mar 2021 N
3 Mar 2021 10 Mar 2021 Y
10 Mar 2021 16 Mar 2021 Y
16 Mar 2021 22 Mar 2021 Y

Figure 2. Map of the study area showing the outline of the
UAVSAR flight box, snow pits, SNOTEL, interval board locations,
and the buffer around the interval boards used.

age was necessary and explicitly state in the methods when
wrapped imagery was used. The bounding box for these im-
ages was ≈ 170× 16 km and stretched from the foothills of
Boise into the Sawtooth Mountains. This box includes the
Dry Creek Experimental Watershed, Mores Creek Summit,
and Banner Summit, where field teams performed in situ ob-
servations on the flight dates (Fig. 2).

2.3 In situ observations

The in situ data included automated weather station data
from SNOTEL stations, SWE increase measurements from
interval boards, and snow pits coincident with UAVSAR
flights from the Dry Creek, Mores Creek, and Banner Creek
study sites (Schaefer and Paetzold, 2000). Interval board
data collected the accumulated snow depth and SWE be-
tween UAVSAR flights from four to nine locations near the

Figure 3. Map of the interval board locations and 1 km buffer
around a line connecting the interval board locations used to clip
the UAVSAR data.

Banner Summit SNOTEL (Fig. 3). The SNOTEL stations
used were SNTL:ID:978 (Bogus), SNTL:ID:637 (Mores),
and SNTL:ID:312 (Banner) (USDS National Resource Con-
versation Service, 2022). The SNOTEL network is a sys-
tem of 900 telemetered stations with snow depth, snow wa-
ter equivalent, and temperature. Stations measure SWE with
a pressure measurement from a glycol-filled bladder, mea-
suring the weight of the snowpack at hourly intervals. The
snow pit observations included measurements of total snow
depth, dielectric permittivity, full density profiles in 10 cm
increments, layer-based measurements of snow wetness and
grain form, and site descriptions of vegetation and ground
cover (Table 2). For each InSAR image pair, repeat snow pits
within ±2 d of both flights were included (Fig. 4).

2.4 SnowModel

A distributed snow-evolution modeling system (SnowModel)
was used to simulate snow properties (e.g., snow depth,
SWE, snowmelt, and snow density) over different climates
and landscapes (Liston and Elder, 2006; Liston et al., 2020).
The SnowModel domain is on a structured grid with spa-
tial resolutions ranging from 1 to 200 m (although it has the
ability to simulate coarser resolutions as well) and temporal
resolutions ranging from 10 min to 1 d. The required inputs
to run SnowModel include (1) temporally varying meteoro-
logical variables of precipitation, wind speed and direction,
air temperature, and relative humidity taken from meteoro-
logical stations or atmospheric models and (2) spatially dis-
tributed topography and land-cover type. The primary mod-
eled processes include accumulation from frozen precipi-
tation; blowing-snow redistribution and sublimation; inter-
ception, unloading, and sublimation within forest canopies;
snow-density and grain-size evolution; and snowpack ripen-
ing and melt (Liston and Elder, 2006).

The Cryosphere, 18, 575–592, 2024 https://doi.org/10.5194/tc-18-575-2024
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Figure 4. The 2020 and 2021 snow water equivalent (solid line) and snow depth (dashed line) measurements for the three SNOTEL sites
used in this study. Purple lines represent UAVSAR flights and black x’s represent days with field observations.

Table 2. SnowEx snow pits.

Site name Date range Number of coincident pairs Latitude Longitude

Banner Summit SNOTEL 30 Jan 2020–22 Mar 2021 12 44.29086 −115.24387
Lower Deer Point – Open 21 Jan 2021–23 Mar 2021 8 43.73691 −116.12208
Lower Deer Point – Tree 21 Jan 2021–23 Mar 2021 6 43.73634 −116.12072
Bogus Basin Lower Trees 22 Jan 2021–18 Mar 2021 5 43.75689 −116.09078
Bogus Basin Lower 22 Jan 2021–24 Mar 2021 8 43.75705 −116.09099
Mores Creek Summit 12 Feb 2020–4 Mar 2021 2 43.94735 −115.67666
LDP Open 31 Jan 2020–11 Mar 2020 4 43.73701 −116.12188
LDP Tree 31 Jan 2020–11 Mar 2020 4 43.73640 −116.12050
Banner Summit Open 30 Jan 2020–18 Mar 2021 5 44.30461 −115.23598
Bogus Basin Upper 31 Jan 2020–11 Mar 2020 4 43.75878 −116.09017

The modeled daily aggregated SWE and melt data were
generated by simulations using Parallel SnowModel, a par-
allelized version of SnowModel (Mower et al., 2023). The
data were indexed from Parallel SnowModel simulations ex-
ecuted using 1800 processes on NASA’s Center for Climate
Simulation (NCCS) Discover supercomputer with a 1560-
teraflop SuperMicro cluster featuring 20 800 Intel Xeon Sky-
lake processes (Carriere, 2023) over the contiguous United
States (CONUS) at a 100 m grid increment with a 3 h forcing
time step, daily aggregated output, and single-layer snow-
pack configuration. The following inputs were used for the
simulations: USGS NED for topography on a 30 m grid
(Gesch et al., 2018), the North American Land Change Mon-
itoring System (NALCMS) land cover 2015 map for vege-
tation on a 30 m grid (Homer et al., 2015; Jin et al., 2019;
Latifovic et al., 2012), and forcing variables from a high-

resolution Weather Research and Forecasting (WRF) model
from the National Center for Atmospheric Research (NCAR)
on approximately a 4 km grid (Rasmussen et al., 2023).

3 InSAR snow depth retrievals

3.1 Polarization

For this analysis, we utilized the phase changes from the VV
polarization based on higher coherence in the co-polarized
band than in the cross-polarized bands. The choice of VV
over HH was due to higher coherence in VV and to minimize
interactions of the radar echoes with vegetation and ice lay-
ers, which might raise the phase centroid above the ground
surface.

https://doi.org/10.5194/tc-18-575-2024 The Cryosphere, 18, 575–592, 2024
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3.2 Setting the reference UAVSAR phase

An essential consideration of InSAR imagery is the need for
a reference phase. The initially measured phases are arbi-
trary, and only relative differences across a scene have in-
formation. Consequently we need a method of setting the ab-
solute phase values of a scene. For snow property retrievals
this involves using external information (snow depth or SWE
changes) to set the mean phase (Leinss et al., 2015). We set
each InSAR image’s mean scene-wide phase using the mean
snow depth change and densities of all available situ mea-
surements (Eq. 3).

φscene(t)=
4dinsitu(t)× λ

4π
×

1

cosα−
√
εs(ρs)− sin2α

, (3)

with 4d representing the average change in snow depth
across the in situ stations, ε calculated from the average
density across the in situ measurements using Eq. (2), and
α representing the scene-wide mean incidence angle. Equa-
tion (3)’s4dinsitu and ρs were set by aggregating all available
in situ and modeled measurements for each UAVSAR pair.
This approach limits the biasing effects of setting this mean
phase with our in situ data since this is only a mean shift over
the entire scene. We calculated the mean phase from regions
with non-zero modeled SWE to minimize impacts from non-
snow-related factors.

For the model comparison, we mean shifted the phase to
match the expected phase from the scene-wide mean in the
modeled SWE change.

3.3 Atmospheric correction

We corrected for atmospheric phase delays due to tempo-
rally varying water vapor, air temperatures, and pressures
by downloading ERA5 atmospheric data for all acquisition
dates and calculating the z-integrated phase delay difference
between acquisition dates for each pair of images (Hoppinen
et al., 2022; Hersbach et al., 2020; Doin et al., 2009). This
phase delay difference was then subtracted from the mea-
sured InSAR phase changes.

We elected to use the ERA5 reanalysis atmospheric mod-
els to remove the atmospheric phase instead of phase ele-
vation relationships to avoid removing our SWE accumula-
tion signal, which can be correlated with elevation. To visu-
alize the impacts of these atmospheric corrections, we con-
verted these atmospheric corrections to theoretical errors in
the SWE retrieval using the incidence angle raster and the
mean in situ density for each pair of images (Fig. 5).

3.4 Retrieving SWE changes

For each UAVSAR image pair, we used the mean in situ den-
sity from the relevant SNOTEL and snow pit observations to
estimate the dielectric permittivity combined with the local
incidence angle and phase to calculate the snow depth and
SWE change at each pixel using Eq. (1) (Fig. 6).

3.5 Statistical comparison of InSAR SWE retrievals

We began by visualizing three SNOTEL sites’ SWE and
snow depth measurements for January 2021 to March 2021
against co-located UAVSAR snow and SWE retrieval depths.
To generate our UAVSAR-retrieved snow depth profiles, we
used the in situ-measured depth and SWE at our first flight
date (15 January 2021) and then cumulatively added the
mean retrieved snow depth and SWE from a 100 m box
around each SNOTEL site (≈ 20 looks). As some image
pairs and regions failed to unwrap (Table 1, Fig. 6), we used
the wrapped phase to ensure we would be able to retrieve
a continuous SWE retrieval time series for all the SNOTEL
sites.

We next compared the UAVSAR snow depth and SWE
change retrievals to the field snow pits and SNOTEL sites
combined using the Pearson correlation coefficient (r), root
mean squared error (RMSE), and mean absolute bias (re-
trieved – in situ). The retrieved values were averaged from
a 100 m box around the field location. The snow pits were
selected if they were within ±2 d of either the first or second
flight in a pair. We subtracted the snow depth from spatially
coincident pits to get the snow depth change observed be-
tween flights. We calculated 95 % confidence intervals for
RMSE, Pearson r , and bias from 1000 bootstrapped samples
of the UAVSAR and in situ snow depth changes (n= 64).

To explore how effectively the UAVSAR-retrieved SWE
captured orographic trends in accumulation, we compared
the relative increase in SWE from a series of interval boards
at varying elevations near the Banner Summit study site to
the relative increases in retrieved UAVSAR SWE changes.
We set the SWE change to zero at the lowest board and cal-
culated the changes in SWE change at each elevation where
we had an interval board. We did the same for the UAVSAR-
retrieved SWE change within a 1 km buffer around a line
connecting the interval board locations. The UAVSAR SWE
change in that buffer was then binned by elevation and plot-
ted against the increase in SWE on the interval boards. We
used the wrapped phase in this analysis to avoid bias due to
aspects or elevations with lower coherence.

We compared the SnowModel and UAVSAR-retrieved
SWE changes by calculating Pearson r and root mean
squared difference (RMSD) for all pixels, a subset of pixels
that had no modeled SWE melt, and another subset of pixels
with no modeled melt and with tree percentages below 10 %.
We chose RMSD over RMSE for the comparison of modeled
to retrieved SWE due to the error between the SnowModel
and in situ measurement (RMSE= 0.15 m, R = 0.45). Using
RMSD better captures that differences between retrieved and
modeled results do not necessarily represent primarily errors
in the retrieved values but represent some combined and un-
known contributions of errors from both data sets. Next, to
explore how RMSD changed with varying geophysical and
snow properties, we compared the changes in RMSD by plot-
ting the temporal RMSD at each pixel against the tempo-
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Figure 5. Changes in the retrieved SWE from each time period from atmospheric corrections. Note that each atmospheric correction was
normalized to a mean of zero and plotted with the same color bounds to improve comparisons.

Figure 6. The retrieved SWE change in meters for each pair of nearest-neighbor image pairs. To improve comparison these are all plotted on
the same color bounds.

rally averaged coherence, tree percentage, elevation, maxi-
mum modeled SWE depths, and average SWE melt. We used
the wrapped phases in this comparison step to avoid biasing
the results from low-coherence areas that failed to unwrap
and since the magnitude of SWE change in our study region
rarely exceeds 2π . We then binned the RMSDs across the
whole parameter ranges for elevation, incidence angle, tree

percentage, tree height, coherence, and cumulative melt. We
excluded bins with less than 100 pixels to avoid bias from
small sample sizes.

https://doi.org/10.5194/tc-18-575-2024 The Cryosphere, 18, 575–592, 2024
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Figure 7. Theoretical phase increases for varying new-snow
amounts, densities, and incidence angles. The 2π wrapping point
data are annotated. Slices through the cube are shown for a con-
stant 200 kg m−3 density (red, b), a constant 30 cm of new snow
(yellow, c), a constant 30◦ incidence angle (purple, d), and a dis-
play of phase wrapping thresholds for varying incidence angles and
new-snow heights at 100 and 250 kg m−3 densities (e).

4 Sensitivity analysis

To explore how phase changes relate to snow properties at
L-band, we calculated the theoretical phase change across
physically reasonable ranges of snow depth change (0–
0.5 m), new-snow density (100–300 kg m−3), and incidence
angles (30–60◦) (Fig. 7). These results show that phase wrap-
ping should not occur until quite significant snow accumula-
tions of 127 mm of SWE at 30◦ and 80 mm at 60◦.

Liquid water in the snowpack impacts the radar’s wave
speed and phase change and consequently causes errors in re-
trievals since we only parameterize the dielectric permittivity
based on density. We parameterized the dielectric constant
for dry and wet snow to evaluate the effect of liquid water.
We evaluated the increase in retrieved snow depths with no
actual increase for varying degrees of liquid water percent-
age (Tiuri et al., 1984). The impacts of liquid water in the
snowpack are significant. They can cause up to an ≈ 0.1 m

Figure 8. (a) The theoretical dielectric permittivity for varying
snow density (blue) and wetness (orange, constant 300 kg m−3 den-
sity) using the equations from Tiuri et al. (1984). (b) SWE retrieval
errors caused by 0.1 m of SWE that increased by varying liquid wa-
ter percentages in wetness between SAR images.

overestimation of new-snow accumulation in the retrievals,
with only 0.1 m of snow becoming wet (Fig. 8).

5 Results

We compare UAVSAR-retrieved SWE and snow depths
against SNOTEL SWE and snow depth changes, SWE and
snow depth changes from consistently located snow pits, in-
terval board SWE increases, and SnowModel’s SWE change.

5.1 SNOTEL visualization

The time series of snow depth from our three SNOTEL
sites matches well against our retrieved UAVSAR time se-
ries. Since we had longer temporal separations between our
UAVSAR observations, some short-temporal-scale patterns
were missed. Overall, the trends and magnitudes of snow
depth accumulation are well captured (Fig. 9).

5.2 In situ comparison

An expanded comparison, including snow pit and SNOTEL
data, shows a positive agreement between retrieved and in
situ snow depth observations with an RMSE of 0.1 m and
a Pearson correlation of 0.80 (n= 64) (Fig. 10). The boot-
strapped analysis had a 95 % confidence interval for the
RMSE of 0.09–0.11 m, with a mean RMSE of 0.10 m, Pear-
son correlation of 0.71 to 0.87, and bias confidence interval
of −0.028 to 0.012 m. The full SWE retrievals were more
scattered with an RMSE of 0.041 m and a Pearson correlation
of 0.4 (n= 64). Removing in situ retrievals with unreason-
ably high (> 500 kg m−3) inferred density from the in situ-
measured SWE and snow depth change improves the RMSE
to 0.039 and the Pearson correlation to 0.52 (n= 57).
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Figure 9. SNOTEL in situ-measured snow depth profile plotted against the cumulative retrieved UAVSAR snow depth changes for a 100 m
box around each SNOTEL location. Note that the initial snow depth was set to the in situ-measured snow depth at the first flight date in 2021.

Figure 10. Comparison of the UAVSAR snow depth retrievals to in situ snow depth and SWE change measurements. In situ observations
without successful phase unwrapping used the wrapped phase in orange. Note that seven SWE change observations were removed for having
measured in situ new-snow densities above 500 kg m−3.

5.3 Comparison to interval boards

The UAVSAR-retrieved SWE changes captured the over-
all trends in precipitation relative to elevation for most im-
age pairs, with the atmospherically corrected trends in SWE
change generally improving the relationship to the measured
orographic trends (Fig. 11).

5.4 Comparison to SnowModel

We first qualitatively compared the SnowModel SWE
changes to those captured in the phase images for two pe-
riods of increasing SWE with successful phase unwrapping
near the Banner Summit and the Mores Creek SNOTEL sites
(Fig. 12). Both examples showed similar accumulation pat-
terns to SnowModel but consistently more significant SWE
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Figure 11. Comparison between the retrieved UAVSAR SWE changes with elevation relative to the interval board data sets on SWE changes
with elevation. Note the consistent y limits for all subplots.

Figure 12. Comparison of the UAVSAR and SnowModel SWE
changes for two accumulation periods near the Banner Summit and
Mores Creek SNOTEL sites. Note the different visualization ranges
for the SnowModel and UAVSAR SWE changes.

changes in the UAVSAR-retrieved SWE changes than Snow-
Model.

The relationship between the SnowModel and UAVSAR
SWE change for all the successfully unwrapped pixels
showed large regions of highly negative SWE changes in
the retrieved data. However, subsetting to only pixels with
no SWE melt in SnowModel results removed these regions,
suggesting that large areas of wet snow were causing bias or
low coherence in the SWE change retrievals (Fig. 13).

The spatial maps of RMSD between the SnowModel and
retrieved SWE changes show much higher RMSDs at lower
elevations along the valley bottoms, in regions to the south-
east with higher average SWE melt, and along higher eleva-
tions with higher maximum SWE values (Fig. 14).

The binned analysis of RMSD generally agreed with the
spatial comparison with improving RMSD for higher eleva-
tions, steeper incidence angles, lower tree heights and cov-
erage percentage, higher coherences, and lower cumulative
melt quantities (Fig. 15).

6 Discussion

6.1 How accurate are L-band SWE and snow depth
change retrievals over complex mountain terrain?

Our results suggest that L-band InSAR is a promising
technique for retrieving snow depth changes over com-
plex mountainous terrain. The comparison between in situ
snow depth changes compared to retrieved snow depths
shows a strong correlation, r = 0.80, and reasonable er-
rors, RMSE= 0.10 m. The comparison to the modeled
SWE changes also showed good correlation and low
RMSD (RMSD= 0.041 m, r = 0.49). This comparison was
even more favorable in dry snow with low tree coverage
(RMSD= 0.014 m, r = 0.72). These results suggest that L-
band InSAR snow depth change retrievals capture reason-
able trends and may be a valuable tool for measuring SWE
and snow depth changes.

It is interesting that the retrieved SWE changes com-
pared worse (r = 0.40) relative to the snow depth change
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Figure 13. Two-dimensional log-scaled heat maps showing
UAVSAR vs. SnowModel SWE changes for all possible unwrapped
pixels (a), subset to only pixels with no modeled melt (b), and sub-
set to pixels with no modeled melt in regions with less than 20 %
tree percentage (c).

(r = 0.80) for the in situ results. This may have been the
result of errors in field measurements due to the challenges
of measuring SWE changes in the field relative to measur-
ing snow depth changes. In fact a number of observations
had unreasonably high new-snow densities (> 500 kg m−3),
suggesting either a large rain event or measurement error oc-
curred.

6.2 How do vegetation, incidence angle, slope, and
snow wetness impact the accuracy of L-band
retrievals?

The predominant factors in the accuracy of this retrieval tech-
nique are the need for dry snow and avoiding high vegetation
coverage. The highest RMSDs relative to the modeled data
occurred in pixels with high tree cover percentages and large
amounts of modeled SWE melt, suggesting that wet snow
and vegetation may be negatively effecting retrievals.

The negative impacts on accuracy due to liquid water
match our theoretical expectations. Since we parameter-
ize the real component of the snow’s dielectric permittivity

based solely on density, we expect retrievals of snow depth
changes in newly wet snow to diverge from in situ and mod-
eled measurements. This divergence will impact not only the
measurements at that specific location but also throw off the
mean phase change of the image, leading to systemic biases
across the image when setting the reference phase. Addi-
tionally, liquid water causes significant drops in coherence,
which may also have negatively impacted our retrievals (Ruiz
et al., 2022). Future researchers could improve retrievals by
using modeled melt values to improve the parameterization
of potentially wet pixels.

The impact of vegetation also matches the theoretical ex-
pectation that the increase in scatterers in the vegetation, pri-
marily branches and trunks at L-band, would cause a de-
crease in the coherence of those pixels due to more random
movements of the scatterers within the pixel and a shift-
ing of the phase centroid up towards the above-snow scat-
terers, breaking our theoretical requirement of a phase cen-
troid at or close to the snow–ground interface. Interestingly
Fig. 15 showed a minimal relationship between coherence
and RMSD above 0.35 m, suggesting that the decrease in co-
herence might have been a smaller factor.

Alternatively, the model performs worse in the trees,
meaning that the increase in RMSE is due to errors in the
modeled data rather than UAVSAR retrievals. The lack of a
clear relationship in the in situ data between the vegetation
classification at the snow pit and retrieval accuracy also sug-
gests that vegetation impacts may be less significant.

The elevation and incidence angle were other factors re-
lated to the retrieval accuracy. The impact of elevation is
most likely due to its covariance with liquid water in the
snowpack and tree coverage in the scene. Incidence angle
was negatively correlated with RMSE. Referring to Fig. 7,
we see that for a constant change in SWE, the induced phase
shift is less at lower incidence angles. This decreased phase
signal is closer to the instrument noise floor, and we may
struggle to capture these small snow depth changes.

6.3 Limitations

This study has a few limitations that should be addressed: the
accuracy of SnowModel for comparison, using density in our
retrievals of snow depth, and setting the reference phase with
the in situ data used for validation.

The SnowModel results used in this analysis showed a
reasonable correlation to in situ results (r = 0.45; RMSE:
0.15 m), but errors that we attribute to the InSAR results
in Fig. 15 (in highly vegetated or wet-snow regions) are
actually some unknown combination of modeling and In-
SAR retrieval errors compounding. Future work using either
more validated SnowModel results or lidar snow depth re-
trievals will be necessary, and our study’s modeling compar-
ison should be interpreted with caution, focusing mostly on
identifying larger spatial and temporal trends in accumula-
tion.
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Figure 14. Spatial distribution of the RMSD between the SnowModel and wrapped UAVSAR SWE changes, coherence averaged across
all time periods, National Land Cover Database (NLCD) tree cover percentage, SRTM elevation, the modeled maximum SWE depth, and
average SWE melt across all time periods.

Figure 15. Binned distribution of the RMSD between the SnowModel and wrapped UAVSAR SWE changes, coherence averaged across
all time periods, NLCD tree cover percentage, SRTM elevation, the modeled maximum SWE depth, and average SWE melt across all time
periods.

We chose to use aggregated measurements of in situ snow
density to directly invert Eq. (1) for snow depth and SWE
changes. We chose to do this to allow us to compare to our in
situ snow depth measurements and due to the low sensitivity
to errors in our density approximation discussed in Sect. 1.1.
However, unlike studies that use SWE approximations, this

means that our methods require some approximation of den-
sity from either in situ or modeled results to replicate in new
study areas (Guneriussen et al., 2001; Oveisgharan et al.,
2024).

Another consideration is that we set the reference phase
using the average snow depth change and density from across
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our in situ observations and the average phase of snow-
covered regions for each InSAR pair (see Sect. 3.2) and then
used the same in situ observations for validation. Since we
are using the reference phase from the whole image and ag-
gregating snow change across multiple sites, there should not
be too much biasing of our results, but it is important to know
that the calibration and validation data were the same data.
We chose to set the reference phase this way due to the lim-
ited number of repeat observations (n= 64) available to use
and to avoid biasing a whole image from errors in a single
in situ measurement, but future work should explore the im-
pacts and methods of setting the reference phase.

6.4 Future work

Future research and practical applications of InSAR-based
SWE retrievals should consider (1) the importance of atmo-
spheric corrections, (2) how to integrate this technique into
pre-existing hydrologic monitoring efforts, (3) effective use
of in situ data for processing and validating these InSAR
retrievals, (4) image masking in wet and low-coherence re-
gions, (5) validating these findings with different snow cli-
mates and vegetation profiles, (6) the use of the wrapped
vs. unwrapped phase, (7) parameterizations for the dielec-
tric permittivity in wet snow, and (8) how best to incorporate
other frequencies and SAR-based analysis techniques.

Atmospheric correction of InSAR data to account for tem-
poral and spatial variations in radar wave speeds through
the atmosphere due to pressure, temperature, and moisture
changes is critical for accurately capturing SWE changes.
Due to the relationship between elevation and path length
in airborne and spaceborne InSAR systems, the atmospheric
phase changes will often have similar patterns to orographic
precipitation. This relationship makes the removal of the at-
mospheric phase critical to accurately capturing SWE change
patterns over large areas, especially the accumulation gradi-
ent with elevation. The fact that SWE change correlates with
elevation also means that practitioners should avoid atmo-
spheric corrections that rely on removing phase vs. elevation
relationships, which is common in other InSAR applications.
Atmospheric corrections should use atmospheric modeling
to generate atmospheric phase delays for corrections. Alter-
natively, time-series-based analysis, such as small-baseline-
subset analysis, would also remove temporally random atmo-
spheric effects. However, this will be primarily retrospective
after a sufficient winter time series has been captured and
relies on enough temporal coherence between image pairs.
Regardless, the atmospheric effects must be considered and
corrected for in any practical application of InSAR SWE
retrievals. Future work should include interval board mea-
surements over a wide elevation range to identify the correct
phase gradient for the InSAR retrieval.

Future work should also focus on how to best use these
phase-based SWE change measurements to supplement and
expand existing snow monitoring techniques in periods and

regions where the technique is most appropriate. These in-
clude accumulation periods when non-maritime snowpack
tends to be drier and in higher alpine regions with fewer trees
and drier snow. Spatially, practitioners could continue to use
pre-existing SNOTEL and snow-survey interpolation tech-
niques below treeline where they are more appropriate due
to less spatial variability and more uniform elevation gradi-
ents in SWE accumulation. In the complex alpine environ-
ment above the treeline and in regions with less vegetation,
practitioners could apply InSAR retrievals to improve the
pre-existing models and capture variability and changes in
SWE storage. Temporally, this technique will improve mon-
itoring efforts in the accumulation period when current mod-
els struggle to appropriately characterize the patterns and
magnitudes of precipitation events, especially in complex
terrain with large amounts of wind redistribution. These In-
SAR phase changes will help constrain those SWE accumu-
lation patterns before taking a less weighted effect later in
the season when SWE melt-off is generally well defined by
snow models. Integrating InSAR SWE retrievals into exist-
ing water monitoring systems will only improve results when
appropriately applied, considering the strengths and weak-
nesses of the technique. Practitioners, considering the limita-
tions mentioned above, could consider InSAR retrievals to be
essentially spatially expansive, relevant, and remotely sensed
SNOTEL sites.

The locations and setup for the next generation of in
situ monitoring stations should also consider the needs and
potential of InSAR-based SWE retrievals. Currently, snow
monitoring relies on a few heavily instrumented stations to
characterize entire basins. Future research should evaluate
the utilization of higher densities of simply instrumented in
situ stations, capturing only temperature and snow depth,
across a smaller region to characterize and validate a small
patch of remotely sensed data and modeling results. This
smaller region would need to be carefully selected within
each study basin to cover the dynamic range of controlling
factors including incidence angle, aspect, elevation, and veg-
etation characteristics. Water forecasters could then rely on
that well-validated and calibrated remotely sensed data and
model output to forecast across larger regions. Specifically
for InSAR phase validation, this could involve capturing
SWE change over a range of elevations and aspects to val-
idate atmospheric corrections, confirm the spatial patterns in
the InSAR imagery, and remove or correct those affected by
low coherence, atmospheric effects, and other biases. Future
in situ monitoring sites should consider how their placements
and instrumentation complements remote sensing techniques
and allows for synergistic combinations with the new tools
available to practitioners.

Future research should also evaluate how to convert
intuition-based manual checks into automated systems for
validating InSAR phase retrievals and ensuring believable
spatial trends and magnitude. Most practitioners will have an
intuition about likely spatial trends in precipitation that they
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can initially use to identify image pairs or subregions biased
by low coherence, unwrapping errors, or biases from snow
wetness within the image. Successful application of this tech-
nique will involve finding ways to convert that intuition-
based error checking and masking of regions or image pairs
into automated checks of the InSAR phase that will control
for images with unrealistic results to limit the biasing effects
of these errors in any future processing pipelines.

Our study location, in the central mountains of Idaho, has
a transitional snow climate with more mid-winter rain and
SWE melt to the southwest and a colder, often deeper, snow-
pack to the northeast – vegetation patterns that are highly
aspect and elevation dependent and range from high-density
evergreen to sagebrush to alpine treeless regions. Future
work should explore this technique in maritime and continen-
tal snowpacks and other vegetation classes, such as tundra or
agricultural regions. The SnowEx data provide an opportu-
nity to test this approach in a range of snow climates, and
our future work will expand this analysis across the entire
SnowEx domain.

A specific challenge of InSAR SWE retrievals is that in
regions with large spatial variability the unwrapped phase
will be necessary to capture trends across large areas. If the
wrapped phase is used, there may be regions that “wrap” to
unreasonably low or high changes. However, phase unwrap-
ping is computationally expensive, it can introduce errors in
regions of low coherence, and at low frequencies the scene-
wide change variability may be effectively captured by the
wrapped phase. Future work should investigate how often we
will need to unwrap the InSAR phase to effectively capture
snow accumulations and the best methods for unwrapping in
snow-covered regions.

We noted significant adverse effects on the correlation be-
tween our results and SnowModel SWE changes for periods
and regions with wet-snow effects. We did not attempt to pa-
rameterize or correct, potentially using modeled or elevation-
based snow wetness, for these impacts. Future work on re-
trieval improvements that characterize and account for snow
wetness impacts will be essential to expand this technique
into lower elevations and ablation periods, which will be-
come increasingly important with the more frequently ob-
served mid-winter rain and melt events at greater ranges of
elevations.

Finally, a range of other frequencies and SAR techniques
exist that could be combined with this technique to improve
retrievals and supplement the weaknesses of this technique.
Future work should explore snow-depth-based surface to-
pography approaches (SfM, lidar) in periods of wet snow,
higher-frequency backscatter-based approaches, and snow
properties’ relationship to coherence and polarimetry.

7 Conclusions

We present a novel comparison of a full winter season time
series of L-band InSAR SWE retrievals against in situ and
modeled validation data sets. Our technique shows promise,
capturing trends and absolute values of new-snow accumu-
lation. We show well-matched snow depth and SWE time
series from the UAVSAR-retrieved values when compared
against three SNOTEL stations. Comparisons between in
situ observations, captured during the NASA 2020 and 2021
SnowEx campaigns, and UAVSAR retrievals showed high
correlation and low RMSEs for snow depth changes (RMSE:
< 0.1 m; r: 0.80) and SWE change (RMSE: < 0.04 m; r:
0.52). The UAVSAR images also captured orographic trends
in new SWE accumulations well when compared to an inter-
val board network setup across a large elevation range for
multiple storms. Finally, comparison to SnowModel SWE
changes also suggests the L-band InSAR was realistically
capturing SWE accumulation with strong correlation be-
tween the two (RMSD < 0.023 m; r: 0.60) and an espe-
cially good relationship in regions with limited snowmelt and
lower vegetation percentages (RMSD < 0.013 m; r: 0.72).
Using this SnowModel-to-UAVSAR comparison, this study
explored the controlling factors of this technique’s accuracy,
including the importance of appropriately applying this tech-
nique in regions of relatively dry snow and lower vegeta-
tion percentages based on a comparison to SnowModel SWE
change and SWE melt. Overall this study demonstrates the
promise of using future L-band InSAR missions for snow
water storage monitoring across large regions and time peri-
ods.
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Appendix A: Coherence, wrapped, and unwrapped
phase

Figures showing the coherence (Fig. A1) and wrapped phase
(Fig. A2) for the nine images used are presented below.

Figure A1. Coherence for the nine images used. Note that consistent color bounds between zero and one are used for all subplots and that
the images were masked to successfully unwrapped regions.

Figure A2. Wrapped phases for the nine images used. Note that consistent color bounds between negative π and positive π are used for all
subplots with all means normalized to zero.
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