Articles | Volume 18, issue 9
https://doi.org/10.5194/tc-18-4355-2024
https://doi.org/10.5194/tc-18-4355-2024
Research article
 | 
23 Sep 2024
Research article |  | 23 Sep 2024

How well can satellite altimetry and firn models resolve Antarctic firn thickness variations?

Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke

Related authors

GravIS: mass anomaly products from satellite gravimetry
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data, 17, 611–631, https://doi.org/10.5194/essd-17-611-2025,https://doi.org/10.5194/essd-17-611-2025, 2025
Short summary
Seasonal and interannual variability of freshwater sources for Greenland's fjords
Anneke Louise Vries, Willem Jan van de Berg, Brice Noël, Lorenz Meire, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3735,https://doi.org/10.5194/egusphere-2024-3735, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Calving front positions for 42 key glaciers of the Antarctic Peninsula Ice Sheet: a sub-seasonal record from 2013 to 2023 based on deep-learning application to Landsat multi-spectral imagery
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data, 17, 65–78, https://doi.org/10.5194/essd-17-65-2025,https://doi.org/10.5194/essd-17-65-2025, 2025
Short summary
The surface mass balance and near-surface climate of the Antarctic ice sheet in RACMO2.4p1
Christiaan T. van Dalum, Willem Jan van de Berg, Michiel R. van den Broeke, and Maurice van Tiggelen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3728,https://doi.org/10.5194/egusphere-2024-3728, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote-sensing data
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
The Cryosphere, 19, 37–61, https://doi.org/10.5194/tc-19-37-2025,https://doi.org/10.5194/tc-19-37-2025, 2025
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
ISMIP6-based Antarctic projections to 2100: simulations with the BISICLES ice sheet model
James F. O'Neill, Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Hélène L. Seroussi, Sophie Nowicki, Mira Adhikari, and Lauren J. Gregoire
The Cryosphere, 19, 541–563, https://doi.org/10.5194/tc-19-541-2025,https://doi.org/10.5194/tc-19-541-2025, 2025
Short summary
Assessing the suitability of sites near Pine Island Glacier for subglacial bedrock drilling aimed at detecting Holocene retreat–readvance
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
The Cryosphere, 19, 303–324, https://doi.org/10.5194/tc-19-303-2025,https://doi.org/10.5194/tc-19-303-2025, 2025
Short summary
Modelling GNSS-observed seasonal velocity changes of the Ross Ice Shelf, Antarctica, using the Ice-sheet and Sea-level System Model (ISSM)
Francesca Baldacchino, Nicholas R. Golledge, Mathieu Morlighem, Huw Horgan, Alanna V. Alevropoulos-Borrill, Alena Malyarenko, Alexandra Gossart, Daniel P. Lowry, and Laurine van Haastrecht
The Cryosphere, 19, 107–127, https://doi.org/10.5194/tc-19-107-2025,https://doi.org/10.5194/tc-19-107-2025, 2025
Short summary
A fast and simplified subglacial hydrological model for the Antarctic Ice Sheet and outlet glaciers
Elise Kazmierczak, Thomas Gregov, Violaine Coulon, and Frank Pattyn
The Cryosphere, 18, 5887–5911, https://doi.org/10.5194/tc-18-5887-2024,https://doi.org/10.5194/tc-18-5887-2024, 2024
Short summary
Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024,https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary

Cited articles

Abshire, J., Sun, X., Riris, H., Sirota, J., MCGarry, J., Palm, S., Yi, D., and Liiva, P.: Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On–orbit measurement performance, Geophys. Res. Lett., 32, L21S02, https://doi.org/10.1029/2005GL024028, 2005. a
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a, b, c
Amory, C., Buizert, C., Buzzard, S., Case, E., Clerx, N., Culberg, R., Datta, R., Dey, R., Drews, R., Dunmire, D., Eayrs, C., Hansen, N., Humbert, A., Kaitheri, A., Keegan, K., Kuipers Munneke, P., Lenaerts, J., Lhermitte, S., Mair, D., McDowell, I., Mejia, J., Meyer, C., Morris, E., Moser, D., Oraschewski, F., Pearce, E., de Roda Husman, S., Schlegel, N.-J., Schultz, T., Simonsen, S., Stevens, C., Thomas, E., Thompson-Munson, M., Wever, N., and Wouters, B.: Firn on ice sheets, Nat. Rev. Earth Environ., 5, 79–99, https://doi.org/10.1038/s43017-023-00507-9, 2024. a
Arthern, R., Vaughan, D., Rankin, A., Mulvaney, R., and Thomas, E.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res., 115, F03011, https://doi.org/10.1029/2009JF001306, 2010. a
Bodart, J. and Bingham, R.: The Impact of the Extreme 2015-16 El Niño on the Mass Balance of the Antarctic Ice Sheet, Geophys. Res. Lett., 46, 13862–13871, https://doi.org/10.1029/2019GL084466, 2019. a
Download
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Share