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Abstract. Accurately modelling optical snow properties like
snow albedo and specific surface area (SSA) are essential for
monitoring the cryosphere in a changing climate and are pa-
rameters that inform hydrologic and climate models. These
snow surface properties can be modelled from spaceborne
imaging spectroscopy measurements but rely on digital el-
evation models (DEMs) of relatively coarse spatial scales
(e.g. Copernicus at 30 m), which degrade accuracy due to er-
rors in derived products such as slope and aspect. In addition,
snow deposition and redistribution can change the apparent
topography, and thereby static DEMs may not be considered
coincident with the imaging spectroscopy dataset. Testing
in three different snow climates (tundra, maritime, alpine),
we established a new method that simultaneously solves
snow, atmospheric, and terrain parameters, enabling a solu-
tion that is more unified across sensors and introduces fewer
sources of uncertainty. We leveraged imaging spectroscopy
data from Airborne Visible Infrared Imaging Spectrometer-
Next Generation (AVIRIS-NG) and PRecursore IperSpettrale
della Missione Applicativa (PRISMA) (collected within 1 h)
to validate this method and showed a 25 % increase in perfor-
mance for the radiance-based method over the static method
when estimating SSA. This concept can be implemented in
missions such as Surface Biology and Geology (SBG), the
Environmental Mapping and Analysis Program (EnMap),
and the Copernicus Hyperspectral Imaging Mission for the
Environment (CHIME).

1 Introduction

Accurately mapping snow surface properties is essential for
seasonal snow zones in a changing climate, especially in re-
gions where seasonal snowpack is expected to change dra-
matically in the coming decades (Siirila-Woodburn et al.,
2021). For example, snow albedo plays a crucial role in melt-
ing of the snowpack during the ablation season (Wang et al.,
2020), with changes in snow albedo directly affecting the
amount of absorbed solar radiation and therefore the amount
of snow that is melted off. Throughout the winter season,
snow albedo fluctuates due in part to grain size (Seidel et
al., 2016) and light-absorbing particles (LAPS; Kaspari et
al., 2015; McKenzie, 2020; Skiles and Painter, 2017). With
a limited number of in situ snow stations around the globe
and the snow surface constantly undergoing metamorphism
across space and time, satellite imagery represents the best
potential for spatially and temporally complete mapping of
snow properties. Accurately retrieving snow albedo and other
snow surface properties from satellite imagery is paramount,
especially in a rapidly changing climate (Malmros et al.,
2018).

Retrieval of snow properties from satellite remote sensing
relies on digital elevation models (DEMs) to correct for local
terrain effects (Bair et al., 2021, 2022; Dozier et al., 2022). In
a previous study, researchers found global DEM products to
have “blunders and errors” when compared to airborne lidar,
particularly in derived slope and aspect, which cause severe
errors in calculated cosine of local solar illumination angles
(µs) (Dozier et al., 2022). They found errors in µs ranging
from 0.048 to 0.117 (dimensionless) across several sites for
Copernicus global DEMs caused by errors in slope and as-
pect. The µs term is a function (Eq. 1) of slope angle (S),
slope azimuth angle or aspect (A), solar zenith angle (θ0),
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Figure 1. Cosine of local illumination angles (µs) as a function of slope (x axis) and aspect (y axis) incremented by 1°, illustrating the
problem at higher latitude, and/or winter acquisitions, where standard deviation (σ ) of µs increases monotonically with solar zenith angles
(θ0). Aspect is shown here measured clockwise from north (with north containing a discontinuity at 360°). For this illustration φ0 is fixed
at a value of 175°. The red dots represent the example point at a slope of 25°±4.73 and an aspect of 280°±36.3 and are bordered by their
uncertainty and the resulting σ .

and solar azimuth angle (φ0), with the last two being well
constrained:

µs =max[0,cos(θ0)cos(S)+ sin(θ0)sin(S)cos(φ0−A)]. (1)

Because θ0 and φ0 are calculable with low errors, the biggest
contributions to errors in µs stem from slope and aspect. Er-
rors in µs increase monotonically with increasing θ0 (e.g.
sunset has high θ0, as does solar noon in high-latitude win-
ters). This phenomenon can be explained by plotting Eq. (1)
for various θ0 (Fig. 1). Put simply, at higher θ0 there is a
higher standard deviation in µs surrounding a known slope
and aspect (with some temporally consistent uncertainty), in-
creasing the probability and magnitude of such an error. If
one were to compute standard deviations of µs across vary-
ing θ0, one would arrive at similar errors of µs to those pre-
sented in Dozier et al. (2022). For clarity, in Fig. 1 we have
highlighted an example case with slope of 25°±4.73 and as-
pect of 280°±36.3. Example uncertainties for this exercise
can be found in Table 2 of Dozier et al. (2022).

Recent work has shown µs can be modelled using an
optimal estimation framework given the top-of-atmosphere
(TOA) radiance observed from imaging spectroscopy (Car-
mon et al., 2023). The authors solve for surface, atmo-

spheric, and topographic state variables simultaneously in
their model. This works physically because the partition of
direct to diffuse light introduces a shape and magnitude effect
on the TOA radiance spectra. However, retrieving snow op-
tical properties is sensitive to directional reflectance, which
is significantly influenced by the viewing geometry and sur-
face roughness (Bair et al., 2022), leading to possible short-
comings in this method specifically for snow-covered pix-
els. To address this and expand upon this framework, we
present a new method to account for terrain in snow-covered
areas. Our method was tested on pixels with greater than
75 % snow cover in three different snow climates (tundra,
maritime, and alpine) with spaceborne imaging spectroscopy
with the aim to reduce error in derived snow properties by
optimally solving for topography. The spaceborne results
are validated against high-confidence airborne spectrometer
data. This work directly contributes to snow property re-
trievals in steep terrain and/or at times of high solar zenith
angles for satellite imaging spectroscopy missions such as
Surface Biology and Geology (SBG) (Cawse-Nicholson et
al., 2021), the Copernicus Hyperspectral Imaging Mission
for the Environment (CHIME) (Celesti et al., 2022), and En-
Map (Guanter et al., 2015).
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Figure 2. PRISMA true-colour images for Toolik on 21 March 2021 (a), the San Juan Mountains on 29 April 2021 (b), and Mount Shasta
on 28 February 2021 (c). Four coincident AVIRIS-NG flight lines (F1–F4) are shown in cyan over the San Juan Mountains.

2 Methods

2.1 Study area

For our study, we used PRecursore IperSpettrale della Mis-
sione Applicativa (PRISMA) imagery over three sites cap-
turing different snow climates and solar zenith angles: the
San Juan Mountains (Colorado, USA, 29 April 2021, θ0 =

27°), Mount Shasta (California, USA, 28 February 2021,
θ0 = 52°), and the Toolik area (Alaska, USA, 21 March 2021,
θ0 = 68°) (Fig. 2). The San Juan Mountains location is con-
sidered a high alpine site located in the interior continental
USA with an elevation range of 2208–4129 m. The Mount
Shasta site is a maritime snow climate along the western
coast of the USA with an elevation range of 750–4232 m.

The Toolik site (elevation range= 504–1748 m) is a high-
latitude tundra site, being mostly flat but with steep sections
along the Brooks Range (along the southern part of the im-
age). PRISMA, launched by the Italian Space Agency (ASI)
and beginning operation on 22 March 2019, is a spaceborne
imaging spectroscopy mission collecting radiance at 30 m
spatial resolution across 239 bands spanning 400–2500 nm
at a spectral resolution better than 12 nm across the visible
near infrared and shortwave infrared (Cogliati et al., 2021).

To validate our method, we used four existing Air-
borne Visible Infrared Imaging Spectrometer-Next Genera-
tion (AVIRIS-NG) flight lines over the San Juan Mountains
from 29 April 2021 (flying 1 h after PRISMA acquisition).
AVIRIS-NG collects radiance measurements at variable spa-
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Figure 3. Synthetic data showing the change in magnitude (a) and
shape (b) of top-of-atmosphere radiance (LTOA) with respect to
changing local solar illumination angle (µs) for fixed snow surface
state variables modelled with AART and fixed atmospheric state
variables modelled with libRadtran (viewing geometry was fixed as
well). State variables and solar and view geometry were based on
a PRISMA acquisition over southern Idaho on 8 December 2022.
Panel (b) shows normalized radiance with respect to peak TOA ra-
diance across wavelengths to highlight the change in shape.

tial resolution (depending on the flight altitude) across 425
bands spanning 380–2510 nm in 5 nm intervals (Green et al.,
2023). For this flight, data were collected at 4 m spatial res-
olution. We downloaded AVIRIS-NG apparent reflectance
from National Snow and Ice Data Center (NSIDC) and obser-
vation geometry data from NASA Search Earth Data (Skiles
and Vuyovich, 2023).

2.2 Modelling surface, atmosphere, and topography
from PRISMA

The algorithmic improvements build off a workflow that es-
timates snow properties given PRISMA TOA radiance, ti-
tled Global Optical Snow properties via High-speed Algo-
rithm using K-means (GOSHAWK) (Wilder et al., 2024).
In short, our method uses the analytic asymptotic radiative
transfer model (AART) (Kokhanovsky and Zege, 2004) cou-
pled with libRadtran (Mayer and Kylling, 2005; Emde et
al., 2016) to invert snow surface and atmospheric properties
(Bohn et al., 2021; Dalcin and Fang, 2021) and fractional
covers of mixed pixels under varied lighting conditions using
non-linear numerical optimization (Bair et al., 2021). The pa-
rameters solved for in the optimization routine include frac-
tional covers, specific surface area (SSA), light-absorbing
particle concentration (modelled as dust), liquid water per-
centage, dimensionless aerosol optical depth at 550 nm, and
columnar water vapour in the atmosphere. Here, we expand
upon the algorithm considering recent work showing the ca-

pacity to estimate µs from TOA radiance (Carmon et al.,
2023; Bohn et al., 2024). This idea is demonstrated in Fig. 3
using fixed snow properties via AART and fixed atmosphere
properties via libRadtran across the range of plausible µs
(i.e. 0 to 1). Like the findings in Carmon et al. (2023), Fig. 3
shows that µs controls both the spectral shape and magni-
tude of observed TOA radiance with the effect varying across
wavelengths. The greatest shape effect can be seen in the vis-
ible spectrum (roughly 400–700 nm) due to the magnitude
of the diffuse irradiance. In combination with the magnitude
and shape shift, this parameter becomes solvable during opti-
mization due to its strong separability – especially when con-
sidering the entire spectrum data from a hyperspectral remote
sensing source such as PRISMA. It is important to note that
µs impacts both the AART estimation of snow reflectance
and libRadtran estimation of incoming solar irradiance.

However, if we were only to optimize µs, the other key
terms, local viewer zenith angle (µv) and local phase angle
(ξ ) in the AART formulation for bidirectional reflectance of
snow (Eq. 2) (Kokhanovsky and Zege, 2004; Kokhanovsky et
al., 2021a), would remain constant from the available DEM
(i.e. µs, µv, ξ are all derived from DEMs),

rsnow (µs, µv,ξ,λ)= r (µs, µv,ξ) asnow(λ)
f, (2)

where r is the reflection function of a semi-infinite non-
absorbing snow layer (Tedesco and Kokhanovsky, 2007),
αsnow is the spherical albedo (plane albedo can be computed
using Eq. (26) in Kokhanovsky et al., 2021a), f is the escape
function (Kokhanovsky et al., 2021a), and rsnow is the bidi-
rectional reflectance of snow. Keeping other terms (µv and ξ )
the same is problematic because snow reflectance is poorly
approximated as a non-Lambertian surface (Leroux and Fily,
1988), and the outcome will be greatly influenced by µv and
ξ . Therefore, to incorporate solving for µs, µv, and ξ from
TOA radiance into the algorithm, we instead elect to opti-
mally solve for cos(aspect) and sin(aspect) (Table 1).

Aspect can be solved during optimization by using the
atan2 function. We chose to use this method because
sin(aspect) and cos(aspect) are continuously differentiable
and are therefore suited for numerical optimization methods,
whereas aspect is discontinuous at north (using the conven-
tion of 0 and 360° as north). We then can use this optimal
aspect to estimate µs (Eq. 1), µv, and ξ . This directly im-
pacts Eqs. (2) and (3) (formulation of incoming solar energy
in the model) (Picard et al., 2020),

E(λ)= ψµsE(λ)dir+V�E(λ)diff

+

[(
1+

cos(S)
2
−V�

)
r(λ)surfE(λ)diff

]
, (3)

whereE is total incoming irradiance; ψ is binary shade or no
shade; Edir and Ediff are the direct and diffuse irradiance, re-
spectively; V� is the sky view factor (Dozier, 2022); and rsurf
is the reflectance of nearby terrain (which is assumed to be
equal to the pixel itself). The term E is solved within our
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Table 1. Parameter space and initial vectors used in numerical optimization for PRISMA data.

Parameter [unit] Definition Feasible range Initial state Type

fsnow [%] Fractional snow in the mixed
pixel

[0, 100] 10 Surface

fshade [%] Fractional shade in the mixed
pixel

[0, 100] 20 Surface

fLC1 [%] Fractional cover of endmember
1 (based on land cover value at
pixel)

[0, 100] 50 Surface

fLC2 [%] Fractional cover of endmember
2 (based on land cover value at
pixel)

[0, 100] 20 Surface

SSA [m2 kg−1] Specific surface area (SSA) [2, 156] 40 Surface

LAP [µgg−1] Concentration of light-
absorbing particles (LAPs)
modelled as dust (PM2.5).

[0, 145] 0 Surface

Liquid water [%] Percentage of liquid water on
the snow surface

[0, 50] 2 Surface

AOD 550 [%] Dimensionless aerosol optical
depth (AOD) at 550 nm

[1, 100] 10 Atmospheric

H2O [mm] Columnar water vapour in the
atmosphere

[1, 50] 1 Atmospheric

sin(aspect) Continuous variable to define
aspect with respect to its east–
west direction

[−1, 1] Variable Topographic

cos(aspect) Continuous variable to define
aspect with respect to its north–
south direction

[−1, 1] Variable Topographic

non-linear numerical optimization method as described in
Wilder et al. (2024). This was modelled incorrectly in Wilder
et al. (2024); however, this was corrected in this paper where
only diffuse irradiance is used in the third term in Eq. (3).
In addition, adding the two extra parameters (sin(aspect) and
cos(aspect)) into our updated optimization scheme did not
change our run time significantly. Caution is advised against
solving for slope and aspect in the inversion due to the non-
unique solution space (Fig. 1); however, only considering as-
pect ensures unique solutions, i.e. µs, µv, and ξ . We chose
aspect because of its greater impact on determining partition
of direct and diffuse illumination and as it has been found to
be more impactful to errors associated with snow property
retrieval (Donahue et al., 2023). Also, in this study we used
an estimate of total ozone column as input for creating the
libRadtran lookup table specific for each image. We used the
average weekly ozone over the bounds of the image from the
Sentinel-5P NRTI O3: Near Real-Time Ozone dataset. This
approach is an improvement over Wilder et al. (2024), where
ozone was fixed at 300 DU.

2.3 Estimating snow properties from AVIRIS-NG for
validation

Due to the fine signal-to-noise ratio and spatial resolution
of AVIRIS-NG, we treated the dataset as the ground refer-
ence. It also captured a similar spectral range to PRISMA,
which made it a suitable comparison dataset. The main as-
sumption here is that AVIRIS-NG pixels at 4 m are relatively
homogenous and are either snow or no snow, which may not
always be the case. This could be a potential source of un-
certainty in our analysis. To select snow-covered pixels, we
solved for NDSI (normalized difference snow index) using
bands at 600 and 1500 nm. We limited our retrieval of snow
properties for NDSI greater than or equal to 0.90 (Painter et
al., 2013). A common approach to retrieve snow grain size
from pure snow pixels is to apply the scaled band area algo-
rithm (Nolin and Dozier, 2000); however, it is recognized that
the large presence of liquid water is a limitation. The maxi-
mum air temperature of 10.8 °C on the day of the image at the
San Juan Mountains site indicated that elevated liquid water
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at the surface was probable (Center for Snow and Avalanche
Studies, 2023). Additionally, reflectance spectra appeared to
be shifted along the x axis (wavelength) due to the presence
of liquid water. Therefore, we used constrained non-linear
numerical optimization to model apparent snow reflectance
with AART by allowing fractional snow, fractional shade,
liquid water, and SSA to vary. We did not include rock or for-
est endmembers in this formulation, assuming the 4 m pixels
are relatively homogenous as previously stated. Topographic
incident angles were held constant based on the 4 m resolu-
tion DEM provided by AVIRIS-NG. We minimized the root-
mean-square difference (RMSD) between observed apparent
and modelled apparent snow reflectance from AART wave-
lengths in the range 1000–1250 nm. This range has high ice
absorption and limited impacts from atmospheric interfer-
ence and LAP (Miller et al., 2016). The presence of liquid
water was included in our analysis by means of the compos-
ite refractive index of water and ice (Donahue et al., 2022;
Hale and Querry,1973; Warren and Brandt, 2008). We as-
sumed similar grain shape assumptions for both PRISMA
and AVIRIS-NG, and we also assumed that if there is a bias
due to this it should be consistent between the two datasets
in our analysis.

2.4 Comparing modelled snow properties

The algorithm was used in two different modes: (1) static to-
pography based on the Copernicus DEM (from hereon called
“static”) and (2) solved topography based on the algorithm
updates (from hereon called “radiance”). To compare the ac-
curacy of PRISMA-derived SSA and liquid water, we re-
sampled the AVIRIS-NG optical property results (SSA and
liquid water content (LWC)) to match the PRISMA resolu-
tion (30 m) and extent by using bilinear interpolation. We
then sampled all valid pixels where PRISMA and AVIRIS-
NG had snow. We then computed Pearson correlation co-
efficient (r), mean bias, and RMSD for the radiance and
static methods (with respect to AVIRIS-NG). Finally, we
used Copernicus-derived slope and aspect maps to determine
where the largest errors were occurring on the landscape to
compare with the theoretical basis presented in Fig. 1. We
do this by using the mean absolute difference with respect to
µs. We expected to see higher differences in north-facing as-
pects (i.e. µs approaches 0) and where θ0 was higher. To test
the interaction with θ0 more fully, we extended the analysis
to Mount Shasta, CA, and Toolik, AK, where no in situ data
existed. We compared the modelled properties between the
radiance and static methods to assess how these assumptions
impacted results for these types of data at 30 m scale.

2.5 Comparing DEM and radiance derived µs

To ensure the resulting radiance-derived µs values were
valid, we downloaded the best available validation data
sources for comparison. For the San Juan and Shasta sites,
we collected DEM products at 1 m spatial resolution and col-
lected a 5 m spatial resolution DEM for the Toolik site (U.S.
Geological Survey, 2019, 2022). We then computed slope,
aspect, solar zenith angle, and solar azimuth angle for all
pixels to compute µs at the native resolution (Eq. 1). We
then used bilinear interpolation to resample the 1 and 5 m
products to 30 m to exactly match the extents and resolution
of our PRISMA images. We would like to acknowledge that
while these are the best freely available datasets for our im-
ages, they still do not capture the true “snow-on” topography
and instead are a representation of the “snow-free” surface.
We compared matching pixels to determine the RMSD, r ,
and mean bias. Pixels that were marked as shadow from ray
tracing were excluded from this comparison.

3 Results

3.1 Validation using AVIRIS-NG data over the San
Juan Mountains

Over the area of the flight lines, AVIRIS-NG estimated mean
SSA= 18.0±8.3 m2 kg−1, the PRISMA radiance method es-
timated mean SSA= 19.6± 5.8 m2 kg−1, and the PRISMA
static method estimated mean SSA= 22.0± 12.1 m2 kg−1.
When comparing the SSA performance over each pixel to
the AVIRIS-NG flight lines (Fig. 4) we found the PRISMA
radiance method (r = 0.43; RMSD= 8.0 m2 kg−1; bias=
+1.7 m2 kg−1; n= 36412) performed slightly better than
the static method (r = 0.23; RMSD= 13.6 m2 kg−1; bias=
+4.0 m2 kg−1; n= 36412) for SSA.

There was not a significant improvement in liq-
uid water estimation between radiance (r = 0.67;
RMSD= 10 %; bias=−8 %; n= 36412) and static
(r = 0.67; RMSD= 10 %; bias=−9 %; n= 36412). Fur-
thermore, it appeared that there was a consistent liquid water
bias of 8 % to 9 %, hinting that more melt had occurred
during the AVIRIS-NG flights. As previously noted, the
temperatures were well above 0 °C during the overpass of
AVIRIS-NG and occurred roughly 1 h later in the day com-
pared to the PRISMA acquisition. This most likely explains
the higher liquid water and lower SSA observed by AVIRIS-
NG. We further tested this by masking out areas where
AVIRIS-NG liquid water content was greater than 0.1 % to
establish areas where low amounts of melt occurred between
the two acquisitions. We found that performance of PRISMA
static (RMSD= 14.2 m2 kg−1; rRMSD= 49 %; n= 181)
and radiance (RMSD= 6.9 m2 kg−1; rRMSD= 23 %;
n= 181) methods were more accurate for these areas.
The radiance method performed slightly better, suggesting
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Figure 4. Snow properties computed from AVIRIS-NG (4 m spatial resolution) on 29 April 2021 including NDSI (a), SSA (b), and LWC (c)
for the San Juan Mountains site.

a modest 25 % improvement in accuracy for SSA over
the static method when considering pixels that were less
impacted by melt.

Additionally, comparing all pixels we found improvement
from radiance occurred mostly on steep, north-facing aspects
(e.g. when µs approached 0). We found the absolute resid-
ual increased as µs approached zero for the static method
(r =−0.47; p < 0.01), while this relationship was dimin-
ished nearly by a factor of 5 for the radiance method (r =
−0.10; p < 0.01) (Fig. 5a). These errors were caused by in-
correct terrain information in the inversion, where inversion
error increased proportionately in the static method (Fig. 5b).

3.2 Comparing radiance and static methods between
sites

On average across each of the images, radiance and static
methods provided similar retrieved parameters within less
than 1 standard deviation (Table 2). In general, this means
there is not a significant difference at the 30 m scale for com-
puting parameters such as SSA and broadband albedo (BA)
when considering the entire image. Interestingly, when ter-
rain is fixed, the static model compensated for incorrect il-
lumination by increasing the aerosol optical depth (thereby
reducing the amount of direct solar radiation). Investigating
the errors more closely, we found much larger differences
in retrieved properties where µs approached 0 (Fig. 6). The
difference in distributions matched closely to the theoretical
demonstration (Fig. 1) and is most likely associated with the
standard error of slope and aspect from the Copernicus DEM
given the illumination conditions. This result also demon-
strates that the difference between the two methods had the
biggest impact for images where θ0 was high, resulting in

Figure 5. Absolute difference in modelled SSA when compared to
AVIRIS-NG for radiance method (green) and static method (pink)
with respect to µs (a) and the resulting RMSD from the inversion
from PRISMA with respect to µs (b). Error in the static method
increases significantly when µs approached zero (r =−0.47; p <
0.01); however, the difference was less noticeable in the radiance
method (r =−0.10; p < 0.01).
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Table 2. Image-wide statistics comparing derived properties between the two methods (static vs. radiance) processing the PRISMA imagery
for all three sites.

Site PRISMA Mean SSA Mean broadband Mean liquid Mean AOD at Mean water column
method [m2 kg−1] albedo water [%] 550 nm vapour [mm]

San Juan
Static 23.3± 14.9 0.79± 0.03 3.5± 4.8 0.05± 0.13 6.7± 1.1
Radiance 19.6± 5.9 0.78± 0.03 3.9± 5.0 0.01± 0.01 6.8± 0.3

Shasta
Static 11.0± 6.0 0.77± 0.04 1.6± 3.3 0.04± 0.10 7.6± 1.3
Radiance 10.7± 6.2 0.77± 0.05 1.9± 3.8 0.01± 0.04 7.7± 1.1

Toolik
Static 30.1± 9.6 0.85± 0.02 0.0± 0.0 0.02± 0.03 1.0± 0.4
Radiance 27.7± 7.9 0.84± 0.02 0.0± 0.0 0.01± 0.01 1.0± 0.2

Figure 6. Two-dimensional histogram plots showing absolute difference in SSA (a–c), broadband albedo (d–f), and AOD (g–i) with respect
to slope and aspect across the entire dataset. In this figure absolute difference is calculated as |static− radiance|. This is shown for the San
Juan Mountains site (a, d, g), Shasta site (b, e, h), and Toolik site (c, f, i). The average solar zenith angle (θ0) is shown for reference in each
panel.

potentially inaccurate retrievals that impact both surface and
atmospheric state variables on relatively mild slopes.

Putting this into spatial context (Fig. 7), the San Juan
site had 37 % of pixels (135.3 km2) with an absolute differ-
ence in BA (|δBA|)>=0.01 % and 14 % pixels (49.9 km2)
with |δBA|>=0.02. The Shasta site had 30 % of pixels
(16.7 km2) with |δBA|>=0.01 % and 9 % pixels (5.1 km2)

with |δBA|>=0.02. The Toolik site had 40 % of pixels
(325.3 km2) with |δBA|>=0.01 % and 8 % pixels (66.6 km2)
with |δBA|>=0.02.

Median |δBA| for all sites with respect to µs generally in-
creased as µs approached zero (Fig. 8). For example, for the
San Juan site, median |δBA| ranged from 0.03 to 0.00 across
µs. For the Shasta and Toolik sites, median |δBA| ranged
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Figure 7. Modelled broadband snow albedo (BA) for the San Juan Mountains site (a–c), Shasta Mountain site (d–f), and Toolik site (g–i).
The left column represents BA from the static method, the middle column represents BA from the radiance method, and the right column
represents the absolute difference in BA (|δBA|). The dark grey colour symbolizes data that are not a value.

from 0.02 to 0.00 across µs. This relation was non-linear and
depended on the site and illumination conditions. This anal-
ysis demonstrates the levels of uncertainty potentially left in
for retrievals relying on static, non-coincident DEMs. This
quantitatively shows the improvements to snow broadband
albedo at 30 m scale by using radiance-based approach to be
relatively small for well-lit slopes – on the order 0 %–1 %. In
contrast, shaded slopes may have errors in snow broadband
albedo on the order of 1 %–3 %. Interestingly, for the Toolik
site |δBA| also increased as µs approached one.

3.3 Comparing DEM and radiance derived µs

At the 30 m pixel scale, Copernicus DEM-derived µs had
similar overall performance to radiance-derived µs (Fig. 9),
with Copernicus DEM-derived µs having slightly higher per-
formance. For example, for the San Juan site, RMSD only
varied by 0.006 between the two methods. Similarly, the r for
Copernicus-derived µs was 0.94, while the radiance-derived

µs was slightly lower at 0.91. This similar overall perfor-
mance was common amongst the three sites. We found the
average bias for radiance-derived µs was generally closer to
zero (±0.01) and did not show a strong negative or positive
direction.

4 Discussion

4.1 Radiance-derived DEMs may replace coincident
DEMs and contain information related to surface
roughness

Derivative slope and aspect maps are prone to errors at 30 m
spatial resolutions (Dozier et al., 2022). This is relevant for
derived snow products from upcoming missions such as SBG
and CHIME, which will rely on topographic information to
calculate optical properties like snow albedo. These errors
can be inherent to the DEM itself or a product of spatial
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Figure 8. Modelled absolute difference in broadband albedo
(|δBA| = |BAStatic−BARadiance|) for San Juan (a), Shasta (b), and
Toolik (c). Note that these boxplots were created by rounding µs to
the nearest hundredth place.

and/or temporal misalignments (Carmon et al., 2023). Our
modelled |δBA| with respect to the non-coincident DEM
was similar to work by Donahue et al. (2023), who found
slightly higher uncertainties of broadband albedo (ranging
from−10 % to 10 %) for their investigation of Place Glacier,
British Columbia, Canada. With the surface and roughness
undergoing dramatic change on glaciers throughout a given
season, using this radiance-based approach may be especially
impactful for improving estimates over glaciers.

Snow surface roughness has long been a challenging issue
in modelling snow properties from space where the solar in-
cidence angle at high spatial resolution for snow-on DEM is
not well known (Bair et al., 2022). Previous research found
radiance-derived µs from airborne imaging spectroscopy
showed a negative bias and postulated this could be due
to within-pixel topography, shadows, and surface roughness
(Carmon et al., 2023). Since a bi-directional reflectance func-
tion (BRDF) model was not used in their study, it then would
be plausible for the optimal µs to compensate for these ef-
fects. Interestingly, when using a BRDF model in our study
(i.e. AART) and solving for aspect optimally (therefore in-
forming µs, µv, and ξ ), we did not find a strong negative
or positive bias. However, we did not take surface roughness
measurements, and therefore we do not know to what extent
this impacted our study. Within-pixel shadows, textures, and
surface roughness remain difficult to validate, and we were
unable to achieve this in our study. Future work interested in
further understanding this radiance-based approach may in-
vestigate how such approaches interact with micro-scale to-
pography through ground measurements such as terrestrial
and airborne lidar.

4.2 Next steps in possibly improving this
radiance-based approach

While we solved for a few terrain parameters in this study, we
did not entirely remove the use of the DEM from the radiance
method. The elevation from global DEMs has a much higher
confidence than its derivative products (Dozier et al., 2022).
Therefore, we used these values to inform our atmospheric
routine, as well as our shadow-casting ray-tracing module
(Wilder et al., 2024). Additionally, we used the method pre-
sented in Dozier (2022) for estimating the sky view factor
(V�) based on nearby terrain and the pixel itself. This fac-
tor could potentially be problematic but was cited as being
not as impactful as µs in propagating error (Dozier et al.,
2022). Therefore, we elected to use V� derived from the
static Copernicus DEM. However, this could be an area for
future improvement, especially in very steep terrain where
V� becomes small. It is not advised to attempt to add V� di-
rectly into the optimization routine presented in this study,
as it is a function of pixel slope and aspect, and therefore al-
tering V� and aspect together would create invalid solutions.
Finally, we used a static value for slope derived from Coper-
nicus DEM. The slope influences the µs term, but also influ-
ences the passive radiation from nearby slopes. Ultimately,
we concluded that aspect had the largest impact on chang-
ing µs (Fig. 1), as well as large RMSD reported in previous
work (Dozier et al., 2022; Donahue et al., 2023), and thus
this was the focus of our study. Caution is advised in includ-
ing both slope and aspect together, as non-unique solution
space for µs may cause the optimization outputs to become
invalid. In summary, elevation, V�, and slope remain static in
our current implementation. Future work may explore other
algorithmic choices to further remove or improve static DEM
parameters.

Another consideration for improving this method is the in-
clusion of total column ozone into the optimization. Previ-
ous research has been able to use TOA snow reflectance data
to retrieve reliable estimates of ozone (Kokhanovsky et al.,
2021b). In our paper, we elected for a simpler approach to
first investigate the impacts of including terrain in the opti-
mization. In this paper we input a fixed ozone for the entire
image based on coincident Sentinel-5 measurements. How-
ever, it should be stated that ozone impacts a similar spectral
range toµs (Fig. 10). It therefore may be beneficial to include
ozone in the atmospheric lookup table (e.g. MODTRAN, li-
bRadtran) to enable optimization of ozone as well. This may
be beneficial in building more realistic radiance-based meth-
ods.

Finally, future studies should investigate including im-
provements to BRDF models of snow (Mei et al., 2022). For
example, recent work by Kokhanovsky et al. (2024) has pro-
posed the use of a two-layer model which may be especially
useful for vertically heterogenous snowpacks. Their method
has been tested using EnMAP data and may easily be trans-
ferable to other sensors. The current AART method we used
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Figure 9. Comparing µs at 30 m pixel scale derived from radiance and Copernicus against high-resolution DEM for the San Juan site (a, d),
Shasta site (b, e), and Toolik site (c, f).

Figure 10. Synthetic data showing the change in magnitude of top-of-atmosphere radiance (LTOA) with respect to changing total column
ozone for fixed snow surface state variables modelled with AART and other fixed atmospheric state variables modelled with libRadtran.
Reference data are based on the PRISMA image taken over southern Colorado. Note that values of total column ozone are shown in Dobson
units (DU).

in our paper does not account for these layers, and instead
assumes an optically thick, homogenous snowpack. To vali-
date both AART, the new layered approach, and future BRDF
models, snow pit (i.e. vertical profile) measurements of SSA
(e.g. Meloche et al., 2023) become essential in ensuring mod-
els accurately account for diverse layering of snow.

4.3 Big-picture implications of the radiance-based
approach

This research responds to the objectives stated in Thriving
on our changing planet: A decadal strategy for Earth ob-
servation from space to improve biogeophysical modelling
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at scales driven by topography (National Academies of Sci-
ence, Engineering, and Medicine, 2018), enabling more ac-
curate snow property retrievals in the cryosphere under chal-
lenging illumination conditions. Our presented work on solv-
ing terrain where DEM data are not available or reliable may
serve to accelerate improvements to satellite remote sens-
ing tools to monitor and model at both regional and global
scales (Sturm et al., 2017) at a critical juncture in time where
northern latitudes are changing quickly under a warming cli-
mate. This includes Earth’s glaciers, where radiance-based
methods may have the largest improvements over static ap-
proaches. Our research is complemented by other recent
works that show promise in including terrain in the inver-
sions (Bohn et al., 2024, 2023; Bair et al., 2024; Carmon et
al., 2023).

We recommend additional coincident AVIRIS-NG flights
with spaceborne imaging spectroscopy datasets to further
this work. As we have shown for the San Juan Mountains
site, on particularly warm days images that are separated by
longer than 1 h may exhibit drastically different SSA and liq-
uid water content. As shown in this paper, this creates an
issue when trying to validate improvements to retrieval algo-
rithms.

5 Conclusion

In this study we used existing PRISMA L1 TOA imagery
to demonstrate the improvements in modelling snow opti-
cal properties when explicitly modelling the terrain in the in-
version. This would especially be true for areas where the
surface undergoes rapid change such as glaciers. This new
method is especially useful for steep mountain terrain and/or
high latitudes where illumination conditions are suboptimal.
The θ0 (solar zenith angle) was relatively low for the San
Juan Mountains site in our study and thus represents a lower
bound of the improvement in accuracy one could expect. This
disparity was demonstrated further for the Mount Shasta and
Toolik sites when θ0 was larger (i.e. a greater difference in
retrieved properties due to more challenging solar and sen-
sor geometry). Even for the relatively flat Toolik site, we
showed that correctly accounting for incidence angles can
impact snow properties when θ0 is large. Future work may
look to build from this radiance-based approach to enable
better quantification of snow properties at scales impacted
by topography.
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