Articles | Volume 18, issue 9
https://doi.org/10.5194/tc-18-4215-2024
https://doi.org/10.5194/tc-18-4215-2024
Research article
 | 
18 Sep 2024
Research article |  | 18 Sep 2024

Analytical solutions for the advective–diffusive ice column in the presence of strain heating

Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas

Related authors

Antarctic tipping points triggered by the mid-Pliocene warm climate
Javier Blasco, Ilaria Tabone, Daniel Moreno-Parada, Alexander Robinson, Jorge Alvarez-Solas, Frank Pattyn, and Marisa Montoya
Clim. Past, 20, 1919–1938, https://doi.org/10.5194/cp-20-1919-2024,https://doi.org/10.5194/cp-20-1919-2024, 2024
Short summary
A simple physical model for glacial cycles
Sergio Pérez-Montero, Jorge Alvarez-Solas, Jan Swierczek-Jereczek, Daniel Moreno-Parada, Marisa Montoya, and Alexander Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1842,https://doi.org/10.5194/egusphere-2024-1842, 2024
Short summary
Description and validation of the ice sheet model Nix v1.0
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
EGUsphere, https://doi.org/10.5194/egusphere-2023-2690,https://doi.org/10.5194/egusphere-2023-2690, 2023
Short summary
Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
Daniel Moreno-Parada, Jorge Alvarez-Solas, Javier Blasco, Marisa Montoya, and Alexander Robinson
The Cryosphere, 17, 2139–2156, https://doi.org/10.5194/tc-17-2139-2023,https://doi.org/10.5194/tc-17-2139-2023, 2023
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Two-way coupling between ice flow and channelized subglacial drainage enhances modeled marine-ice-sheet retreat
George Lu and Jonathan Kingslake
The Cryosphere, 18, 5301–5321, https://doi.org/10.5194/tc-18-5301-2024,https://doi.org/10.5194/tc-18-5301-2024, 2024
Short summary
Sensitivity of the future evolution of the Wilkes Subglacial Basin ice sheet to grounding-line melt parameterizations
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024,https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Antarctic sensitivity to oceanic melting parameterizations
Antonio Juarez-Martinez, Javier Blasco, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4257–4283, https://doi.org/10.5194/tc-18-4257-2024,https://doi.org/10.5194/tc-18-4257-2024, 2024
Short summary
Ice viscosity governs hydraulic fracture that causes rapid drainage of supraglacial lakes
Tim Hageman, Jessica Mejía, Ravindra Duddu, and Emilio Martínez-Pañeda
The Cryosphere, 18, 3991–4009, https://doi.org/10.5194/tc-18-3991-2024,https://doi.org/10.5194/tc-18-3991-2024, 2024
Short summary
Biases in ice sheet models from missing noise-induced drift
Alexander A. Robel, Vincent Verjans, and Aminat A. Ambelorun
The Cryosphere, 18, 2613–2623, https://doi.org/10.5194/tc-18-2613-2024,https://doi.org/10.5194/tc-18-2613-2024, 2024
Short summary

Cited articles

Abramowitz, M. and Stegun, I.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Applied mathematics series, Dover Publications, ISBN 9780486612720, https://books.google.es/books?id=MtU8uP7XMvoC (last access: June 2024), 1965. a, b, c
Al-Niami, A. and Rushton, K.: Analysis of flow against dispersion in porous media, J. Hydrol., 33, 87–97, https://doi.org/10.1016/0022-1694(77)90100-7, 1977. a
Aral, M. M. and Liao, B.: Analytical Solutions for Two-Dimensional Transport Equation with Time-Dependent Dispersion Coefficients, J. Hydrol. Eng., 1, 20–32, 1996. a
Banks, R. B. and Ali, I.: Dispersion and adsorption in porous media flow, J. Hydraul. Div., Am. Soc. Civ. Eng., (United States), 90:HY5, https://www.osti.gov/biblio/6949390 (last access: June 2024), 1964. a
Bear, J.: Dynamics of Fluids in Porous Media, Soil Sci., 120, 162–163, 1975. a
Download
Short summary
Our study tries to understand how the ice temperature evolves in a large mass as in the case of Antarctica. We found a relation that tells us the ice temperature at any point. These results are important because they also determine how the ice moves. In general, ice moves due to slow deformation (as if pouring honey from a jar). Nevertheless, in some regions the ice base warms enough and melts. The liquid water then serves as lubricant and the ice slides and its velocity increases rapidly.