Articles | Volume 18, issue 11
https://doi.org/10.5194/tc-18-5015-2024
https://doi.org/10.5194/tc-18-5015-2024
Research article
 | 
06 Nov 2024
Research article |  | 06 Nov 2024

Improved snow property retrievals by solving for topography in the inversion of at-sensor radiance measurements

Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn

Related authors

Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025,https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025,https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary
Evaluation of the Snow Climate Change Initiative (Snow CCI) snow-covered area product within a mountain snow water equivalent reanalysis
Haorui Sun, Yiwen Fang, Steven A. Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
The Cryosphere, 19, 2017–2036, https://doi.org/10.5194/tc-19-2017-2025,https://doi.org/10.5194/tc-19-2017-2025, 2025
Short summary
Mapping seasonal snow melting in Karakoram using SAR and topographic data
Shiyi Li, Lanqing Huang, Philipp Bernhard, and Irena Hajnsek
The Cryosphere, 19, 1621–1639, https://doi.org/10.5194/tc-19-1621-2025,https://doi.org/10.5194/tc-19-1621-2025, 2025
Short summary
Do we still need reflectance? From radiance to snow properties in mountainous terrain: a case study with the EMIT imaging spectrometer
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
The Cryosphere, 19, 1279–1302, https://doi.org/10.5194/tc-19-1279-2025,https://doi.org/10.5194/tc-19-1279-2025, 2025
Short summary
Temporal stability of a new 40-year daily AVHRR land surface temperature dataset for the pan-Arctic region
Sonia Dupuis, Frank-Michael Göttsche, and Stefan Wunderle
The Cryosphere, 18, 6027–6059, https://doi.org/10.5194/tc-18-6027-2024,https://doi.org/10.5194/tc-18-6027-2024, 2024
Short summary

Cited articles

Agenzia Spaziale Italiana (ASI): PRecursore IperSpettrale della Missione Applicativa [Hyperspectral Precursor and Application Mission], Agenzia Spaziale Italiana [data set], https://prisma.asi.it, last access: May 2023. 
Bair, E. H., Dozier, J., Stern, C., LeWinter, A., Rittger, K., Savagian, A., Stillinger, T., and Davis, R. E.: Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with implications for remote sensing, The Cryosphere, 16, 1765–1778, https://doi.org/10.5194/tc-16-1765-2022, 2022. 
Bair, E. H., Roberts, D. A., Thompson, D. R., Brodrick, P. G., Wilder, B. A., Bohn, N., Crawford, C. J., Carmon, N., Vuyovich, C. M., and Dozier, J.: Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1681, 2024. 
Bair, E. H., Stillinger, T., and Dozier, J.: Snow property inversion from remote sensing (SPIReS): A generalized multispectral unmixing approach with examples from MODIS and Landsat 8 OLI, IEEE T. Geosci. Remote , 59, 7270–7284, https://doi.org/10.1109/TGRS.2020.3040328, 2021. 
Bohn, N., Painter, T. H., Thompson, D. R., Carmon, N., Susiluoto, J., Turmon, M. J., and Guanter, L.: Optimal estimation of snow and ice surface parameters from imaging spectroscopy measurements, Remote Sens. Environ., 264, 112613, https://doi.org/10.1016/j.rse.2021.112613, 2021. 
Download
Short summary
Remotely sensed properties of snow are dependent on accurate terrain information, which for a lot of the cryosphere and seasonal snow zones is often insufficient in accuracy. However, as we show in this paper, we can bypass this issue by optimally solving for the terrain by utilizing the raw radiance data returned to the sensor. This method performed well when compared to validation datasets and has the potential to be used across a variety of different snow climates.
Share