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Abstract. Elevation changes of the Antarctic Ice Sheet (AIS)
related to surface mass balance and firn processes vary
strongly in space and time. Their subdecadal natural vari-
ability is large and hampers the detection of long-term cli-
mate trends. Firn models or satellite altimetry observations
are typically used to investigate such firn thickness changes.
However, there is a large spread among firn models. Further,
they do not fully explain observed firn thickness changes, es-
pecially on smaller spatial scales. Reconciled firn thickness
variations will facilitate the detection of long-term trends
from satellite altimetry; the resolution of the spatial patterns
of such trends; and, hence, their attribution to the underlying
mechanisms. This study has two objectives. First, we quan-
tify interannual Antarctic firn thickness variations on a 10 km
grid scale. Second, we characterise errors in both the altime-
try products and firn models. To achieve this, we jointly anal-
yse satellite altimetry and firn modelling results in time and
space. We use the timing of firn thickness variations from firn
models and the satellite-observed amplitude of these varia-
tions to generate a combined product (“adjusted firn thick-
ness variations”) over the AIS for 1992–2017. The combined
product characterises spatially resolved variations better than
either firn models alone or altimetry alone. It provides a
higher resolution and a more precise spatial distribution of
the variations compared to model-only solutions and elimi-
nates most of the altimetry errors compared to altimetry-only
solutions. Relative uncertainties in basin-mean time series
of the adjusted firn thickness variations range from 20 % to
108 %. At the grid cell level, relative uncertainties are higher,
with median values per basin in the range of 54 % to 186 %.

This is due to the uncertainties in the large and very dry areas
of central East Antarctica, especially over large megadune
fields, where the low signal-to-noise ratio poses a challenge
for both models and altimetry to resolve firn thickness vari-
ations. A large part of the variance in the altimetric time se-
ries is not explained by the adjusted firn thickness variations.
Analysis of the altimetric residuals indicate that they con-
tain firn model errors, such as firn signals not captured by the
models, and altimetry errors, such as time-variable radar pen-
etration effects and errors in intermission calibration. This
highlights the need for improvements in firn modelling and
altimetry analysis.

1 Introduction

The global mean sea level rose by 3.05± 0.24 mm yr−1 dur-
ing the period 1993–2016 (Horwath et al., 2022). Ice-mass
loss from Antarctica contributed ∼ 6 % to this rise (Horwath
et al., 2022) and is likely to continue (IPCC, 2021). The evo-
lution of the Antarctic Ice Sheet (AIS) is of critical con-
cern because the AIS contains the world’s largest reservoir
of frozen freshwater (Fretwell et al., 2013), and projections
of Antarctica’s future contribution to sea-level rise exhibit a
large spread (Schlegel et al., 2018; Fox-Kemper et al., 2021).
In order to narrow this spread we need to better understand
the ice sheet processes through improved models and obser-
vational constraints.

The mass balance of a grounded ice sheet is com-
monly separated into three components: surface mass bal-
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ance (SMB), ice discharge, and basal mass balance. SMB
comprises total precipitation (snowfall, rainfall), total subli-
mation (from surface and drifting snow), drifting snow ero-
sion, and meltwater runoff (van den Broeke et al., 2016; van
Wessem et al., 2018). It refers to processes occurring on the
surface of the ice sheet in the snow and firn layer. Snow refers
to the seasonal snow cover; i.e. it is less than a year old. Firn
refers to multiyear snow and is defined as the transition from
snow to glacier ice (van den Broeke, 2008). In the following,
we refer to both snow and firn by the term firn layer. Ice dis-
charge is the ice flow across the grounding line. Basal mass
balance is thought to be small (Otosaka et al., 2023a) and not
considered here.

The mass loss of the AIS is dominated by ice discharge
from outlet glaciers of the West Antarctic Ice Sheet (WAIS)
(Otosaka et al., 2023b). However, uncertainties in the long-
term SMB limit the attribution of mass balance components
when evaluating satellite data (Willen et al., 2021). On in-
terannual to decadal timescales, variations in SMB (domi-
nated by precipitation) control the variability in the Antarctic
mass balance (Rignot et al., 2019; Davison et al., 2023). The
amplitudes of SMB variations, just as the SMB itself, vary
strongly over space. They are influenced by ice sheet topog-
raphy and by oceanic and atmospheric conditions and cir-
culations (Lenaerts et al., 2019; Noble et al., 2020; Kaitheri
et al., 2021). Over the satellite period, on a decadal and mul-
tidecadal scale, climate trends are masked by the large in-
terannual Antarctic SMB variability (Mottram et al., 2021;
Gutiérrez et al., 2021). An improved quantification of inter-
annual SMB variations in space and time is required in order
to robustly resolve long-term trends in the Antarctic SMB
and overall mass balance (King and Watson, 2020). This is
currently lacking (e.g. Mottram et al., 2021).

To date, regional climate models (RCMs) have been com-
monly used to simulate the SMB for the entire ice sheet
(Lenaerts et al., 2019). When the main goal of RCMs is to re-
alistically simulate the ice sheet weather, as is the case here,
they are forced by atmospheric reanalysis products and thor-
oughly evaluated against hundreds of in situ observations of
SMB (van Wessem et al., 2018; Agosta et al., 2019). Mot-
tram et al. (2021) demonstrated that different RCMs provide
similar outputs for annual to decadal SMB variations on a
continental scale (Antarctica), as long as they are driven by
the same reanalysis product. However, the spatial patterns
of the different SMB estimates differ substantially on a re-
gional and local scale. The results from RCMs are used to
force firn models, which simulate the temporal evolution of
the Antarctic firn due to SMB and firn processes such as den-
sification (Ligtenberg et al., 2011; Lundin et al., 2017). Firn
elevation changes, also called firn thickness changes, are an
output of firn models. There is a large spread between firn
thickness changes from different firn model setups, mainly
because the uncertainty in the modelled SMB directly influ-
ences the modelled firn thickness (Verjans et al., 2021).

Besides modelling tools, satellite measurements provide
the only possibility of inferring ice-sheet-wide changes in
SMB and firn thickness. Observations from satellite altimetry
provide a high spatial resolution of several kilometres and go
back to the year 1992 for covering most of the AIS (Wingham
et al., 1998). These measurements allow for the derivation of
ice sheet surface elevation changes due to volume changes
of the AIS and to the deformation of the solid Earth, with
the latter being negligible compared to the former (Willen
et al., 2021). Most of the altimetry missions utilise radar
waves (e.g. Envisat, CryoSat-2). Since 2003 laser altimeters
have also been used (e.g. ICESat). While laser altimeters rely
on good atmospheric conditions (no thick clouds or blow-
ing snow), radar altimetry is independent of weather condi-
tions (Otosaka et al., 2023a). On the other hand, laser sig-
nals are reflected at or near the surface, independently of
its properties, while radar signals penetrate into the upper
firn layer. This may cause biases and artificial variations in
radar altimetry results depending on the time-variable dielec-
tric properties of the firn and the data-processing choices to
account for them (Davis and Ferguson, 2004; Rémy et al.,
2012).

Using SMB and firn modelling outputs alone to quantify
interannual variations in SMB and firn thickness introduces
large uncertainties: the intermodel spread is large, and the
model outputs also differ from satellite observations (Veld-
huijsen et al., 2023). The latter is particularly true at local
spatial scales (supplement to Shepherd et al., 2019). Like-
wise, interannual variations analysed using only data from
satellite observations are strongly affected by their errors
(Horwath et al., 2012; Mémin et al., 2015; Su et al., 2018; Shi
et al., 2022). Moreover, it is difficult to relate the observed
variations to their physical causes. Therefore, the studies
of Sasgen et al. (2010), Bodart and Bingham (2019), Kim
et al. (2020), Kaitheri et al. (2021), and Zhang et al. (2021)
compared or combined space-based geodetic observations
with meteorological fields from atmospheric reanalysis data
or RCMs. However, their derived interannual variations are
coarsely resolved in space (at about 400 km) and mainly lim-
ited to the period of the satellite gravimetry missions GRACE
and GRACE-FO.

This study focuses on the interannual variations in firn
thickness on a regional to local scale. Knowledge of interan-
nual variations is required to isolate long-term trends in ice
volume or mass changes. To identify the underlying glacio-
logical processes and separate SMB and firn signals from ice
dynamics, the spatial patterns of interannual variations and
long-term trends need to be resolved. As the analysis of basin
integrals is not sufficient for this purpose, we work at a 10 km
grid-scale level. We characterise and quantify firn thickness
variations in space and time by combining results from satel-
lite altimetry and firn modelling. By combining both data
sets, we expect to reduce uncertainties compared to the vari-
ations derived from altimetry or models alone. For the first
time, the full spatial and temporal information present in the
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altimetry products is exploited together with the modelling
results. Apart from determining firn thickness variations em-
pirically, our analysis provides information on the error char-
acteristics of both the altimetry products and the model out-
puts.

2 Data

2.1 Altimetry

We use the altimetry products from Schröder et al. (2019a)
and Nilsson et al. (2022). Both studies provide monthly re-
solved elevation changes of the grounded AIS from a multi-
mission satellite altimetry analysis. By elevation changes or
elevation anomalies we refer to the difference between the
elevation at a time, t , and the elevation at a chosen ref-
erence epoch. We use elevation changes over the time pe-
riod May 1992 to December 2017, containing data from
pulse-limited radar altimetry of ERS-1, ERS-2, Envisat, and
CryoSat-2 in the low resolution mode (LRM); from radar al-
timetry of CryoSat-2 in the synthetic-aperture radar interfer-
ometric (SARIn) mode; and from laser altimetry of ICESat.
While the orbit configurations of the missions entail different
limits of coverage close to the poles, all mentioned missions
cover at least up to 81.5° S. We exclude grid cells with large
gaps in the altimetry time series, such as the area south of
81.5° S and the Antarctic Peninsula. The upper time limit of
December 2017 is set to ensure coverage by both products.

Schröder et al. (2019a) applied their own retracking and
slope correction to the return signal (waveform) of the
pulse-limited radar altimeters to derive elevation measure-
ments. Data from the CryoSat-2 SARIn mode were pro-
cessed by Helm et al. (2014). Nilsson et al. (2022) used
the pre-processed elevation measurements of the Geophys-
ical Data Record (Brockley et al., 2017) for ERS-1, ERS-
2, and Envisat. They applied their own processing to the
CryoSat-2 data (Nilsson et al., 2016). The elevation mea-
surements were analysed using repeat-track altimetry on a
polar-stereographic grid to derive elevation time series. For
this analysis, Schröder et al. (2019a) and Nilsson et al. (2022)
used different grid spacing and search radii. Further differ-
ences refer to the removal of time-invariant topography and
the correction for time-variable radar signal penetration and
scattering effects. While Schröder et al. (2019a) performed
these steps in one least-squares fit, Nilsson et al. (2022) fit-
ted them separately.

To derive a continuous time series of elevation changes, in-
termission and intermode calibration offsets must be solved.
While Schröder et al. (2019a) used overlapping epochs or
subtracted a technique-specific reference elevation, Nilsson
et al. (2022) used a least-squares adjustment and then se-
lected overlapping epochs with special treatment of the
Envisat–CryoSat-2 overlap of less than 4 months. More-
over, Nilsson et al. (2022) scaled the seasonal amplitudes

of the time series of ERS-1, ERS-2, and Envisat to the sea-
sonal amplitudes derived from CryoSat-2 to mitigate artifi-
cial seasonal variations caused by time-variable signal pen-
etration. Finally, Schröder et al. (2019a) smoothed the pro-
cessed data by a 3-month moving average and a 10 km 1σ
Gaussian weighting function. This reduced the spatial grid
resolution to 10 km× 10 km. Nilsson et al. (2022) interpo-
lated the processed data with collocation (maximum search
radius of 50 km, correlation length of 20 km) on a spatial grid
with a formal resolution of 1920 m× 1920 m. We interpolate
the data from Nilsson et al. (2022) to conform to the product
from Schröder et al. (2019a). Therefore, we average the data
spatially over 10 km× 10 km and temporally over 3 months.
We only use those points in time and space where data are
available from both products.

Since we focus on the interannual to decadal timescales,
we fit and remove the offset, linear, quadratic, and sea-
sonal signals from the monthly elevation changes for every
10 km× 10 km grid cell. Seasonal signals are modelled by
annual and semi-annual cosine and sine functions. Thereby,
we fit different seasonal amplitudes for the time periods be-
fore and after 2003. In this way we account for the incon-
sistency in the seasonal amplitudes between the older pulse-
limited radar altimetry missions (ERS-1, ERS-2) and the
newer missions (Envisat, ICESat, CryoSat-2) (Nilsson et al.,
2022), as the corrections for time-variable penetration effects
on the radar return signal are imperfect in reducing unrealis-
tic seasonal amplitudes in particular for the older missions
(Ligtenberg et al., 2012). The fitted parameters are presented
in Figs. S1–S4 in the Supplement. After subtracting the off-
set, linear, quadratic, and seasonal signals, we are left with
the interannual elevation changes, which we refer to as alti-
metric variations, hvA.

2.2 Firn models

We use the firn thickness changes from the firn models
IMAU-FDM v1.2A of Veldhuijsen et al. (2023), which is an
update of Ligtenberg et al. (2011), and GSFC-FDMv1.2.1
of Medley et al. (2022a), which uses the Community Firn
Model framework of Stevens et al. (2020, 2021). We include
different firn modelling data and altimetry products to test
the sensitivity of our results to the choice of data sets and
to assess uncertainties. Firn thickness changes represent firn
thickness anomalies, as they refer to the difference between
firn thickness at a time, t , and the mean firn thickness over a
certain reference period (see below). Outputs from Veldhui-
jsen et al. (2023) are given every 10 d and on a regular grid
with a spacing of 27 km from 1979 to 2020. Outputs from
Medley et al. (2022a) are given every 5 d and on a regular
grid with a spacing of 12.5 km from 1980 to 2021. In accor-
dance with the altimetry data, we use firn thickness changes
from May 1992 to December 2017 and from the grounded
AIS, excluding the Antarctic Peninsula. We adapt the tem-
poral resolution to that of the altimetry product by calculat-
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ing monthly means and applying a 3-month moving-average
smoothing.

The firn model from Veldhuijsen et al. (2023) is forced
with 3-hourly fields of surface temperature, 10 m wind speed,
and SMB components (snowfall, rainfall, sublimation, snow-
drift erosion, snowmelt) from RACMO2.3p2 (van Wessem
et al., 2018). RACMO2.3p2 uses a spatial resolution of
27 km× 27 km and is forced by the ERA5 atmospheric re-
analysis data (Hersbach et al., 2020). The firn model from
Medley et al. (2022a) is forced with hourly fields of snowfall,
total precipitation, evaporation, 2 m air temperature, and skin
temperature from a downscaled version (12.5 km× 12.5 km)
of the MERRA-2 atmospheric reanalysis data (Gelaro et al.,
2017; Tian et al., 2017). The firn layer was initialised by
looping over the forcing data of the reference period 1979–
2020 (for Veldhuijsen et al., 2023) and 1980–2019 (for Med-
ley et al., 2022a) until the firn column was refreshed at least
once. This implies the assumption that the reference period
represents stable climatic conditions and the current firn layer
is in equilibrium.

Both firn models use the same semi-empirical equation of
Arthern et al. (2010) to model dry-snow densification, but
their procedures for deriving the empirical correction terms
differ. Veldhuijsen et al. (2023) derived this empirical cor-
rection from observations in Antarctica, while Medley et al.
(2022a) employed observations from both Antarctica and
Greenland. Furthermore, the two firn models use a different
parameterisation for surface snow density. Veldhuijsen et al.
(2023) use the formulation of Lenaerts et al. (2012), which
depends on instantaneous surface temperature and 10 m wind
speed but with updated constants derived from their own cal-
ibration. Medley et al. (2022a) built a new parameterisation
depending on snow accumulation, air temperature, total wind
speed, and specific humidity. Overall, they follow the ap-
proach from Helsen et al. (2008), which incorporates mean
annual parameters. Both firn models include the processes of
meltwater percolation and refreezing.

We subtract the offset, linear, quadratic, and seasonal sig-
nals from the modelled firn thickness changes in the same
way as we do for the altimetric time series, except that
we assume constant seasonal amplitudes for the entire pe-
riod. The subtracted parameters are presented in Figs. S1–
S4. This leaves us with firn thickness variations on interan-
nual timescales, which we refer to as modelled firn thickness
variations, fvM.

3 Methods

3.1 Basic approach

We jointly analyse the interannual elevation changes from
satellite altimetry and firn modelling results. Figure 1 gives
an overview of the workflow. The new combination approach
is a regression of the altimetric variations, hvA, against dom-

inant signals in the firn thickness variations, fvM. Our regres-
sion approach relies on the ability of firn models to capture
the timing of dominant variations in SMB and firn processes
across basins. However, the amplitudes and spatial patterns
of the variations are adjusted to satellite altimetry results. We
trust more in the temporal patterns of the firn model than in
their spatial patterns for the following reasons. Mottram et al.
(2021) as well as Lenaerts et al. (2019) and Gutiérrez et al.
(2021) have pointed out that the spatial patterns of RCMs,
which force firn models, show a large spread between mod-
els, while there is less spread between the temporal patterns.
While spatially resolved differences (between models, be-
tween observations, and between models and observations)
are substantial, the differences are reduced when basin av-
erages are used (Agosta et al., 2019; Shepherd et al., 2019;
Willen et al., 2021). The overall good agreement of basin-
mean time series of fvM and hvA is supported in Fig. 2.

3.2 Principal component analysis of modelled firn
thickness variations

We identify dominant temporal patterns in firn thickness
variations by principal component analysis (PCA). PCA,
also called empirical orthogonal function (EOF) analysis,
is applied to identify dominant modes of variability, rep-
resented by pairs of a principal component (PC) and an
EOF, which represent the temporal and spatial patterns, re-
spectively (Preisendorfer, 1988; Jolliffe, 2002; Forootan and
Kusche, 2012; Boergens et al., 2014).

The PCA is performed on the modelled firn thickness vari-
ations, fvM, after their standardisation. We standardise the
time series of fvM for each grid cell (i.e. we shift and scale it
such that it has zero mean and a standard deviation (SD) of 1)
because we aim to equally represent the patterns of temporal
evolution regardless of location or absolute amplitudes. Oth-
erwise, PCA results would mainly reflect patterns that are
dominant at the margins, where the amplitudes of SMB and
firn thickness variations are much larger than in the interior
(van Wessem et al., 2018; Lenaerts et al., 2019). To regain in-
terpretable magnitudes of the EOFs, the EOFs are multiplied
by the SD of the time series of fvM for each grid cell, which
was previously used for standardisation. After this restora-
tion of the signal amplitudes, we no longer speak of EOFs
but of modelled scaling factors, eM.

We separately apply the PCA to fvM for 10 basins that
together cover the East Antarctic Ice Sheet (EAIS) and the
WAIS (Fig. 3). To define the basins, we make use of the
drainage basin definition by Rignot et al. (2011a, b) and
aggregate neighbouring basins smaller than ∼ 600000 km2.
The decision which of the original 15 basins are aggregated
is guided by the correlations between the first three PCs of
a preliminary PCA per original basin. For each of the 10
basins, we choose the first N modes that explain at least
90 % of the total variance of the (standardised) data. In ad-
dition, North’s rule of thumb (North et al., 1982) is applied
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Figure 1. Workflow of the analysis. Grey boxes are the results, their notation, and the section where they are first presented. White boxes are
the main methodological steps to derive these results and the sections where they are explained.

to test whether the eigenvalues of these N patterns are well
separated with respect to their errors. The first N dominant
temporal patterns, PCM

1...N , enter the regression approach in a
normalised form.

3.3 Regression approach

For each 10 km× 10 km grid cell, we describe the time series
of monthly altimetric variations, hvA, by

hvA(t)= a+

N∑
n=1

eA
n PCM

n (t)+ r
A(t). (1)

The scaling factors, eA
1...N , and the offset, a, are estimated

by a least-squares adjustment. The dominant temporal pat-
terns in modelled firn thickness variations, PCM

n (t), refer to
the basin to which the grid cell belongs. The residuals of the
fit are rA.

We define a combined product by the linear combination
of Eq. (1), evaluated per grid cell and time:

fvA(t)=

N∑
n=1

eA
n PCM

n (t). (2)

We refer to fvA(t) as the “adjusted firn thickness variations”.
We use different weights for the observations from differ-

ent time periods. As results from the older altimetry missions

generally have a higher noise level (Schröder et al., 2019a;
Nilsson et al., 2022), hvA values after 2003 are weighted by
1, while hvA values before 2003 are given a different (usu-
ally lower) weight, which is defined, individually for every
grid point, by the ratio of the noise variance of hvA before
and after 2003. We assess the noise by the high-pass filtered
version of hvA separately for both periods (cf. Groh et al.,
2019). The high-pass filtering consists of removing a low-
pass filtered version of hvA, where the low-pass filter is a
Gaussian filter with a filter width of 6σ = 12 months.

To assess the goodness of fit, we calculate the values of
R squared, R2, as

R2
A = 1−

SS(rA)

SS(hvA)
= 1−

SS(rA)

SS(fvA
+ rA)

, (3)

where SS(rA) and SS(hvA) are the residual and total sum of
squares, respectively. SS(rA)/SS(hvA) describes the propor-
tion of unexplained variance. We calculate R2 for every grid
cell individually.

3.4 Different versions of adjusted firn thickness
variations

We derive two different sets of PCM, depending on the firn
model incorporated. Our annotation distinguishes the firn
models by superscripts “Ma” and “Mb” for the model by
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Figure 2. Basin-mean time series of modelled firn thickness variations from Veldhuijsen et al. (2023), fvMa (solid, black); of altimetric
variations from Schröder et al. (2019a), hvA1 (dotted, cyan); and of adjusted firn thickness variations based on A1a, fvA1a (solid, cyan).
Basin definitions are shown in Fig. 3.

Veldhuijsen et al. (2023) and Medley et al. (2022a), respec-
tively. The regression approach (Eq. 1) is applied with each
set of PCM and equally to each of the two products of hvA

from Schröder et al. (2019a) and Nilsson et al. (2022), which
we distinguish by superscripts “A1” and “A2”, respectively.
All combinations of data sets used result in four applications
of the regression approach (Table 1). Thus, we obtain four
versions of adjusted firn thickness variations (fvA1a, fvA2a,
fvA1b, fvA2b), altimetric residuals (rA1a, rA2a, rA1b, rA2b),
and R squared (R2

A1a, R2
A2a, R2

A1b, R2
A2b).

In Appendix A1, we additionally assess three alternative
ways of defining “adjusted” firn thickness variations. These
alternatives are the following. (E1) Accept the modelled firn
thickness variations, fvM, without any adjustment to altime-
try. (E2) Instead of using PCA-based dominant temporal pat-
terns, use the modelled time series of firn thickness varia-
tions at every grid cell and scale it to fit the altimetry. We
refer to the results as scaled firn thickness variations, fvE2.
(E3) Omit the standardisation step prior to the PCA and pro-
ceed according to Eqs. (1) and (2). We refer to the result as
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Figure 3. Drainage basins of the EAIS and WAIS used in this study
(thick black lines), slightly modified from the definition of Rignot
et al. (2011a, b). The outline of the Antarctic Peninsula is indicated
by a thin black line. Contour lines of the ice sheet surface are shown
at 1000, 2000, and 3000 m. We use the polar stereographic pro-
jection EPSG:3031 (WGS84, latitude of true scale: 71° S, central
meridian: 0°). All further maps are displayed in the same projection
and with the same spacing of longitude grid lines (every 45°) and
latitude grid lines (every 10°).

Table 1. Names of the four different versions of regression results
derived by applying the regression approach of Eq. (1) with differ-
ent data sets.

Name hvA from PCM from∗

A1a A1 (Schröder et al., 2019a) Ma (Veldhuijsen et al., 2023)
A2a A2 (Nilsson et al., 2022) Ma (Veldhuijsen et al., 2023)
A1b A1 (Schröder et al., 2019a) Mb (Medley et al., 2022a)
A2b A2 (Nilsson et al., 2022) Mb (Medley et al., 2022a)

∗ Standardised fvM (Sect. 3.2).

modified adjusted firn thickness variations, fvE3. Note that
we do not introduce fvE1 as this would correspond to fvM.

3.5 Assessment methods

3.5.1 Uncertainty in adjusted firn thickness variations

We assess the impact of the choice of data sets and thus
the influence of different errors in the adjusted firn thick-
ness variations, fvA, using differences between the time se-
ries of the various versions of firn thickness variations. For
each time series of differences we can calculate the tempo-
ral root mean square (rms). This is done for time series per

grid cell and also for time series of basin averages. To assess
the uncertainty in fvA we consider the maximum deviation
within the different versions of fvA (Table 1). For this pur-
pose, we form the six possible differences from fvA1a, fvA2a,
fvA1b, and fvA2b and take the maximum of the rms differ-
ences.

3.5.2 Robustness of adjusted firn thickness variations

We refer to the differences between adjusted and modelled
firn thickness variations as “the adjustments” (fvA

−fvM). We
consider these adjustments to be improvements over the firn
models if the differences within different versions of fvA are
significantly smaller than the adjustments. We test for signif-
icance by comparing the distributions of their temporal rms.
We use a two-sample, one-sided Kolmogorov–Smirnov test
which is a non-parametric hypothesis test as the differences
in fv do not follow a normal distribution. The Kolmogorov–
Smirnov test uses the empirical cumulative distribution func-
tion to compare the distributions of two samples (Massey,
1951; Miller, 1956; Marsaglia et al., 2003). The null hypoth-
esis (H0) reads as follows: both samples, the data of both dif-
ferences to be compared, are from the same continuous dis-
tribution. Thus, the alternative hypothesis (H1) reads as fol-
lows: the empirical cumulative distribution function of sam-
ple 1 (the differences within fvA) is larger than the empiri-
cal cumulative distribution function of sample 2 (the adjust-
ments); that is, the differences within fvA tend to be smaller
than the differences between fvA and fvM.

3.5.3 Spectral analysis of regression results

We analyse the time series of altimetric residuals, rA, and
adjusted firn thickness variations, fvA, in the spectral domain
through their power spectral density (PSD) and their spectral
indices, κ (Bos et al., 2012). As rA and fvA do not yield a
white noise behaviour, we use the formulation of power-law
noise to approximate their stochastic properties. For exam-
ple, a power law with κ =−1 and κ =−2 represents flicker
and random-walk noise, respectively.

3.5.4 Principal component analysis of altimetric
residuals

The altimetric residuals, rA, are further analysed in the
spatio-temporal domain. First, we perform PCA on the alti-
metric residuals themselves to further identify dominant sig-
nals related to ice sheet processes not considered or incor-
rectly represented by the firn models. Note that the residuals
may additionally contain signals related to variations in ice
flow dynamics or subglacial hydrology. Second, we perform
PCA on the residual differences to further detect and inves-
tigate prevailing uncertainties in the altimetry analysis. Only
data after 2003 are used because of the higher noise level in
the altimetry measurements of the older satellite missions.
Test experiments showed that errors in pre-2003 data bias
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the dominant modes, hardly helping to distinguish between
signal and error. We standardise the time series of residuals
and residual differences, as we did previously when identi-
fying dominant patterns in modelled firn thickness variations
(Sect. 3.2).

The first PCA is applied to the four versions of standard-
ised residuals (rA1a, rA1b, rA2a, rA2b). The second PCA is
applied to the two versions of standardised residual differ-
ences (rA1a

− rA2a and rA1b
− rA2b). Since we are interested

in the common characteristics of the four residual data sets
on the one hand and the two difference data sets on the other,
we combine the individual data sets and concatenate them to
form a “super data matrix”. Specifically, our data sets com-
prisem= 90638 points in space (entire area under investiga-
tion) and p = 108 points in time (2003–2017). Thus, the first
and second PCA is applied to the super data matrix of the
size 4m×p and 2m×p, respectively. The PCA is conducted
to identify the dominant temporal patterns (PCs), which are
shared by all versions, together with their space-dependent
and version-dependent spatial patterns (EOFs). Each identi-
fied mode thus consists of one joint PC (1×p) and four or
two EOFs (4m×1 or 2m×1) in the case of the first or second
PCA, respectively.

4 Results

4.1 Dominant patterns in modelled firn thickness
variations

We can explain at least 90 % of the total variance of the mod-
elled firn thickness variations, fvMa, with two modes (basin
5), three modes (basins 1, 3, and 6), four modes (basins 2,
4, and 8), and five modes (basins 7, 9, and 10). The modes
(i.e. the PC–EOF pairs) reveal a typical hierarchy of an au-
tocorrelated geophysical signal, as shown in Fig. 4 for the
region of Dronning Maud Land (basin 3). The first EOF is
almost uniform over the entire basin (Fig. 4a). The spatial
features of the second EOF follow the topography from north
to south (Fig. 4b), and the third EOF exhibits an east–west
gradient (Fig. 4c). The first PC shows a lower-frequency sig-
nal than the following PCs. All three PCs fluctuate over time
similar to an integrated random-walk process (Fig. 4d). In the
case of basin 3, 74 % of the variance is explained by the first
mode, which captures the accumulation events in 2009 and
2011 (Boening et al., 2012; Lenaerts et al., 2013) as shown
by the characteristic increase in the PC during these years
(Fig. 4d). All subsequent modes are more difficult to inter-
pret as a geophysical signal because their determination is
governed by the mathematical orthogonality property of PCs.

4.2 Regression results

4.2.1 Time series for a selected grid point

Figure 5 exemplifies the derivation of adjusted firn thick-
ness variations for a selected grid point, P1, and based on
the regression A1a (Table 1). P1 (37.7° E, 70.2° S) is located
in basin 3 close to the ice sheet margin at ∼ 1080 m height
(Fig. 3). There, the adjusted and modelled firn thickness vari-
ations, fvA1a and fvMa, have an SD of 40.5 and 51.5 cm,
respectively (Fig. 5a). By construction, the scaling factors,
e1...3, equal the SD of the associated scaled dominant tem-
poral patterns. In the presence of data gaps in the altime-
try time series, this equality approximately holds. Both fvA1a

and fvMa are dominated by PCMa
1 (Fig. 5b), as this pattern is

scaled by eA1a
1 = 39.2 cm (altimetry) and eMa

1 = 48.4 cm (firn
model). The second pattern, PCMa

2 (Fig. 5c), is very small in
the firn model (eMa

2 = +0.2 cm), while it is somewhat larger
and has an opposite sign for altimetry (eA1a

2 =−7.7 cm) but
is still small enough to contribute little to fvA1a.

The SD of altimetric residuals, rA1a, is 31.7 cm, less than
the SD of fvA1a (Fig. 5a). The R-squared value of R2

A1a
(Eq. 3) is 0.601. When calculated separately for the time be-
fore and after 2003, R2

A1a equals −0.004 and 0.831, respec-
tively. Thus, the adjusted firn thickness variations, fvA1a, de-
scribe less of the altimetry variance before 2003, while after
2003 they explain 83 %. Because of the different weighting
of hvA before and after 2003 (Sect. 3.3), R2

A can indeed be
negative and distinguishing the two periods is reasonable.

4.2.2 Scaling factors, e

The scaling factors, eA1a
1...3 and eMa

1...3, per grid cell are mapped
for the example of basin 3 in Fig. 6. The patterns of the fac-
tors, like the EOFs (Fig. 4), follow a typical hierarchy dis-
cussed in Sect. 4.1. Overall, the patterns of eMa

1...3 agree for a
large part with eA1a

1...3. However, the first spatial pattern from
the model extends further into the ice sheet interior than the
pattern from altimetry (Fig. 6d versus a). In general, scaling
factors from the model show a smoother and more blurred
pattern than the ones adjusted to altimetry. Patterns from al-
timetry reveal a higher level of detail and a more localised
spatial distribution. At certain regions the spatial distribu-
tions also differ, e.g. for the second pattern in the vicinity
of P1 (Fig. 6b versus e). The spatial variation in the scaling
factors along two selected profiles is given in Fig. S13, and
a comprehensive representation of the scaling factors for all
basins with the different choices of input data is given by
Figs. S5 and S14.

4.2.3 Firn thickness variations and their sensitivity to
the choice of data sets

In general, the spatial patterns of the rms of the adjusted
firn thickness variations, fvA, and the modelled firn thick-
ness variations, fvM, are similar (Fig. 7a and b). The rms val-
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Figure 4. PCA results of basin 3: dominant patterns in firn thickness variations identified from standardised firn modelling data (Ma). (a–
c) First three spatial patterns (EOFs). (d) First three temporal patterns (PCs). (e) Associated percentages of the basin’s total data variance.
Results for all basins and for both firn models, Ma and Mb, are given by Figs. S5–S9.

Figure 5. Regression results for the grid point P1 (Fig. 3). (a) Modelled firn thickness variations, fvMa (solid, black); adjusted firn thickness
variations, fvA1a (solid, cyan); and altimetric residuals, rA1a (dash-dotted, cyan). (b–d) Scaled first, second, and third PCM from the regres-
sion version A1a (cyan) and the model Ma (black). The solid cyan curve in (a) is the sum of the cyan curves in (b)–(d). Time series of a
larger subset of selected grid points (Fig. S10) are shown in Figs. S11 and S12.

ues are largest at the ice sheet margin and smallest over the
plateau of the EAIS. For grid cells in the elevation ranges of
(1) below 1000 m, (2) 1000 to 2000 m, (3) 2000 to 3000 m,
and (4) above 3000 m, median rms values are in the range of
(1) 12.2 to 16.4 cm, (2) 8.3 to 10.9 cm, (3) 3.5 to 5.1 cm, and
(4) 2.1 to 2.3 cm, respectively. Differences between adjusted
and modelled variations reveal the highest absolute rms val-
ues at lower elevations, near the AIS margins with median
rms differences in the range of 13.4 to 14.7 cm below 1000 m
(Fig. 7c). In a relative sense, the largest mismatch is found
not only in the interior of the EAIS but also at some loca-
tions on the ice sheet margin (Fig. 7d).

To evaluate the sensitivity of fv to the choice of data sets,
we calculate the difference between various versions of fv
(Sect. 3.5.1) and compare the distributions of the rms of these
differences (Fig. 8). In total, differences within fvA are small-
est, followed by differences within fvM, while differences
between fvA and fvM are largest (Fig. 8, Table 2). Differ-
ences within fvA indicate a smaller influence by different firn
model data than by different altimetry data. Differences be-
tween fvA and fvM are smallest for A1a (adjustment over the
firn model Ma through altimetry A1), largest for A2b (ad-
justment over the firn model Mb through altimetry A2) in a
relative sense, and largest for A1b (adjustment over the firn
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Figure 6. Scaling factors for basin 3. (a–c) eA1a
1...3 is the first three observed factors from the regression A1a. (d–f) eMa

1...3 is the first three
modelled factors from Ma. Panels (d)–(f) are the same as Fig. 4a–c but with restored signal amplitudes for each grid cell. The location of P1
is shown by the black triangle.

Figure 7. Root mean square (rms) of the times series of (a) adjusted firn thickness variations based on A1a, fvA1a, and (b) modelled firn
thickness variations based on Ma, fvMa. (c) The rms of the time series of the differences of fvA1a

− fvMa. (d) The rms of the time series of
the differences of fvA1a

− fvMa divided by the rms of fvMa. All versions of fvA and fvM are illustrated in Figs. S15 and S16.

model Mb through altimetry A1) in an absolute sense (Ta-
ble 2).

The differences between the various versions of fv reflect
errors in the firn models and in the altimetry products. These
are further discussed in Sect. 5.3 and 5.4.

4.2.4 Goodness of fit

The altimetric residuals are used to calculate the goodness
of fit or R2 (Eq. 3). The rms of the altimetric residual time
series and the values of R squared based on the regression
A1a, R2

A1a, are presented in Fig. 9a and b, respectively, for
the period after 2003. The rms of the residuals after 2003
is generally smaller than before 2003 (Fig. S18) due to the
different noise levels and weighting of the altimetry obser-
vations in the two periods (Sect. 3.3) so that R2 is generally
higher after 2003 than before 2003 (Fig. S19).

After the individual calculation of R2 for each grid cell,
basin-mean values are derived and listed in Table 3 for all
versions of regression. Averaged over the entire area, R2

A1a is
0.40 after 2003 (Table 3). This means that on average 40 %
of the variance of altimetric variations is captured by the re-
gression model, i.e. by fvA1a. Depending on the basin, fvA1a

captures 26 % (basins 4 and 8) to 58 % (basin 10) of the data
variance. In general, we find less agreement with altimetry
when incorporating the Mb firn model instead of the Ma firn
model (Table 3, column A1a versus A1b and column A2a
versus A2b).

The impact of methodological changes to the regression
approach (E1, E2, and E3 as summarised in Sect. 3.4) is elab-
orated in Appendix A2. The methodological changes result
in smaller average R2 values (Fig. A1, Table A1), so less of
the data variance can be explained. For this reason, the mod-
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Table 2. Overview of the comparison between various versions of firn thickness variations, as detailed in Fig. 8. Column 1 indicates the
addressed comparison: between versions of adjusted firn thickness variations, fvA (rows 1–4); between modelled firn thickness variations,
fvM (row 5); and between fvA and fvM (rows 6–9). For each comparison, column 2 gives the median (over all grid cells) of the rms (over
time) of differences between the two time series evaluated at each grid cell. The table is ordered by the median values (from small to large).
Column 3 also gives the median of the rms of differences but as a relative measure. For each grid cell, the rms of differences are divided by
the rms of fvMa. Then, the median over all grid cells is calculated. Column 4 gives a short description or possible causes.

Difference Median Description/cause
Absolute Relative

A2a−A2b 2.3 cm 0.47 influence of different firn model setups based on A2
A1a−A1b 2.7 cm 0.52 influence of different firn model setups based on A1

A1a−A2a 2.7 cm 0.54 different altimetry analysis based on Ma
A1b−A2b 2.8 cm 0.54 different altimetry analysis based on Mb

Ma−Mb 3.5 cm 0.65 different firn model setups

A1a−Ma 3.8 cm 0.73 adjustment over Ma through A1∗

A2a−Ma 4.1 cm 0.80 adjustment over Ma through A2∗

A2b−Mb 4.4 cm 0.87 adjustment over Mb through A2∗

A1b−Mb 4.5 cm 0.85 adjustment over Mb through A1∗

∗ Due to firn signals not being correctly represented by the models (firn model errors) and/or due to errors in the
altimetry products.

Figure 8. Histograms of the temporal rms, assessed at each grid
cell, of differences between various versions of firn thickness varia-
tions. Vertical lines in the box indicate median values. Correspond-
ing rms maps of differences are displayed in Figs. S15–S17.

ified approaches are not preferable to the chosen regression
approach presented in Sect. 3.3.

So far, the presented R2 values are based on calculations
per grid cell in accordance with the regression approach
Eq. (1). For basin-average time series, R2 becomes larger.
Figure 2 shows the basin averages of adjusted firn thick-
ness variations, which we may compare to the basin averages
of the altimetric variations through the values of R squared
given in the last column of Table 3. Indeed, fvA1a captures

Figure 9. (a) The rms of the residual altimetric time series, rA1a,
for the period after 2003. (b) Values of R squared for the regression
A1a, R2

A1a, considering the period after 2003. Colour bar arrows
indicate that the value range exceeds the limits of the colour scale.

up to 96 % (basins 9 and 10; WAIS) of the variance of basin-
average altimetry variations. Basin-mean time series of all
regression results and versions are presented in Figs. S20 and
S21.

However, on the level of individual grid cells the altimetric
residuals, rA, still contain a large proportion of the variance
of altimetric variations. For example, for A1a and the period
after 2003, an average ratio of 60 % of the altimetric varia-
tions is unexplained. Therefore, the residuals, rA, are further
investigated in Sect. 4.3 and 4.4.

4.3 Spectral analysis of regression results

We find a stronger autocorrelation for the time series of fvA1a

than for that of rA1a; i.e. rA1a is closer to white noise be-
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Table 3. Explained variance or R squared, R2, for each basin and
each version of regression (Table 1) over the period after 2003.
Apart from the last column (A1a), R2 is first calculated for each
grid cell according to Eq. (3) and then averaged over each basin.
Values of A1a are calculated by first averaging the regression re-
sults over each basin and then applying Eq. (3). Basin averages of
R2 for the period before 2003 are listed in Table S1 in the Supple-
ment.

Basin A1a A2a A1b A2b A1a

1 0.42 0.40 0.29 0.32 0.79
2 0.50 0.45 0.39 0.40 0.92
3 0.45 0.46 0.43 0.44 0.93
4 0.26 0.36 0.13 0.26 0.11
5 0.27 0.33 0.24 0.35 0.54
6 0.32 0.27 0.21 0.25 0.74
7 0.52 0.43 0.40 0.34 0.92
8 0.26 0.37 0.11 0.31 0.58
9 0.54 0.46 0.45 0.44 0.96
10 0.58 0.53 0.44 0.44 0.96

1–10∗ 0.40 0.40 0.29 0.34 0.79

∗ Refers to the entire area (considered a single basin).

haviour than fvA1a, since the power spectral density (PSD)
for fvA1a shows a steeper decrease with frequency than for
rA1a (Fig. 10a). At low frequencies the PSD of fvA1a gen-
erally exceeds the PSD of rA1a, while above a certain fre-
quency (∼ 0.5 yr−1 for P1) the PSD of rA1 exceeds that of
fvA1a (Fig. 10a). The spectral indices, κ , determined for rA1a

and fvA1a are −1.75 and −3, respectively, at P1. Over the
entire area, the mean value of κ for rA1a is −1.72 (Fig. 10b),
which indicates temporally correlated residuals with charac-
teristics close to random-walk noise. For fvA1a, in contrast,
the value of κ is−3 at each grid cell. The employed software
to estimate κ (Bos et al., 2012) has −3 as its minimum out-
put value. Hence, fvA1a has κ ≤−3 and therefore a stronger
autocorrelation than rA1a.

4.4 Dominant patterns in altimetric residuals

The first three dominant modes explain 23 % of the variance
of altimetric residuals (Fig. 11e) and 19 % of the variance of
residual differences (Fig. 12e). The first mode of the resid-
ual differences captures 10 %, and its temporal pattern re-
veals a prominent drop between July 2010 and January 2011
(Fig. 12d). Due to the data standardisation prior to PCA, the
EOFs cannot be directly interpreted as amplitudes in eleva-
tion change. For their presentation (Figs. 11a–c and 12a–c),
we restored the signal amplitudes for each grid cell by multi-
plying the SD of the time series, which was used beforehand
to normalise the time series.

Figure 10. (a) Lomb–Scargle power spectral density (PSD) of alti-
metric residuals, rA1a (blue), and adjusted firn thickness variations,
fvA1a (green), for the grid point P1. See Figs. S22 and S23 for the
larger subset of selected grid points. (b) Spectral index κ for power-
law noise adjusted to rA1a of every grid cell. Colour bar arrows
indicate that the value range exceeds the limits of the colour scale.

5 Discussion

5.1 Interannual firn thickness variations

In general, adjusted firn thickness variations, fvA (e.g. Fig. 7a
for version A1a), and modelled firn thickness variations,
fvM (e.g. Fig. 7b for Ma), share the same spatial patterns.
The largest magnitudes are found at lower elevations near
the ice sheet margins with median rms values in the range
of decimetres. The smallest magnitudes are found over the
plateau of the EAIS with median rms values in the range of
centimetres (Sect. 4.2.3). This general spatial pattern was to
be expected, as it is related to the spatial variability in SMB.
Snowfall, the main driver of Antarctic SMB variability, in-
creases from the dry, relatively flat and homogeneous interior
to the steep and complex topography of the wetter coastal
conditions. High snowfall at the ice sheet margins occurs
due to orographic precipitation, influenced by the winds and
topography of the AIS (van Wessem et al., 2014; Lenaerts
et al., 2019).

The adjusted firn thickness variations, fvA, reveal a strong
temporal autocorrelation through the strong decrease in their
PSD with frequency, with spectral indices κ ≤−3 for a
power-law noise model (Sect. 4.3). This is in line with the
findings of King and Watson (2020). They estimated the
power-law noise parameter, κ , to be in the range of −2.3
to −2.2 and −3.0 to −2.6 based on SMB estimates from
RACMO2.3p2 and ice core composites, respectively. Unlike
our analysis, they only co-estimated a linear trend.

In the following, we compare how much variance of alti-
metric variations (for the period after 2003) can be explained
according to the applied approach and the two different spa-
tial considerations used previously, namely, first, the percent-
ages assessed from grid cell time series and then averaged
over the entire area, and second, the percentages from time
series averaged over the entire area (“mean Antarctic” time
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Figure 11. PCA results of standardised altimetric residuals for the period after 2003. (a–c) First three spatial patterns (EOFs) (version
dependent) shown here for rA1a and with restored signal amplitudes for each grid cell. The EOFs of all versions are illustrated in Figs. S24
and S25. (d) First three temporal patterns (PCs) determined from the aggregated data sets of rA1a, rA1b, rA2a, and rA2b. (e) Associated
percentages of the total residual variance considering the respective PC–EOF pairs.

Figure 12. PCA results of standardised altimetric residual differences for the period after 2003. (a–c) First three spatial patterns (EOFs)
(version dependent) shown here for rA1a

−rA2a and with restored signal amplitudes for each grid cell. The EOFs of all versions are illustrated
in Figs. S26 and S27. (d) First three temporal patterns (PCs) are the joint basis of rA1a

− rA2a and rA1b
− rA2b. (e) Associated percentages

of the total variance of residual differences considering the respective PC–EOF pairs.

series, Fig. 13). The modelled firn thickness variations, fvMa,
explain 11 % and 64 % for the two spatial considerations, re-
spectively (Table A1, columns E1 and E1). The scaled firn
thickness variations, fvE2, explain 31 % and 71 % (Table A1,
columns E2 and E2), respectively. The modified adjusted firn
thickness variations, fvE3, explain 37 % and 79 % (Table A1,
columns E3 and E3). Finally, the adjusted firn thickness vari-

ations, fvA1a, explain 40 % and 79 % for the two spatial con-
siderations (Table 3, columns A1a and A1a).

Our regression approach (Eq. 1), which generates fvA1a,
explains a larger part of the variance of altimetric variations
than the other approaches. The spatial scale investigated is
crucial for the results, as the estimates from the basin-mean
time series explain more of the altimetry variance than the es-
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Figure 13. Mean Antarctic interannual elevation changes depending on the applied approach. Modelled firn thickness variations (fvMa),
altimetric variations (hvA1), adjusted firn thickness variations (fvA1a), scaled firn thickness variations (fvE2), and modified adjusted firn
thickness variations (fvE3).

timates considering each grid cell equally. However, the lat-
ter are needed to understand the spatial patterns of firn varia-
tions.

5.2 Uncertainty and robustness of adjusted firn
thickness variations

The adjusted firn thickness variations, fvA, include the effects
of firn model errors and altimetry errors. The differences of
fvA1a

− fvA1b (Fig. 14a) and fvA2a
− fvA2b, evaluated at ev-

ery grid cell, are used to assess the influence of different firn
model setups on fvA. The median values (over all grid cells)
of absolute and relative differences are in the range of 2.3 to
2.7 cm and 47 to 52 %, respectively (Table 2, Fig. 8). The dif-
ferences of fvA1a

− fvA2a (Fig. 14b) and fvA1b
− fvA2b, eval-

uated at every grid cell, are used to assess the influence of
different altimetry analysis on fvA. The median values (over
all grid cells) of absolute and relative differences are in the
range of 2.7 to 2.8 cm and ∼ 54 %, respectively (Table 2,
Fig. 8). Both the firn model and altimetry errors are discussed
in Sect. 5.3 and 5.4 separately.

To assess the combined influence of firn model and altime-
try errors on fvA, the maximum deviation within the different
versions of fvA is used (Sect. 3.5.1). Figure 14c shows the
map of the maximum rms values. The median values (over
all grid cells) of absolute and relative (maximum) differences
are ∼ 4.2 cm and ∼ 80 %, respectively. In addition, median
values are calculated for every basin separately. The abso-
lute and relative uncertainties range from 2.2 cm (basin 8) to
10.6 cm (basin 10) and from 54 % (basin 5) to 186 % (basin
8), respectively. We consider these estimates to be rough but
rather conservative uncertainty assessments for the adjusted
firn thickness variations. In addition to the evaluation at the
grid cell level, the uncertainty in fvA is assessed by time
series differences in the basin means. See Fig. S20 for the
basin-mean time series of the four versions of fvA. The asso-
ciated uncertainties per basin range from 0.9 cm (basin 4) to
6.4 cm (basin 10). The relative uncertainties are in the range
of 20 % (basin 2) to 108 % (basin 8). For mean Antarctic fvA

an absolute and relative uncertainty of∼ 1.3 cm and∼ 66 %,
respectively, are estimated.

We assess the robustness of fvA through statistical tests
according to Sect. 3.5.2. For each basin, four tests are con-
ducted, each comparing the temporal rms of the following
pair of differences in firn thickness variations. Test 1 com-
pares A1a−A2a to A1a−Ma, test 2 compares A1a−A2a
to A2a−Ma, test 3 compares A1b−A2b to A1b−Mb, and
test 4 compares A1b−A2b to A2b−Mb. For all 40 tests, H0
is rejected (at the 5 % significance level), and, thus, H1 is ac-
cepted. This means that the differences within fvA are signifi-
cantly smaller than the adjustments, which are the differences
between fvA and fvM, and that fvA can be described as an im-
provement over fvM. Figure 15 exemplifies the distributions
of the differences for basin 3. The histograms and cumulative
histograms for all basins are shown in Figs. S28 and S29, re-
spectively. The results of the statistical tests demonstrate that
fvA is relatively robust to the choice of data sets, firn models,
and altimetry products. The choice of data sets does not sig-
nificantly influence fvA. Consequently, the assumption that
fvA represents a significant improvement over the modelled
variations is reasonable. Limitations are discussed below.

5.3 Firn model errors

Firn model errors arise from firn signals that are not sim-
ulated or not correctly represented by the firn model or its
input from RCMs and reanalysis data. They are partly re-
flected in the differences of fvMa

− fvMb (Fig. S16) and the
adjustments over the firn models, i.e. any version of fvA

−fvM

(Fig. S17). Partly, the adjustments also include altimetry er-
rors, as discussed in Sect. 5.4. Firn models generally show
a smoother, more blurred spatial pattern than altimetry (cf.
Fig. 6d–f versus a–b and also Fig. 7b versus a). Reasons may
be small-scale, mainly wind-driven processes that are miss-
ing in the model physics or not resolved at the same level
of detail due to the coarser spatial resolution of the models
(Lenaerts et al., 2012, 2019).

The spatial patterns of absolute differences within fvM and
of the adjustments (e.g. Fig. 7c) follow the spatial pattern of
the signal itself. The greatest differences occur at the mar-
gins, where the climate is wetter and temperatures and accu-
mulation are higher than inland. Especially in these coastal
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Figure 14. (a) The rms of (the time series of) the differences of fvA1a
−fvA1b. (b) The rms of the differences of fvA1a

−fvA2a. (c) Uncertainty
estimate of fvA: maximum rms of any combination of differences within versions of fvA. (d) The rms of the residual differences of rA1a

−

rA2a considering only the period after 2003. All rms maps (a–d) are normalised by the rms of fvMa.

Figure 15. Histograms of the temporal rms of differences between
various versions of firn thickness variations assessed at each grid
cell of basin 3.

regions of high-relief topography, the horizontal resolution
of the models, probably together with its physics, plays an
important role (Mottram et al., 2021). There, the differences
between altimetry and firn models may be influenced by an
incorrect or inaccurate spatial distribution of the modelled
firn thickness variations (Fig. 6).

The modelled SMB components and their uncertainties
have a direct impact on the modelled firn thickness. By as-
sessing the spread of an ensemble of modelled firn thickness
changes, Verjans et al. (2021) identified the RCMs as the
largest contributor to the ensemble uncertainty. A precise pa-
rameterisation of firn compaction and surface snow density
gains in importance in regions with high snowfall and large
spatial variability in climatic conditions, such as Dronning
Maud Land and Enderby Land (Verjans et al., 2021). How-
ever, the firn compaction rate in both firn models used here
is determined by constant mean annual accumulation and not
by instantaneous overburden pressure. This lessens the mod-

elled firn compaction variability compared to the actual vari-
ability, potentially across all the areas of large accumulation
variability (Kuipers Munneke et al., 2015).

In a relative sense, the adjustments (e.g. Fig. 7d) generally
increase from the coast to the EAIS interior as the magnitude
of the signal, the firn thickness variation, is very small in the
interior due to the cold and dry climate. In these areas of
low snowfall, the relative uncertainties in the firn models are
virtually unaffected by the formulation of firn densification
and surface snow density, but the input of RCM components
is essential (Verjans et al., 2021). Scambos et al. (2012) ar-
gue that RCMs might overestimate SMB in wind-glazed ar-
eas. These areas feature wind-polished glazed surfaces at the
top of a coarsely recrystallised firn layer and are formed by
constant katabatic winds. They have near-zero SMB and oc-
cur on leeward faces of ice sheet undulations and megadunes
(Scambos et al., 2012). Large wind-glazed areas are located
across basins 4 and 8, where all four versions of adjustments
reveal highest relative values (Fig. S17e–h).

In basin 4, towards the boundary with basins 1 and 3, the
large relative adjustments (Fig. S17e–h) indicate disagree-
ment between the models and altimetry, whereas the four
versions of altimetry agree (Fig. S15i–l) and the two mod-
els agree (Fig. S16d). The reasons for this are not yet clear.
Basin 8 is characterised by large megadune fields (Fahne-
stock et al., 2000; Dadic et al., 2013). Megadunes typically
have an amplitude of 2 to 4 m and wavelengths of 2 to 5 km
and are formed by a complex interaction of surface topog-
raphy, snow accumulation, and redistribution due to highly
persistent katabatic winds. While leeward slopes are wind
glazed, windward slopes accumulate and are characterised
by sastrugi of up to 1.5 m in height (Fahnestock et al., 2000;
Frezzotti et al., 2002). The discrepancy between altimetry
and the firn models across basin 8 can partly be explained
by the lack of modelling of the formation of the complex
spatial pattern of megadunes and their migration over time in
the firn models. In the case of basin 8, models and altimetry
disagree (Fig. S17e–h), as do the different versions of fvM
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(Fig. S16d) and the different versions of fvA (Fig. S15i–l).
The latter is discussed in Sect. 5.4.

Discrepancies within the adjustments (i.e. within versions
of fvA

− fvM) can further indicate which firn model or which
dominant patterns of one firn model fits the altimetry bet-
ter. Overall, the adjustments are smaller when involving Ma
(Fig. 8, Table 2). Amongst the different basins (see Figs. S28
and S29, solid green and brown versus dash-dotted green
and brown lines), this applies in particular for basins 4–6.
Across basin 2 the adjustments tend to be slightly smaller
when involving Mb. Altimetric residuals, rA, still include a
non-negligible part (60 % for A1a) of the variance of alti-
metric variations (Fig. 9c, Table 3). Since the dominant pat-
terns were chosen such that they cover at least 90 % of the
variance of fvM, rA could partially contain real firn signals
captured by firn models in the remaining ∼ 10 % of the data
variance. However, it is likely that a larger part of rA in-
cludes real firn signals not captured by the dominant tem-
poral patterns of the firn models. The PSD of the underlying
time series of rA1a yields a spectral index of −1.7 (Sect. 4.3,
Fig. 10b). The remaining autocorrelation in the residuals sug-
gests that temporally correlated signals such as real firn sig-
nals are still present. Also, the spatial patterns of the most
dominant modes of rA reveal topography-dependent magni-
tudes and patterns, as one would expect from SMB and its
variations (Sect. 4.4, Fig. 11a–c). Besides firn signals, the al-
timetric residuals additionally include altimetry errors (dis-
cussed in Sect. 5.4) and probably also further signals related
to variations in ice flow dynamics or subglacial hydrology
(not discussed further).

5.4 Altimetry errors

The differences between any version of fvA and fvM (the ad-
justments, e.g. Fig. 7c) may include effects of altimetry er-
rors, in addition to firn model errors. Noise in the altime-
try measurements might explain another part of the fact that
firn models show a smoother spatial pattern of variations
than altimetry. Noise in altimetry can be a problem, espe-
cially in the interior of the EAIS, where the signal-to-noise
ratio is low. Over megadune areas (widely located in the inte-
rior across basin 8), conventional radar altimetry with pulse-
limited footprints of 1.5 to 2.5 km in diameter may not be
capable of adequately observing the time-varying spatial pat-
terns of megadunes.

A further limitation in radar altimetry is that measurements
refer to the local topographic maxima within their footprints.
Especially at the margins over complex topography, this can
lead to sampling issues, as the elevation changes acquired
there cannot capture the larger changes often found in the
valleys. Laser altimeters are not affected by this sampling is-
sue. However, since ICESat operated in the campaign mode
(Abshire et al., 2005), the sampling in areas with steep slopes
can vary strongly during the period 2003–2009, with some
months including laser altimetry and some months relying

exclusively on radar altimetry. Moreover, radar altimetry re-
sults are affected by the time-varying radar waveform shape
due to time-varying signal penetration (Davis and Ferguson,
2004; Rémy et al., 2012). Even though these effects are ac-
counted for in the altimetry processing, related residual er-
rors may have an impact on the adjustments. These errors,
which tend to be correlated in time, are likely included in the
altimetric residuals, rA, which may explain, to some part, the
temporal correlation of rA (Sect. 4.3, Fig. 10b).

Discrepancies within the adjustments (i.e. within versions
of fvA

− fvM) can indicate which altimetry solution is closer
to the firn models. However, results are equivocal (Fig. 8,
Table 2). When involving the Ma firn model, the adjustments
through A1 are smaller than those through A2 for most basins
(see Figs. S28 and S29, solid green versus solid brown line).
When involving the Mb firn model instead, the adjustments
are of the same order of magnitude for A1 and A2, and it
depends on the basin whether the adjustments are smaller
with A1 or A2.

Uncertainties due to a different analysis of the altime-
try measurements are reflected by the differences in fvA

(Fig. 14b) and rA (Fig. 14d) between solutions based on the
same firn model (A1a–A2a or A1b–A2b). The median val-
ues (over all grid cells) of rms differences of rA1a

− rA2a in
the time period after 2003 are ∼ 4.9 cm and ∼ 96 %, in an
absolute and relative sense, respectively. If the entire period
was considered, the median values would increase consider-
ably (∼ 7.3 cm and ∼ 163 %). For both periods, the residual
differences are greater than the differences of fvA1a

− fvA2a

(Table 2, Fig. 14b) and also greater than the uncertainty esti-
mate of fvA (Sect. 5.2, Fig. 14c).

The differences between fvA1 and fvA2 as well as be-
tween rA1 and rA2 mostly result from the combined effect
of the various differences between the altimetry analysis of
Schröder et al. (2019a) and Nilsson et al. (2022) (Sect. 2.1).
The rms of fvA1a

− fvA2a is shown in Fig. 14b in a relative
sense. The largest relative differences occur in regions of
complex topography, such as in Victoria Land (at the mar-
gin of basin 7); next to the Amery Ice Shelf (at the margin
of basin 4); and over most of basin 8, for which we already
discussed the possible influence of megadunes. In addition,
stripes related to the satellite ground tracks are visible in the
region of basins 1 to 2 (Fig. 14b). They seem to appear pre-
dominantly in fvA2 (Fig. S15b and d).

The following features may likely be quite clearly at-
tributed to a difference in intermission and intermode calibra-
tion between the two altimetry products. The mode change of
CryoSat-2 (see e.g. Fig. 5 in Slater et al. (2018) for the mode
boundaries) is reflected in the residual differences (Fig. 14d).
Here, the main influence seems to come from A2 altimetry,
as the areas at the mode boundary in basins 5–7 and 9–10,
characterised by a higher rms value, are mainly visible in
rA2 (Fig. S18f and h). In addition, the mode transition also
appears to be reflected in fvA2, particularly at basins 5 and
6 (Fig. S15b and d). The PCA carried out on rA1a

− rA2a

The Cryosphere, 18, 4355–4378, 2024 https://doi.org/10.5194/tc-18-4355-2024



M. T. Kappelsberger et al.: Antarctic firn thickness variations 4371

and rA1b
− rA2b reveals a prominent drop between July 2010

and January 2011, together with overall linear trends before
and after this drop in the first PC (Fig. 12d). The correspond-
ing spatial pattern (Fig. S26a and b) is most pronounced and
coherent over the EAIS. The pattern of the first mode is an
indicator for differences and uncertainties in deriving inter-
mission offsets, as CryoSat-2 measurements begin in July
2010. The errors in the altimetry are not only seen in the
first modes of the PCA of the residual differences. It is likely
that the first modes of the PCA of the residuals themselves
also contain altimetry errors. A comparison of the dominant
modes of the residuals (Fig. 11) with those of the residual
differences (Fig. 12) indicates partly similar features, which
suggests similar causes. For example, there are also remark-
ably large fluctuations in the first temporal patterns of the
residuals between July 2009 and January 2011 (Fig. 11d).

5.5 Limitations of the approach

In regions of a low signal-to-noise ratio the regression ap-
proach has a limited capability to distinguish between signal
and error. This applies in particular to the interior of the EAIS
(basin 8 and parts of basins 1 and 4). In these areas, the re-
gression of the altimetry data to PCM may be dominated by
noise in the altimetry data. In this study, we work with a con-
stant spatial grid resolution of 10 km× 10 km regardless of
the signal magnitude. To improve the signal-to-noise ratio,
further work may choose a geographically varying spatial
resolution adapted to the spatial variability in the glaciologi-
cal processes, which would probably imply a coarser resolu-
tion in the interior.

We included altimetry measurements only over the period
May 1992 to December 2017 as this represents the com-
mon period of both altimetry products (Sect. 2). A2 altime-
try data, however, are available until December 2020. Fur-
ther investigations may hence extend the period to the more
recent past. These may incorporate accurate laser measure-
ments from ICESat-2 characterised by a low noise level and
near-zero signal penetration (Nilsson et al., 2022; Otosaka
et al., 2023a).

The stochastic model in the regression approach does not
include temporal error covariances in altimetry (Sect. 3.3),
although errors in the altimetry time series exhibit tempo-
ral correlations, as shown by Ferguson et al. (2004) and
also in this study (Sect. 4.3). The consideration of tempo-
ral correlations is essential for assessing more realistic un-
certainties. In particular, this is the case for long-term trends
(Williams et al., 2014). Thus, future work may extend the
stochastic model. This requires a comprehensive error char-
acterisation for altimetry products, which has not been pro-
vided up to now. An empirical error characterisation could
apply different noise models (e.g. power law, generalised
Gauss–Markov, auto-regressive) to the regression approach
(Bos et al., 2012; King and Watson, 2020). Alternatively, the

spread of an ensemble of altimetry solutions could be con-
sidered (Willen et al., 2022).

5.6 Outlook

We do not aim here to compare our results with in situ data,
as the ground-based SMB observations are mostly single-
point measurements and have a very sparse spatial and tem-
poral coverage (Eisen et al., 2008). However, future investi-
gations may assess the benefits of fvA in certain regions with
in situ data, e.g. by making use of stake observations (Mot-
tram et al., 2021; Richter et al., 2021).

To improve firn model outputs, it is important to refine the
horizontal spatial resolution of RCMs and to simulate sur-
face processes at a higher spatial resolution (Lenaerts et al.,
2019). For Greenland, Noël et al. (2016) statistically down-
scaled outputs from RACMO2.3 at 5.5 and 11 km to a res-
olution of 1 km, which led to e.g. increased melt over cer-
tain areas. Similar work is in progress for Antarctica, down-
scaling RACMO2.3p2 at 27 to 2 km (Noël et al., 2023). Fur-
thermore, a more detailed physical parameterisation of the
processes already considered and the inclusion of processes
not yet simulated can improve the models (Agosta et al.,
2019; Gutiérrez et al., 2021). An update of RACMO2.3p2
to RACMO2.4p1 with enhanced physics is now available for
2006 to 2015. This includes several new and updated param-
eterisations, such as cloud, aerosol, and radiation schemes or
a new scheme for spectral albedo and radiative transfer in the
snow scheme (van Dalum et al., 2024).

To improve altimetry products, noise in the altimetry mea-
surements and correlated altimetry errors related in particular
to time-variable radar signal penetration and scattering ef-
fects need to be reduced. Helm et al. (2023) developed a new
processing scheme (retracker) based on a deep convolutional
neural network architecture, resulting in presumably strongly
reduced time-variable signal penetration effects, which could
significantly improve the elevation change products from the
entire sequence of radar altimetry missions. Moreover, the
intermission calibration needs further investigation. The pat-
terns of estimated intermission offsets are spatially variant
and are related to the waveform parameters, possibly as-
sociated with topography and surface properties. However,
this relation is not fully understood, so no functional rela-
tionship has yet been found and intermission offsets are de-
termined empirically (Zwally et al., 2005; Khvorostovsky,
2012; Schröder et al., 2019a; Nilsson et al., 2022). There-
fore, intermission calibration still remains one of the most
challenging processing steps for inferring a long-term, multi-
mission satellite altimetry estimate.

Future developments in firn modelling, satellite altimetry
analysis, and altimetry mission sensors will allow for iden-
tifying interannual firn signals and, thereby, better isolating
and quantifying long-term trends. This will improve long-
term estimates and reduce their uncertainties (Amory et al.,
2024). The regression approach presented in this study may
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set the stage for isolating long-term signals in satellite al-
timetry from the large interannual variations. To this end, fu-
ture studies should extend the approach with an appropriate
stochastic model that accounts for covariances in altimetry
to derive statistically significant long-term trends over 25 to
30 years. With longer time series, trend uncertainties will be
further reduced (Wouters et al., 2013). In this way, large un-
certainties in inferring mass balance estimates of the EAIS
(Otosaka et al., 2023b) may be reduced and the question
whether the EAIS is currently thickening or thinning (Nils-
son et al., 2021) may be answered in the future.

6 Conclusions

We developed a new approach that combines satellite al-
timetry and firn modelling results to resolve Antarctic firn
thickness variations at a high temporal and spatial resolu-
tion, namely by monthly 10 km grids. On the one hand,
our approach incorporates the strengths of the firn models,
above all the capability to capture the timing of firn thick-
ness variations. On the other hand, our approach compen-
sates for shortcomings of the firn models, foremost in the
simulation of the location-dependent amplitudes of the vari-
ations. To do so, we fitted dominant temporal patterns of in-
terannual to decadal variations in Antarctic firn thickness in-
ferred from the firn models from Veldhuijsen et al. (2023)
and Medley et al. (2022a) to satellite altimetry observations
from Schröder et al. (2019a) and Nilsson et al. (2022). In
this way, we generated a new, combined product, which we
named the adjusted firn thickness variations, fvA.

Our guiding question was as follows: how well can satel-
lite altimetry and firn models resolve Antarctic firn thickness
variations? Well, it depends. This study shows that firn mod-
els and altimetry products provide complementary informa-
tion on firn thickness variations. The combined data set, fvA,
characterises spatially resolved variations better than either
(1) firn models alone or (2) altimetry alone. (1) The adjusted
firn thickness variations, fvA, outperform the modelled firn
thickness variations, fvM. Compared with fvM, fvA improves
the amplitudes of the variations because they are observed
by the altimeter satellites and their patterns actually indicate
more meaningful information. However, the improved ob-
served amplitudes may also include effects of altimetry er-
rors due to firn penetration, as both the time-variable signal
and these errors are influenced by the SMB and firn pro-
cesses and are thus temporally correlated. (2) The adjusted
firn thickness variations, fvA, outperform the altimetric vari-
ations, hvA, because fvA eliminates a large part of the al-
timetry errors. If one were to take hvA alone, this would also
incorporate all the errors in hvA. Over Antarctica, or rather
the entire area studied, this would introduce median absolute
and relative uncertainties of ∼ 7.3 cm and ∼ 163 %, respec-
tively (evaluated at the grid cell level). However, by choosing
fvA instead of hvA, part of the observed firn signal is ignored.

How well fvA resolves real Antarctic firn thickness vari-
ations depends strongly on the region under investigation.
Over all grid cells of Antarctica, median absolute and rela-
tive uncertainties in fvA are ∼ 4.2 cm and ∼ 80 %, respec-
tively. Over all grid cells of individual basins, the median
relative uncertainties are lowest for basin 5, the region of
Queen Mary Land (54 %), and highest for basin 8 (186 %).
The large uncertainty in basin 8 is likely due to the pres-
ence of megadune fields. We find the smallest adjustment that
fvA requires over fvM when using the altimetry data from
Schröder et al. (2019a) and the firn model of Veldhuijsen
et al. (2023), and this is most prominent for basins 5 and 6.
From the spectral analysis of the altimetry residuals, rA, we
still find autocorrelated signals that we could not attribute to
firn thickness variations using the firn models. A small part
of these residual signals may be due to the limitation of our
regression which neglects up to 10 % of the potentially cor-
rectly modelled variations. However, we attribute the larger
part to a combination of altimetry errors, in particular time-
variable signal penetration and errors in intermission offsets,
and firn model errors, that is, incorrectly simulated processes
or missing processes.

We identified regions of discrepancy between the firn mod-
els and the altimetry products and within the models or al-
timetry and discussed the underlying errors in both the mod-
els and the altimetry. These results shall help modellers and
altimetry data processors to improve their simulations and
processing methods (Sect. 5.6) and help users to better un-
derstand the nature of the modelling and altimetry data and
to apply and interpret them, knowing their strengths and lim-
itations.

Appendix A: Impact of methodological changes

A1 Methods

To investigate the impact of methodological changes on de-
termining adjusted firn thickness variations, fvA, three mod-
ifications to the original regression approach are tested.

In the first experiment, E1, we simply subtract the mod-
elled firn thickness variations, fvM, from the altimetric vari-
ations, hvA, according to

rE1(t)= hvA(t)− fvM(t). (A1)

In the second experiment, E2, fvM at any grid cell is simply
scaled to fit the altimetric variations. The regression reads

hvA(t)= e fvM(t)+ rE2(t), (A2)

where e is the scaling factor. We refer to e fvM
= fvE2 as

scaled firn thickness variations. In the third experiment, E3,
we do not change the principle of the deterministic model
of Eq. (1), but we modify the dominant temporal patterns,
PCM. Originally, the temporal patterns are derived from the
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Figure A1. Differences between theR-squared values from A1a and the experiments E1, E2, and E3. (a) A1a−E1, (b) A1a−E2, (c) A1a−E3.
Colour bar arrows indicate that the value range exceeds the limits of the colour scale.

standardised fvM by PCA. In E3, the time series of fvM are
not standardised prior to the PCA. The resulting modified ad-
justed firn thickness variations are referred to as fvE3.

We consider the regression method whose R-squared
value, R2, is maximum best, i.e. which is able to describe
most of the data variance. For the three experiments, Eq. (3)
modifies to

R2
E1 = 1−

SS(rE1)

SS(fvMa
+ rE1)

, (A3a)

R2
E2 = 1−

SS(rE2)

SS(e fvMa
+ rE2)

= 1−
SS(rE2)

SS(fvE2
+ rE2)

, (A3b)

R2
E3 = 1−

SS(rE3)

SS(fvE3
+ rE3)

. (A3c)

A2 Results

The impact of methodological choices on the goodness of fit
is tested based on the three experiments, E1–E3 (Sect. A1).
The results are given for using the Ma firn model and A1
altimetry and should, therefore, be compared to the results
from the regression approach A1a.

For every grid cell, Fig. A1 compares theR-squared values
from the regression approach A1a, R2

A1a, to the R-squared
values R2

E1, R2
E2, and R2

E3. R2
A1a is larger than R2

E1, R2
E2,

and R2
E3 over 88 %, 78 %, and 66 % of the total area, respec-

tively. After calculating R2
E1, R2

E2, and R2
E3 for each grid cell,

(basin-)mean values are derived and listed in columns 2–4 of
Table A1. Averaged over the entire area, E1, E2, and E3 have
mean R2 values of 0.11, 0.31, and 0.37. For all three mod-
ifications, R2 is smaller than R2

A1a (Table 3, column A1a),
and, thus, their regression approaches describe less of the
data variance than the original regression approach of A1a.
E3 describes slightly more of the data variance than A1a for 1
out of 10 basins (basin 3: 47 % versus 45 %). Moreover, Ta-
ble A1 (columns 6–7) lists values of R2 derived from basin-
average time series (E1, E2, and E3). Values derived from
basin-average time series are larger than values based on the
calculations per grid cell, similar to the regression approach
A1a (Table 3, column A1a versus A1a).

Table A1. Explained variance or R2 for each basin and each ex-
periment (E1, E2, E3) of methodological changes to the regression
approach over the period after 2003. R2 is first calculated for each
grid cell according to Eqs. (A3a)–(A3c) and after averaged over
each basin. Values of E1, E2, and E3 are calculated by first aver-
aging the results from the experiments over each basin and then
applying Eqs. (A3a)–(A3c).

Basin E1 E2 E3 E1 E2 E3

1 0.20 0.34 0.38 0.71 0.73 0.78
2 0.21 0.38 0.45 0.77 0.88 0.88
3 0.21 0.42 0.47 0.89 0.94 0.95
4 −0.29 0.12 0.24 −5.52 −0.22 0.06
5 0.06 0.26 0.26 −0.19 0.36 0.31
6 0.21 0.29 0.32 0.73 0.76 0.80
7 0.23 0.40 0.49 0.72 0.87 0.92
8 −0.08 0.11 0.17 0.23 0.48 0.50
9 0.32 0.39 0.47 0.94 0.93 0.96
10 0.27 0.46 0.56 0.93 0.97 0.96

1–10∗ 0.11 0.31 0.37 0.64 0.71 0.79

∗ Refers to the entire area (considered a single basin).

The simple scaling factor, e, adjusted during the regression
approach after experiment E2 is displayed in Fig. S30.

Data availability. The altimetry products from Schröder
et al. (2019a) and Nilsson et al. (2022) are available at
https://doi.org/10.1594/PANGAEA.897390 (Schröder et al.,
2019b) and https://doi.org/10.5067/L3LSVDZS15ZV (Nilsson
et al., 2021), respectively. The firn model data from Medley et al.
(2022a) are available at https://doi.org/10.5281/zenodo.7054574
(Medley et al., 2022b). The code of the firn model
from Veldhuijsen et al. (2023) is available at https:
//github.com/brils001/IMAU-FDM (last access: 13 Septem-
ber 2024) and https://doi.org/10.5281/zenodo.5172513 (Brils et al.,
2021). The firn model data from Veldhuijsen et al. (2023) and
the results of this study can be obtained from the authors without
conditions.
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