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Abstract. A thorough understanding of ice thermodynam-
ics is essential for an accurate description of glaciers, ice
sheets and ice shelves. Yet there exists a significant gap in
our theoretical knowledge of the time-dependent behaviour
of ice temperatures due to the inevitable compromise be-
tween mathematical tractability and the accurate descrip-
tion of physical phenomena. In order to bridge this short-
fall, we have analytically solved the 1D time-dependent
advective–diffusive heat problem including additional terms
due to strain heating and depth-integrated horizontal advec-
tion. Newton’s law of cooling is applied as a Robin-type
top boundary condition to consider potential non-equilibrium
temperature states across the ice–air interface. The solu-
tion is expressed in terms of confluent hypergeometric func-
tions following a separation of variables approach. Non-
dimensionalization reduces the parameter space to four num-
bers that fully determine the shape of the solution at equilib-
rium: surface insulation, effective geothermal heat flow, the
Péclet number and the Brinkman number. The initial tem-
perature distribution exponentially converges to the station-
ary solution. Transient decay timescales are only dependent
on the Péclet number and the surface insulation, so higher
advection rates and lower insulating values imply shorter
equilibration timescales, respectively. In contrast, equilib-
rium temperature profiles are mostly independent of the sur-
face insulation parameter. We have extended our study to a
broader range of vertical velocities by using a general power-
law dependence on depth, unlike prior studies limited to
linear and quadratic velocity profiles. Lastly, we present a

suite of benchmark experiments to test numerical solvers.
Four experiments of gradually increasing complexity cap-
ture the main physical processes for heat propagation. An-
alytical solutions are then compared to their numerical coun-
terparts upon discretization over unevenly spaced coordinate
systems. We find that a symmetric scheme for the advec-
tive term and a three-point asymmetric scheme for the basal
boundary condition best match our analytical solutions. A
further convergence study shows that n≥ 15 vertical points
are sufficient to accurately reproduce the temperature profile.
The solutions presented herein are general and fully applica-
ble to any problem with an equivalent set of boundary condi-
tions and any given initial temperature distribution.

1 Introduction

The study of ice thermodynamics is of crucial importance
for understanding the behaviour of glaciers, ice sheets and
ice shelves. Ice temperatures control both the rate at which
ice deforms (LeB. Hooke, 1981) and the occurrence of slid-
ing when the base reaches melting (Iken and Bindschadler,
1986). Precisely, ice softens by 1 order of magnitude as tem-
perature increases from −10 °C to the melting point (e.g.
Greve and Blatter, 2009; Cuffey and Paterson, 2010), and
velocities can increase by 2–3 orders of magnitude over a
temperate base that yields rapid sliding. However, accurate
ice temperature estimations are challenging, since heat trans-
fer balance is the result of a complex interplay between ad-
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vection, diffusion and various heat sources. Only an accu-
rate representation of these processes will allow for a robust
assessment of ice flow, mass balance and overall stability.
In this context, the development of analytical solutions for
ice thermodynamics can provide deeper comprehension of
the fundamental physics of ice, as they are intuitively inter-
pretable, reveal hidden symmetries, and further serve as a
verification tool or benchmark for numerical models.

Robin (1955) and Lliboutry (1963) first laid the ground-
work for understanding ice-column thermodynamics in the
presence of vertical advection and diffusion by providing
analytical solutions for stationary scenarios. These semi-
nal works offered valuable insights into the steady-state
behaviour of ice columns subject to advective–diffusive
processes. Nevertheless, they did not consider the time-
dependent evolution of ice temperatures. Hence, their appli-
cability was limited to situations involving steady-state ice
flow and fixed environmental conditions.

Steady-state ice temperature distribution studies also pro-
vide analytical solutions in bounded spatial domains but fall
short if the transient nature of the solution is to be cap-
tured. This is the case of the studies on the shear heating
margins of West Antarctic ice streams (e.g. Perol and Rice,
2011, 2015), for which a more refined 1D thermal model
was produced, first introduced by Zotikov (1986). Meyer and
Minchew (2018) later solved a similar advective–diffusive
problem under stationary conditions accounting for a con-
stant strain heating rate and further neglecting lateral (hori-
zontal) advection after a scaling analysis.

More recently, Rezvanbehbahani et al. (2019) proposed an
improved temperature solution that considers a power-law
vertical velocity profile derived from the shallow ice approx-
imation. The authors showed the importance of the strain
heating term and demonstrated that including it as an addi-
tional basal heat source yields good results for the interior
regions of an ice sheet. Nevertheless, horizontal advection is
absent in their analytical solutions and a further comparison
with numerical solutions reveals that their analytical results
are only applicable to slowly moving regions (mostly below
20 m yr−1). As with prior studies, steady-state conditions are
also assumed, and thus no information about the time evolu-
tion of ice temperatures can be obtained.

Despite these simplifications, heat transfer is well-known
to be a 3D process with a higher level of complexity that en-
compasses several mechanisms such as horizontal and verti-
cal advection, the potential presence of liquid water within
the ice, a varying ice thickness, internal heat deformation,
and frictional heat production (e.g. Greve and Blatter, 2009;
Cuffey and Paterson, 2010). Full numerical models are there-
fore also essential if a simultaneous consideration of such
mechanisms needs to be achieved (Winkelmann et al., 2011;
Pattyn, 2017).

However, numerical models require caution as their accu-
racy and consistency must be previously assessed. Intercom-
parison projects are thus fundamental since they can provide

consensus in benchmark experiments that further serve as a
reference solution for validation. In this context, analytical
descriptions are extremely useful as they provide a control ir-
respective of the resolution or discretization schemes. For in-
stance, Huybrechts and Payne (1996) already noted the lack
of analytical temperature solutions for more realistic verti-
cal velocity profiles. Previously obtained solutions relied on
strong assumptions regarding the particular vertical veloc-
ity profile (linear profile: Robin, 1955; quadratic: Raymond,
1983), and therefore an independent analytical description of
the temperatures was not available.

Traditional approaches from both numerical and analyti-
cal perspectives assume the simplest heat-flux boundary con-
dition at the ice surface: the imposition of the air temper-
ature at the uppermost ice layer. Knowing that glacial ice
forms through snow densification, this imposition appears to
be an oversimplification, given that thermal conductivity in-
creases with density (e.g. Sturm et al., 2002; Calonne et al.,
2011, 2019). Therefore, in view of the surface fraction of the
Greenland and Antarctic ice sheets covered by a firn layer
(90 % and ∼ 100 %, respectively; Medley et al., 2022; Noël
et al., 2022), a more sophisticated description of the energy
balance between the ice and the atmosphere may be benefi-
cial. Already noted by Carslaw and Jaeger (1988), prescrib-
ing a fixed temperature is in fact a limit case of a broader
set of boundary conditions known as “linear heat transfer”
or “Newton’s law of cooling” that accounts for a more real-
istic heat flux across the interface given by the temperature
difference between the two media.

The 1D advective–diffusive equation has been thoroughly
studied in a wide range of fields, particularly in disper-
sion problems. In early studies, the basic approach was to
reduce the advection–diffusion equation to a purely diffu-
sive problem by eliminating the advective terms. This was
achieved via a moving coordinate system (e.g. Ogata and
Banks, 1961; Harleman and Rumer, 1963; Bear, 1975; Gu-
vanasen and Volker, 1983; Aral and Liao, 1996; Marshall
et al., 1996) or through the introduction of another dependent
variable (e.g. Banks and Ali, 1964; Ogata, 1970; Lai and Ju-
rinak, 1971; Marino, 1974; Al-Niami and Rushton, 1977). To
solve the equations, quite diverse mathematical methods are
employed, such as the Laplace transformation (McLachlan,
2014), the Hankel transform (Debnath and Bhatta, 2014), the
Aris moment method (Merks et al., 2002), Green’s function
(Evans, 2010) or superposition approaches (Lie and Schef-
fers, 1893). More recent studies (e.g. Selvadurai, 2004) pro-
vide time-dependent analytical solutions for which Darcy
flow is applicable, yet they lack an appropriate set of bound-
ary conditions given the infinite length of the domain.

Ice temperatures are critical not only to understand the dy-
namics and an ice body’s evolution in time but also to set the
ice-sheet initialization of numerical models. Poorly known
parameter fields such as the ice temperature are estimated,
minimizing the mismatch between observations and model
output variables. Traditional approaches compute a steady-
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state temperature field, incorrectly assuming that the ice is
at thermal equilibrium (e.g. Morlighem et al., 2010, 2011;
Pralong and Gudmundsson, 2011; Perego et al., 2014). This
issue can be mitigated via transient optimization approaches
that incorporate available data that account for the transient
nature of observations and the model dynamics (e.g. Gold-
berg et al., 2015), though this method is significantly more
expensive. Nonetheless, time integration with transient op-
timization that includes all relevant model processes is not
feasible for high-resolution, large-scale ice sheet models. As
a result, a time-dependent description of ice temperatures
would strongly reduce the computational demands in mod-
elling exercises.

It is thus clear that a time-dependent analytical descrip-
tion would be valuable in spite of the inevitable compromise
of designing a model that is both mathematically solvable
and accurate. It is thus of utmost importance to carefully
navigate this trade-off, deciding the appropriate level of an-
alytical tractability and physical realism based on the spe-
cific goals of any given study. Attaining the right balance al-
lows for meaningful insights while avoiding excessive com-
putational demands or oversimplification that may hinder the
accurate representation and understanding of the real-world
system. Despite all the effort in previous works, there is still
a clear gap in the understanding of the analytical nature of
time-dependent ice temperatures. As a result, there are no
available benchmark experiments to test numerical solvers
extensively employed in ice-sheet models.

The current study presents an analytical formulation of
the transient ice temperature equation and provides useful
insight in two ways: first by allowing for a simplified way
of studying the physics of heat transfer in ice (as demon-
strated by an equilibrium timescale analysis) and second by
providing a way of benchmarking numerical solvers for heat
transfer. Our approach accounts for the temporal evolution of
the temperature profile rather than assuming an equilibrated
state, thus taking a step towards a more accurate represen-
tation of the ice thermal behaviour. The formulation of the
problem is given in Sect. 2, the approach followed in this
work is presented in Sect. 3, analytical solutions are shown
in Sect. 4, results are presented in Sect. 5, benchmark experi-
ments are detailed in Sect. 6, results are discussed in Sect. 7,
and concluding remarks are given in Sect. 8.

2 Advective–diffusive ice column

We consider a 1D ice column with diffusive heat transport,
vertical advection, strain heat and depth-integrated horizontal
advection. Our domain is defined as the interval z ∈ [0,L] ≡
L, and we further impose a Robin-type boundary condition
at the top of the column, z= L (Fig. 1). The aim of this sec-
tion is to provide a rigorous mathematical formulation of the
physical mechanisms involved in the heat problem necessary
to obtain an exact solution of the ice temperature θ(z, t).

Figure 1. Schematic view of the 1D ice column with vertical ad-
vection w(z) and inhomogeneous term � (here, we independently
consider both strain heating and depth-integrated horizontal advec-
tion). Temperature evolution is dictated by the heat equation and
an appropriate set of initial and boundary conditions. Subscripts
denote partial differentiation. At the top, both the ice temperature
and the vertical gradient can vary in time, thus allowing for non-
equilibrium thermal states across the ice–air interface. At the base,
the vertical gradient is fixed at the value given by the combined con-
tribution of geothermal heat flow and potential basal frictional heat,
θz =−ϒ/k. Note that our formulation is 1D, so the x axis is solely
introduced for visualization.

In the simplest physical scenario, the ice surface temper-
ature is set to the air temperature value θ(L, t)= Tair. How-
ever, surface temperatures are in fact the result of the energy
balance between the ice and the atmosphere. To address this
limitation, we refine the surface boundary condition by al-
lowing for a potential deviation from the air temperature, ac-
counting for the thermal insulating effect in the uppermost
region of the ice column. This insulation effect is a direct
consequence of the reduction in ice density towards the sur-
face (e.g. Stevens et al., 2020) and, as a result, the reduced
ice thermal conductivity (Sturm et al., 2002; Calonne et al.,
2011, 2019). This surface energy balance falls within the
so-called linear heat transfer boundary conditions or New-
ton’s law of cooling (Carslaw and Jaeger, 1988, Chap. 1.9).
Briefly, Newton’s law of cooling states that the heat flux
across the interface is proportional to the temperature dif-
ference between the surface and the surrounding medium. It
is applicable to a large variety of conditions such as a body
cooling by forced convection (i.e. a fluid forced rapidly past
the surface of a solid) or a thin surface layer of a poor conduc-
tor (such as a low-density firn or snow layer above the glacial
ice). Moreover, Newton’s law of cooling captures the two
simpler boundary conditions as limit cases: (1) prescribed
surface temperature and (2) no heat flux across an interface.

This refinement enables a more accurate representation of
the surface heat transfer dynamics and contributes to a com-
prehensive understanding of the energy balance within the
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ice column. In this description, both the surface ice tempera-
ture θ(L, t) and its vertical gradient θz(L, t) can vary in time:

βθz+ θ = Tair, z= L, t > 0, (1)

where italic subscripts denote partial differentiation and β is
a parameter with length dimensions that modulates the per-
missible deviation between ice and air temperatures, often
referred to as the surface thermal resistance (per unit area).
We physically interpret β as the thermal insulation of the
ice–air interface. In other words, β is a length scale over
which the ice column feels the air temperature. A zero value
corresponds to an ideal conductor θ(L, t)= Tair, whereas
β→∞ represents a perfect thermal insulator characterized
by a null heat exchange across the interface. In the limit case
β = 0, the ice–air interface is always at thermal equilibrium
(i.e. θ = Tair). For β 6= 0, we allow for a heat exchange across
the ice surface driven by the temperature difference between
the two media. The thermal equilibrium is only reached if the
ice surface and the atmosphere temperatures are identical. In
such conditions, the heat flux across the interface is null and
the vertical gradient at the top the ice column vanishes re-
gardless of the value of β.

Considering diffusive heat transport, vertical advection
and a potential heat source, the ice temperature θ(z, t) sat-
isfies an initial value problem given by the heat equation:
θt = κθzz−wθz+�, z ∈ L, t > 0,

θ = θ0(z), z ∈ L, t = 0,
θz =−ϒ/k, z= 0, t > 0,
βθz+ θ = Tair, z= L, t > 0,

(2)

where the heat source � is an inhomogeneous term that cap-
tures strain heat and horizontal advection and ϒ =G+Q is
the combined contribution of geothermal heat flowG and po-
tential basal frictional heatQ; k is the ice conductivity and κ
is the ice diffusivity, both assumed to be constant. We further
consider a z-dependent vertical velocity component given by
w(z).

In order to solve this problem, we must first provide the
particular form of the vertical velocity term. As in Clarke
et al. (1977) and Zotikov (1986), we first assume a linear
variation in w(z) with depth:

w(z)= w0
z

L
, (3)

where w0 is the vertical velocity at the ice surface z= L.
Standard values for w0 usually read from −0.1 to
−0.3 m yr−1 (Glovinetto and Zwally, 2000; Spikes et al.,
2004). Positive values of w0 imply an upward movement
of ice and are physically plausible, though quite rare. Dahl-
Jensen (1989) calculated steady temperature distributions
(their Fig. 5) and found that profiles near the terminus posi-
tion resemble those predicted for an ablation zone (w0 > 0).
Solutions herein presented are applicable to both positive

and negative values of w0, though we will focus on the
downward movement of ice (i.e. w0 < 0). The linear depen-
dency is widely used in the literature (e.g. Joughin et al.,
2002, 2004; Suckale et al., 2014). Nonetheless, we will also
explore a more general power-law relationship that better de-
scribes vertical velocities modelled by Glen’s flow law (see
Appendix C).

The inhomogeneous term � can encompass a number of
heat sources and sinks. Here we focus on strain heating S and
horizontal advection H, so �= S+H. In general, the strain
heating term can be expressed as S = σij ε̇ij , where σij is
the Cauchy stress tensor and ε̇ij is the strain rate tensor (ex-
pressed in index notation). Upon application of Glen’s law,
the rate of strain heating is solely a function of the second
invariant of the strain rate tensor:

S = σij ε̇ij = 2A−1/n ε̇e
(n+1)/n, (4)

where ε̇e =
(
ε̇ij ε̇ij/2

)1/2 is the second invariant of the strain
rate tensor and summation is implied over repeated indexes
(Einstein notation). This formulation does not impose any
conditions on the strain rate regime (i.e. the dominant com-
ponents) and only assumes ε̇ to be constant in depth. This
requirement ensures the analytical tractability of the solution
while including a potential strain contribution throughout the
ice column.

The horizontal advection term H can imply a heat source
or a sink, depending on the sign of the horizontal temperature
gradient along a particular direction. We herein consider such
a contribution by defining a depth-averaged lateral advection
term (Meyer and Minchew, 2018):

H=
1
L

L∫
0

(
u · n̂

)
θn̂dz, (5)

where u is the horizontal velocity vector, n̂ is the normal
vector along an arbitrary direction contained in the horizon-
tal plane, and θn̂ = ∂θ/∂n̂ denotes the directional derivative
along n̂.

These assumptions allow us to include a potential strain
heating source S and a horizontal advection of heat term H
while keeping the analytical tractability of Eq. (2). The limi-
tations of these simplifications are discussed in Sect. 7.

3 Analytical solution

We next outline our analytical approach. We first non-
dimensionalize our problem and exploit the linearity of the
differential operator by further decomposing the solution as
a sum of stationary and transient components to deal with the
inhomogeneity. Lastly, we apply a separation of variables to
obtain a solution of the time-dependent problem and impose
the corresponding initial and boundary conditions. Deriva-
tion details are elaborated in Appendix A.
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Table 1. Non-dimensional definitions and characteristic ranges.
Summation is implied over repeated indices. Pe and Br are the Pé-
clet and Brinkman numbers, respectively. 3 is the normalized hori-
zontal advection, β is the surface insulation parameter, and γ is the
dimensionless combined contribution of geothermal heat flow and
basal frictional heat. Physical magnitudes employed to obtain these
ranges are given in Table 2.

Symbol Definition Characteristic range

Pe
L

κ
w0 0.0–30.0

Br
L2

κTair
σij ε̇ij 0.0–20.0

3
L2

κTair

∫ 1

0

(
u · n̂

)
θn̂ dξ 0.0–10.0

γ −
Tair
kL

ϒ 0.1–5.0

β
β

L
0.0–1.0

It is natural to non-dimensionalize our problem by defining
the following variables,

ξ =
z

L
, τ =

κ

L2 t, θ =
T

Tair
, w̃ =

L

κ
w,

β̃ =
β

L
, �̃=

L2

κTair
�, (6)

over the domain L̃= [0,1]. Tildes are hereinafter dropped to
lighten the notation.

Hence, we can express our Eq. (2) as
θτ = θξξ −Pe ξθξ +�, ξ ∈ L, τ > 0,

θ = θ0(ξ), ξ ∈ L, τ = 0,
θξ = γ, ξ = 0, τ > 0,
βθξ + θ = 1, ξ = 1, τ > 0,

(7)

where γ =−Tairϒ/(kL), w = Pe ξ and θ0(ξ) are the non-
dimensional geothermal heat flow, vertical velocity and ini-
tial profile, respectively. The vertical velocity is thereby con-
veniently expressed in terms of the Péclet number Pe=
w0L/κ (i.e. the ratio of advective to diffusive heat transport).
The non-dimensional strain heating source term S can be
identified with the Brinkman number Br, which represents
the ratio of deformation heating to thermal conduction (see
Table 1). The non-dimensional number γ is the combined
contribution of geothermal heat flow and potential basal fric-
tional heat, normalized by the vertical temperature gradient
that would exist for a column thickness L and temperature
Tair. It provides the relative strength of the basal inflow of
heat compared to the ice-column extent and the air tempera-
ture.

The dimensionless problem clearly shows that five num-
bers completely determine the shape of the stationary solu-
tion: γ , β, Pe, 3 and Br. Their particular impact on the tem-
perature distributions is discussed below.

Given that Eq. (7) is inhomogeneous, we will decompose
the solution as a sum of a transient µ(ξ,τ ) and a stationary
ϑ(ξ) components, so θ(ξ,τ )= µ(ξ,τ )+ϑ(ξ). As a result,
the transient and stationary problems are subject to homo-
geneous and inhomogeneous boundary conditions, respec-
tively:
µτ = µξξ −wµξ , ξ ∈ L, τ > 0,

µ= µ0, ξ ∈ L, τ = 0,
µξ = 0, ξ = 0, τ > 0,
βµξ +µ= 0, ξ = 1, τ > 0,

(8)

and
�= ϑξξ −wϑξ , ξ ∈ L,
ϑξ = γ, ξ = 0,
βϑξ +ϑ = 1, ξ = 1,

(9)

where µ0 = θ0(ξ)−ϑ(ξ) is the initial profile of the transitory
solution.

The solution to the stationary component (Eq. 9) already
differs from previous analytical works like Robin (1955)
and Lliboutry (1963). First, they considered a homogeneous
version of the problem (i.e. �= 0) so that potential strain
heating or horizontal advective contributions are neglected.
Moreover, they simplified the top boundary condition since
they imposed a prescribed constant temperature value at ξ =
1 (see also Clarke et al., 1977). However, our refinements
still allow for analytical tractability, and thus the stationary
solution is (see Appendix B for derivation details)

ϑ(ξ)=�
ξ2

2 2F2

(
1,1;

3
2
,2;−ζ

)
+A erf [aξ ]+B, (10)

where 2F2(a1,a2;b1,b2,x) is the generalized hypergeomet-
ric function, ζ = (aξ)2, a = (w0/2)1/2, A=−γ (π/(4a))1/2

and B = 1−A
(

2aπ−1βe−a
2
+ erf [a]

)
. Note that if the in-

homogeneous term is zero (i.e. �= 0), the stationary tem-
perature profile reduces to the well-known error function
previously obtained by Robin (1955) and Lliboutry (1963).
Even so, the temperature distribution would still differ as the
boundary condition considered herein reflects a potential sur-
face thermal insulation unlike prior studies.

We now take a step further and allow for time evolution by
solving Eq. (8) and building our solution as the sum of both
contributions. Namely, the general solution of the transient
problem µ(ξ,τ ) is (see Appendix A for derivation details)

µ(ξ,τ )=

∞∑
n=0

[An8(αn;δ;ζ )+Bn9(αn;δ;ζ )]e−λnτ , (11)
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Table 2. Physical parameter values employed to determine the non-dimensional range shown in Table 1.

Parameter Definition Explored range Units Reference

L Ice thickness 1–3 km Greve and Blatter (2009)
Tair Air temperature 223.15–263.15 K Cuffey and Paterson (2010)
κ Thermal diffusivity 1.4× 10−6 m2 s−1 Ritz (1987)
k Thermal conductivity 2.0 W m−1 K−1 Ritz (1987)
β Surface insulation 0–3 km NA
G Geothermal heat flow 0.01–0.05 W m−2 Hooke (2005)
Q Frictional heat 0–0.5 W m−2 Karlsson et al. (2021)
u Horizontal velocity 0–500 m yr−1 Greve and Blatter (2009)
θn̂ Horizontal temperature gradient 0–1 K km−1 Dahl-Jensen (1989), Funk et al. (1994)
ε̇e Effective strain rate 0–0.1 yr−1 Meyer and Minchew (2018)
A Ice rate factor 10−25–10−24 Pa−3 s−1 Cuffey and Paterson (2010)

NA: not available.

where 8(α;δ;ζ ) and 9 (α;δ;ζ ) are the Kummer (Kummer,
1836) and Tricomi confluent hypergeometric functions, re-
spectively (also known as confluent hypergeometric func-
tions of the first and second kind). αn =−λn/(2w0) and
δ = 1/2. As the solution must be bounded at the origin, we
set Bn = 0.

The full solution θ(ξ,τ )= ϑ(ξ)+µ(ξ,τ ) thus reads

θ(ξ,τ )=�
ξ2

2 2F2

(
1,1;

3
2
,2;−ζ

)
+A erf [aξ ]+B +

∞∑
n=0

An8(αn;δ;ζ )e
−λnτ , (12)

where the coefficients An are obtained from the initial tem-
perature profile (Eq. A13 in Appendix A).

4 Stationary solutions

Before displaying the results of the full time-dependent prob-
lem, it is worth describing the temperature solutions at equi-
librium.

Figure 2 shows our steady-state solutions as vertical pro-
files for a subset of the permutations of the non-dimensional
numbers Pe, Br, γ , 3 and β. It is illustrative to compare the
shape of our temperature solutions with Clarke et al. (1977)
(their Fig. 1). We must stress that a one-to-one comparison is
not readily possible since they imposed a simpler top bound-
ary condition in which the ice surface temperature is fixed at
a given value, though the exact same solutions can be simply
obtained by setting β = 0 in our case (see Eq. 1).

The non-dimensionalization of our analytical model pro-
vides simplicity and further reduces the parameter dimen-
sionality of the solutions to solely five numbers, each corre-
sponding to one column in Fig. 2. The Péclet number pro-
duces significant changes in the equilibrium solutions, as
colder ice is advected from the uppermost part of the col-
umn, consequently cooling down the profile with increasing

Pe values (Fig. 2a), in contrast to the well-known linear pro-
file resulting for the purely diffusive case (i.e. Pe→ 0). The
combined contribution of geothermal heat flow and friction
heat dissipation γ also yields large temperature amplitudes
within the explored range. Nevertheless, the impact is clearly
limited to the lower half of the column, thus leaving the up-
per regions nearly unperturbed, as shown in Fig. 2c. Like-
wise, for the surface insulation parameter β in the presence
of downwards advection (Pe= 7), the entire temperature pro-
file is left unchanged despite varying values of β (Fig. 2b).
This can be understood as the heat exchange at the ice–air
interface not being relevant for the strong downward trans-
port of colder ice, which is a far more effective heat transport
compared to dissipation. Unlike γ , the strain heat dissipation
Br influences the upper region of the ice temperature as its
contribution is distributed throughout the column (Fig. 2d)
rather than being a basal heat source. Even so, the impact is
most notable near the base given that the temperature therein
can freely evolve so long as the geothermal heat flow condi-
tion is met (Eq. 2). Similarly, the vertically averaged lateral
heat advection 3 also affects upper regions of the column
(Fig. 2e). Here we have chosen positive 3 values, implying
advection of colder ice. As a result, for sufficiently large val-
ues of 3, the temperature within the column can be lower
than at the surface, reaching a local minimum therein and
gradually increasing as the base is approached. For negative
values of 3, we would find temperature profiles like those
obtained in Fig. 2d.

5 Full solutions

We now present the results of the full problem presented in
Eq. (2) by including the time-dependent solution. This tran-
sient nature depends on the initial state of the system, al-
though it exponentially converges to the steady state as the
transient component vanishes under the assumption of con-
stant boundary conditions. We further overcome the arbitrari-
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Figure 2. Stationary temperature profiles ϑ(ξ). (a–e) Solutions are fully determined by five non-dimensional numbers: Pe, β, γ , Br and
3, corresponding to each panel, respectively. Default values are Pe= 5, β = 0, γ =−0.2, Br = 0 and 3= 0, except for panel (e), where
γ =−0.4.

ness of the initial temperature profile by directly calculating
the eigenvalues of the problem and their corresponding de-
cay times as an estimation of the timescale of our system in
different physical scenarios.

To illustrate the full solutions, we show the explicit time
evolution from an initial profile as it approaches the corre-
sponding stationary solution (Fig. 3). In this instance, we
employ constant initial temperature profiles for simplicity,
θ0(ξ)= 0.5 and θ0(ξ)= 2.5 in Fig. 3a and b, respectively.
With these particular choices, we ensure that the initial tem-
perature profile is below and above the stationary solution
for two strong advective scenarios: vertical and lateral. Fig-
ure 3a shows how temperature both at the ice surface and
most notably at the base starts to increase for τ > 0, while at
the central region of the column it remains constant until heat
propagates along the column. It is worth noting how the sur-
face temperature gradually relaxes to the equilibrium profile,
since instead of imposing the air temperature, a more real-
istic heat exchange at the ice–air interface is considered via
β = 0.5. In contrast, Fig. 3b shows an instantaneous change
at the surface by an oversimplified top boundary condition
if β = 0 (i.e. a perfectly conductive ice–air interface). As a
result, the cold air temperature rapidly propagates into the
uppermost region of the ice column rapidly, whereas the
geothermal heat flow contribution requires a longer time to
propagate from the base. In contrast, the lower part of the
domain increases its temperature notwithstanding the sudden
decrease in the upper region. As the column evolves in time,
the rate of change gradually diminishes, and it approaches

zero as the transient solution asymptotically reaches the tem-
perature profile given by the stationary temperature profile
ϑ(ξ)= limτ→∞θ(ξ,τ ).

To examine the transient nature of the solutions closely,
we present the temperature evolution of a given initial pro-
file for a certain range of the non-dimensional parameters
(Fig. 4). This gives us information about the time-dependent
effects of each parameter, unlike Fig. 2, which is restricted
to equilibrium states. Additionally, the continuous represen-
tation (i.e. colour bar in Fig. 4), as opposed to the discrete
number of vertical profiles in Fig. 3, facilitates comparison
among particular parameter choices.

The particular parameter values were selected so that
we could obtain four physically distinct scenarios: (a) high
geothermal heat flow under a large advection regime, (b) high
strain heat dissipation in a low-vertical-advection regime,
(c) strong lateral advection of colder ice under surface in-
sulating conditions and (d) weak geothermal heat flow under
a low-vertical-advection regime. This setup allows us to sep-
arately determine the role played by each mechanism during
the transient regime of the solution.

Figure 4a shows that the thermal equilibration begins by
an increase in the basal temperature that gradually propa-
gates upwards until it is balanced by the downward advection
of ice from the colder surface. A similar transient behaviour
is found if strain heat dissipation is additionally considered
(Fig. 4b). Even though the geothermal heat flow is signif-
icantly smaller in this scenario, the heat travels further up-
wards as a result of a low-vertical-advection regime (Pe= 2)
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Figure 3. Time-dependent solution θ(ξ, t) given an initial temperature profile θ0(ξ) (vertical dotted line). Dimensionless values: (a) β = 0.5,
3= 0 and (b) β = 0.0,3= 1.0. Default values: Pe= 5.0, γ =−0.35, Br = 0. Dashed black lines represent the stationary solution ϑ(ξ). To
ease visualization, the time variable is quadratically spaced as indicated in the colour bar.

combined with a source of strain heat throughout the column
(Br = 6). If we instead consider a scenario where heat is re-
moved by lateral advection of colder ice 3= 6 (Fig. 4c), we
note two different timescales: the geothermal heat flow first
warms the ice base, and then the lateral removal of heat takes
over with a consequent reduction in temperature in the entire
column. Lastly, a low basal inflow of heat combined with a
weak vertical advective regime (Fig. 4d) yields the smallest
temperature gradients within the column.

We can also predict the behaviour of the transitory com-
ponent directly from the eigenvalues of the problem. By
calculating the inverse of the eigenvalues λ−1

n , we obtain a
magnitude that can be expressed with time dimensions and
represents the decay time of each Fourier mode (Fig. 5a).
Physically, this is the time required for the transient compo-
nent to be reduced a factor e−1 at any point, and it further
allows us to estimate the equilibration time from an arbi-
trary initial state. As we would expect, higher-order modes
have a shorter lifetime. Notably, the eigenvalue equation
solely depends on Pe and the surface insulation parameter
β (Eq. A8, Appendix A). This implies that the time to reach
equilibrium exclusively depends on these two numbers. The
remaining dimensionless parameter values yield the exact
same equilibration time despite playing a role in the par-
ticular form of the solution. In other words, the five dimen-
sionless numbers shape the temperature profile, but only the
vertical advection and the surface insulation parameter in-
fluence the exponential decay of the transitory component
and, therefore, the timescale to reach equilibrium from an
arbitrary initial state (Fig. 5b). Particularly, scenarios with a

high-advective regime yield shorter equilibration times (∼ 2–
10 kyr; Fig. 5b), unlike highly insulating scenarios at the sur-
face, characterized by long decay times (∼ 25–40 kyr).

6 Benchmarks for numerical solvers

The analytical solutions obtained herein are valuable tools
for testing numerical solvers. We thus propose a suite of
benchmark experiments with gradually increasing complex-
ity to test the representation of each physical process in-
volved in ice temperature evolution (see Table 3).

First, we simply consider the well-known purely diffu-
sive case (Exp-1). Then, vertical advection is additionally in-
cluded (Exp-2). Lastly, strain heating (Exp-3) and the verti-
cally averaged horizontal advection (Exp-4) are considered.
Given the analytical nature of our solutions, spatial and tem-
poral resolutions can be set arbitrarily high as there are nei-
ther convergence nor stability constraints. This allows for a
comparison against spatial and temporal resolutions found in
numerical solvers. We must stress that the initial tempera-
ture profile and all other parameters can be set by the user to
test the solution for any desired scenario. We also note that
these are simply proposed benchmarks, but the solutions de-
veloped here can be used for any type of benchmark test that
is desired and fits the limitations of the equations.

We develop a numerical model for testing by perform-
ing a finite-difference discretization of Eq. (7) and the basal
boundary condition over a sigma coordinate system, where
grid points are unevenly spaced. This nonuniform grid can
follow either a quadratic or an exponential relation, set by the
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Figure 4. Time-dependent solution θ(ξ,τ ) given an initial temperature profile. For simplicity, here the initial temperature profile is θ0(ξ)=
−40 °C at all depths and in all cases.

Figure 5. Decay time and corresponding eigenvalues. (a) First four eigenvalues for the set of β values shown in Fig. 2b. (b) Decay time (kyr)
of the first eigenvalue as a function of Pe and β.

user. This yields higher resolutions near the base for a fixed
number of points, thus minimizing the computational costs.
Several discretization schemes are employed with varying or-
ders of convergence, summarized in Table 4. Numerical so-

lutions are then compared at equilibrium with their analytical
counterpart (Fig. 6).

As could be expected, Fig. 6 illustrates that spatial dis-
cretization becomes a fundamental piece to obtain an ac-
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Table 3. Benchmark experiments for numerical solvers and main physical processes considered for heat propagation. The experiments are
named in increasing complexity order.

Experiment name
Physical processes

Diffusion Vertical adv. Strain heating Horizontal adv.

Exp-1 Yes No No No
Exp-2 Yes Yes No No
Exp-3 Yes Yes Yes No
Exp-4 Yes Yes Yes Yes

Table 4. Finite-difference approximations employed in the numerical study (Fig. 6) for unevenly spaced grids ζi , as detailed in Appendix D.
Distance between two adjacent points is defined as hi = ζi+1− ζi . Note that vertical velocities are negative (downwards movement of ice)
and the advection stencils are consequently adjusted. Discretization coefficients for the S-5p scheme are given in Appendix D. BC signifies
the boundary condition.

Quantity Continuous Discrete approximation Stencil name Order

Diffusion θξξ

2[hi−1θi+1−(hi+hi−1)θi+hiθi−1]
hihi−1(hi+hi−1)

Three-point symmetric (S-3p) O(ε2)

ci+2θi+2+ ci+1θi+1+ ciθi + ci−1θi−1+ ci−2θi−2 Five-point symmetric (S-5p) O(ε4)

Vertical advection wθξ

−wi
θi+1−θi
hi

Two-point forward (F-2p) O(ε1)

−wi
θi+1−θi−1
hi+hi−1

Two-point symmetric (S-2p) O(ε2)

−wi

[
2hi−1+hi

hi−1(hi−1+hi)
θi −

hi−1+hi
hi−1hi

θi+1+
hi−1

hi(hi−1+hi)
θi+2

]
Three-point forward (F-3p) O(ε2)

Basal BC θξ

θ1−θ0
h0

Two-point forward (F-2p) O(ε1)

2h0+h1
h0(h0+h1)

θ0−
h0+h1
h0h1

θ1+
h0

h1(h0+h1)
θ2 Three-point forward (F-3p) O(ε2)

curate temperature solution, particularly at the base of the
ice. The purely diffusive scenario (Exp-1; Fig. 6a) shows
the smallest (negligible) errors for all discretization schemes
given its mathematical simplicity. If vertical advection is
further introduced (Exp-2; Fig. 6), the particular choice by
which the temperature first derivative θξ is discretized be-
comes important, as temperature gradients can be transported
via non-zero vertical velocities. Forward stencils slightly
overestimate (F-2p) and underestimate (F-3p) the solution as
shown in Fig. 6b. In contrast, symmetric stencil S-2p pro-
vides a numerical solution significantly closer to the ana-
lytical profile, particularly near the base. The next bench-
mark experiment (Exp-3; Fig. 6c), where the inhomogeneous
term captures a source of heat throughout the column due to
strain deformation, presents a similar behaviour, where the F-
3p stencil underestimates the solution. Again, the symmetric
scheme outperforms the asymmetric ones. Lastly, the inho-
mogeneous term is introduced, physically capturing a verti-
cally averaged source or sink of heat as a consequence of the
advected ice in the horizontal dimension. We thus consid-
ered a negative contribution that physically describes a down-
stream advection of colder ice (Exp-4; Fig. 6d). Numerical
solutions overestimate the analytical solution for the asym-
metric discretization schemes (i.e. F-2p and F-3p), unlike the

two-point symmetric scheme (S-2p). It is worth noting that
the closest result to the analytical solution is obtained using
S-2p for the advective term and F-3p for boundary condition
discretization. In the remaining experiments, the particular
scheme employed in the basal boundary condition does not
modify the solution.

For all experiments tested, results are identical irrespective
of the particular discretization of the diffusion term (Table 4),
so both the three-point and the five-point symmetric stencils
yield the same stationary temperature profiles. Overall, all
finite-difference stencils herein presented successfully con-
verge (Fig. 6e) for all benchmark experiments, yielding the
smallest residual error for the purely diffusive scenario (Exp-
1).

Additionally, we perform a resolution convergence test for
the best discretization choice (Table 4): F-3p for the diffusive
term, S-2p for vertical advection and F-3p for basal boundary
condition. In order to quantify the residual error as a func-
tion of the spatial resolution for each benchmark experiment
(Fig. 7), we compute the `2 norm of the difference between
the numerical and the analytical solutions ε = ||ϑnum−ϑ ||`2 ,
defined as ||x||`2 =

(∑
ix

2
i

)1/2. The larger deviations from
the analytical solutions are found for the lower half of the ice
column and are strongly dependent on the vertical resolution.

The Cryosphere, 18, 4215–4232, 2024 https://doi.org/10.5194/tc-18-4215-2024



D. Moreno-Parada et al.: Analytical solutions for the advective–diffusive ice column 4225

Results show that a coarse resolution tends to overestimate
the equilibrium temperature for all benchmark experiments.
The residual error between the analytical and numerical so-
lution exponentially decays, reaching values of ε < 10−2 for
n > 15.

7 Discussion

The adoption of dimensionless variables results in enhanced
generality and mathematical convenience, albeit at the ex-
pense of veiling the practical significance to real glaciers and
ice sheets. We have consequently tabulated data for charac-
teristic values to ease interpretation (Table 1), thus showing
that the explored range encompasses realistic values found in
ice caps (Table 2).

We first start by comparing our results with a previously
obtained solution for a simpler case (e.g. Clarke et al., 1977).
We obtain identical results by setting the ice surface tempera-
ture to a fixed value given by the air temperature, i.e. impos-
ing β = 0 in Eq. (2) (Fig. 2c and f). Prominently, note that
a non-zero β value is fundamental in the transitory regime
(Fig. 11), though it leads to negligible changes at equilibrium
(Fig. 2).

The transient behaviour of the solution is intricate given
the freedom to choose an arbitrary initial state. This issue can
be overcome by direct inspection of the eigenvalues of the
problem. An estimation of the decay time of the analytical
solution shows that the advection and the surface insulation
are the only parameters that determine the timescale to reach
thermal equilibrium. This approach has some limitations,
some of which we now discuss. The decay time dependency
is subjected to the mathematical form of our problem (Eq. 2).
If an analytical solution could be obtained with an additional
explicit horizontal advection term (rather than a vertically av-
eraged contribution), then the eigenvalues, and consequently
the decay times, would also depend on 3. A second lim-
itation concerns the boundary conditions. This solution re-
quired time-independent conditions, and therefore the decay
time estimations do not hold if, for instance, the surface tem-
perature changes over time. Even so, the approach developed
here provides estimates of relaxation times under different
physical conditions and gives an explicit expression for the
time-dependent temperature profile from any arbitrary initial
state.

The tractability of the analytical solution does not allow
for further complexity, and hence additional numerical meth-
ods would be necessary if such a physical description is de-
sired. Nonetheless, a constant horizontal advection term 3

was also introduced as part of the inhomogeneous term �,
for which the sign of the horizontal temperature gradients
must be chosen a priori. Even though horizontal variability
in temperature distributions can vary greatly, we account for
this effect by assuming a constant term (throughout the ice
column) entering the heat equation, thus not reflecting much

of the non-local features of the thermal structure of the ice
sheets.

It must be stressed that our analytical solutions are not
limited to regions with negligible horizontal velocities, since
the true constraining quantity is the vertical gradient of the
horizontal velocity uz. Hence, rapidly sliding regions with
a small vertical gradient of the horizontal velocity are also
suitably described by our solutions, for which uz ' 0 implies
that the temperature profile is merely transported along the
flow direction while compressing the temperature gradient
as the ice stream thins (Robel et al., 2013). One can argue
that the additional source of heat due to frictional dissipation
should be also considered therein. Nonetheless, in terms of
the temperature distribution, this effect is equivalent to an in-
creased geothermal heat flow, as it is purely restricted to the
column base and therefore already encompassed in Eq. (7).

The strain rate regime poses further limitations on the ap-
plicability of the solution. Particularly for regions where ver-
tical shear dominates and the strain heat dissipation is con-
centrated near the base, a vertically averaged contribution
appears to be inaccurate. Nevertheless, as already noted by
Rezvanbehbahani et al. (2019), this effect is instead well-
captured by an increase in the inflow of heat from the base
(i.e. equivalent to a larger geothermal or frictional heat term)
under conditions where most of the vertical shear is concen-
trated in the basal layers (Fowler, 1992).

It is worth noting that phase changes are not considered
herein, so temperature evolution is strictly confined to values
below the pressure melting point. Unlike a numerical solver,
where temperature is manually limited, these solutions must
be taken with caution as we are describing a frozen ice col-
umn. Results are still compatible with a potential heat con-
tribution due to basal frictional heat (Eq. 2), even though
fast-sliding regions are often related to temperate basal con-
ditions. Nevertheless, an additional heat contribution would
imply an increased vertical temperature gradient even if the
column base eventually reached the pressure-melting point.

Knowing that ice forms by snow densification through
time (Stevens et al., 2020), we find layers of progressively
increasing ice density descending from the surface. Like-
wise, snow thermal conductivity increases with density (e.g.
Sturm et al., 1997, 2002; Calonne et al., 2011, 2019), result-
ing in a poorer heat conductor as the snow–air interface is
approached. As already noted by Carslaw and Jaeger (1988),
if the flux across a surface is proportional to the temperature
difference between the surface and the surrounding medium,
the appropriate boundary condition takes the form of Eq. (1)
rather than the oversimplified version θ(L, t)= Tair. Here we
explicitly describe the ice column with a constant thermal
conductivity to keep analytical tractability, but we aim at de-
scribing the fact that the thermal conductivity of glacial ice
k(ρ) is reduced towards the surface. Following Carslaw and
Jaeger (1988), we apply a general Newton’s law that also
captures the traditional approach (i.e. imposing a particular
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Figure 6. (a–d) Numerical steady-state solutions (red, blue) for all discretizations shown in Table 4 compared with the analytical solution
(solid black). (e) Residual error defined as the difference between the numerical and the analytical solutions ε = ||ϑnum−ϑ ||`2 . Colour code
represents the two asymmetric discretization schemes for the basal boundary condition: F-2p (blue) and F-3p (red). Marker and line styles
denote the discretization stencil of the vertical advective term. The number of vertical points n= 10 is fixed for all cases. Numerical solutions
are identical upon spatial discretization of the diffusive term at orders O(ε2) and O(ε4) (see Table 4). The purely diffusive case (Exp. 1)
yields negligible errors ε < 10−5.

ice surface temperature given by the air temperature) as a
limit case if β→ 0.

Our suite of benchmark experiments allows us to test nu-
merical solvers and assess reliability for different discretiza-
tion schemes and resolutions. The basal boundary condition
is sensitive to the particular discretization scheme, as the
geothermal flux is the main source of heat in the ice column
and is considered via a Neumann boundary condition. The
simplest two-point stencil does not correctly represent the
equilibrium temperatures, yielding larger deviations at the
base (Fig. 6). Higher-order discretizations are necessary to
obtain a more reliable temperature distribution. In our bench-
mark experiments, we find significant improvement between

the O(ε1) and O(ε2) schemes for the basal boundary condi-
tion (Fig. 6), particularly for scenarios with large strain heat-
ing values or strong horizontal heat advection. Results for
the different vertical advection schemes show that forward
stencils (both F-2p and F-3p) deviate further from the analyt-
ical solution when compared to a symmetric scheme. Despite
the fact that symmetric advective schemes might show some
instabilities, we have not found any numerical issues in the
present study. In contrast, such schemes appear to outperform
the asymmetric counterparts for all benchmark experiments.

Resolution plays a fundamental role in obtaining a reli-
able temperature profile. A sigma coordinate system with
quadratic spacing accurately (ε < 10−2) reproduces the an-
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Figure 7. Convergence study of benchmark experiments. Steady-state analytical solutions shown with the solid black line. (a) Exp-1, (b) Exp-
2, (c) Exp-3 and (d) Exp-4. (e) Residual error defined as the difference between the numerical and the analytical solutions ε = ||ϑnum−ϑ ||`2 .
For all experiments, γ = 2 and β = 0.

alytical solution for n≥ 15 grid points and provided our best
numerical scheme choice. Additional calculations performed
for an exponential grid spacing (not shown) reveal consistent
results with the quadratic dependency (Figs. 6 and 7). This
shows the robustness of our numerical schemes, in which the
symmetric advective stencil (S-2p) and the three-point basal
boundary conditions (F-3p) again outperform the remaining
choices.

8 Conclusions

We have determined the analytical solution to the 1D time-
dependent advective–diffusive heat problem including ad-
ditional terms due to strain rate deformation and depth-

integrated horizontal advection. A Robin-type top bound-
ary condition further considers potential non-equilibrium
temperature states across the ice–air interface. The solution
was expressed in terms of confluent hypergeometric func-
tions following a separation of variables approach. Non-
dimensionalization reduced the parameter space to five num-
bers that fully determine the shape of the solution at equi-
librium. We further overcome the arbitrariness of the initial
temperature profile by directly calculating the eigenvalues of
the problem and their corresponding decay times as an esti-
mation of the timescale of our system in different physical
scenarios. The transient component exponentially converges
to the stationary solution with a decay time that solely de-
pends on vertical advection and surface insulation.
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The sign of vertical advection is of utmost importance as it
determines the direction along which temperature gradients
are transported. We have focused in the present study on the
downward advective scenario, given the implausibility of an
upward advection of ice. At equilibrium, basal temperatures
are particularly sensitive to four physical quantities: vertical
advection, geothermal heat flow, strain heat and lateral ad-
vection. In contrast, the surface insulation yields negligible
changes in the stationary solution. This is true even for highly
insulating conditions at the ice surface, so long as colder ice
is transported more efficiently than heat travels upwards due
to diffusion.

The transient regime shows a strongly distinct behaviour.
The arbitrariness of the initial state is overcome by a direct
inspection of the eigenvalues of the problem. We then obtain
a magnitude that represents the decay time of each Fourier
mode that provides information about the equilibration time
of the system. We find that the decay time of the transient
component solely depends on two magnitudes: advection
(Pe) and surface insulation (β). The remaining dimension-
less parameters shape the temperature solution, though they
have no influence on the timescale to reach thermal equi-
librium. Strong advective regimes (Pe∼ 5) yield ∼ 2–10 kyr
decay times under null and strong surface insulation condi-
tions, β = 0 and β = 1, respectively. In contrast, weak advec-
tive regimes are characterized by longer timescales of ∼ 20–
40 kyr, also depending on the particular insulating scenario.

Our suite of benchmark experiments are convenient for as-
sessing the accuracy and reliability of numerical schemes.
We have employed unevenly spaced grid discretizations to
obtain higher resolution near the base whilst minimizing the
total number of grid points, thus reducing computational
costs. A symmetric discretization of the advective term com-
bined with a three-point basal boundary condition yields the
best agreement compared to analytical solutions. In terms of
convergence and grid resolution, we find that n≥ 15 is the
lower limit to obtain accurate temperature profiles. These re-
sults are robust both for a quadratic and an exponential grid
spacing.

Lastly, we note that our analytical solutions are general
and can be applied to any initial boundary value problem
that fulfils the conditions herein described. They can pro-
vide temperature distributions for any 1D problem at arbi-
trarily high spatial and temporal resolutions that consider the
combined effects of diffusion, advection and strain heating
without any additional numerical implementation. Further-
more, they present a reliable benchmark test for any numeri-
cal thermomechanical solver to quantify accuracy losses and
necessary spatial and temporal resolutions.

Appendix A: Separation of variables and full solution

Let us briefly outline the separation of variables technique
before elaborating on the solutions of our general prob-

lem. Consider the following initial-boundary value problem
(IBVP) on an interval L⊂ R:
µτ = µξξ −wµξ , ξ ∈ L̃, τ > 0,

µ= µ0, ξ ∈ L̃, τ = 0,
µξ = 0, ξ = 0, τ > 0,
βµξ +µ= 0, ξ = 1, τ > 0.

(A1)

This technique looks for a solution of the form

µ(ξ,τ )=X(ξ)T (τ), (A2)

where the functions X and T are to be determined. Assum-
ing that there exists a solution of Eq. (A5) and plugging the
function µ=XT into the heat equation, it follows that

Tτ

T
=
Xξξ

X
−w

Xξ

X
=−λ (A3)

for some constant λ. Thus, the solution µ(ξ,τ )=X(ξ)T (τ)
of the heat equation must satisfy these equations. In order
for a function of the form µ(ξ,τ )=X(ξ)T (τ) to be a solu-
tion of the heat equation on the interval I ⊂ R, T (τ)must be
a solution of the ordinary differential equation Tτ =−κλT .
Direct integration leads to

T (τ)= Ae−κλτ (A4)

for an arbitrary constant A.
Additionally, in order for µ(ξ,τ ) to satisfy the boundary

conditions, we arrive at a second-order linear ordinary differ-
ential equation:
Xξξ (ξ)−w(ξ)Xξ (ξ)+ λX(ξ)= 0, ξ ∈ L,
Xξ = 0, ξ = 0,
βXξ +X = 0, ξ = 1.

(A5)

It is necessary to provide the particular shape of the func-
tion w(ξ). First, we will employ the linear profile w(ξ)=
w0ξ so that the differential equation now reads Xξξ (ξ)−
w0ξXξ (ξ)+ λX(ξ)= 0. This equation can be easily iden-
tified with the well-known confluent hypergeometric differ-
ential equation (e.g. Abramowitz and Stegun, 1965; Evans,
2010), defined as

ξXξξ + (δ− ξ)Xξ −αX = 0. (A6)

Simply by defining α =−λ/(2w0), δ = 1/2 and ζ =

w0ξ
2/2, we can write our solution in terms of the two in-

dependent Kummer and Tricomi functions:

X(ξ)= C18(α,δ,ζ )+C29 (α,δ,ζ ) , (A7)

where C1 and C2 are constants to be determined from the
boundary conditions. At the base, the solution must be finite,
so we set C2 = 0 given that the Tricomi function 9 (α,δ,ζ )
diverges at the origin. The second boundary condition (i.e. at
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ξ = 1) allows us to determine the eigenvalues λn of the prob-
lem as we look for all values of αn that satisfy

β8ξ (αn,δ,ζ )+8(αn,δ,ζ )= 0, at ξ = 1, (A8)

and then we compute the eigenvalues λn =−2w0αn. This is
in fact a transcendental equation with no algebraic represen-
tation, and therefore, the values of αn are numerically deter-
mined.

Thus, for each eigenfunction Xn with corresponding
eigenvalue λn, we have a solution Tn such that

µn(ξ,τ )=Xn(ξ)Tn(τ ) (A9)

is a solution of the heat equation on our interval I which
satisfies the boundary condition (BC). Moreover, given that
the problem (A5) is linear, any finite linear combination of a
sequence of solutions {µn} is also a solution. In fact, it can
be shown that an infinite series of the form

µ(ξ,τ )≡

∞∑
n=0

µn(ξ,τ ) (A10)

will also be a solution of the heat equation on the interval I
that satisfies our BC under proper convergence assumptions
of this series. The discussion of this issue is beyond the scope
of this work.

We can then express the transitory solution as

θ(ξ,τ )=

∞∑
n=0

An8(αn;δ;ζ )e
−λnτ , (A11)

where the coefficients An are given by the initial condition.
Since the confluent hypergeometric functions are orthog-

onal, the normalized eigenfunctions form an orthonormal
basis under the %(ξ)-weighted inner product in the Hilbert
space L2, thus allowing us to write the coefficients An as

An =
1

||8n||2

1∫
0

(θ(ξ,0)−ϑ(ξ))%(ξ)8(αn;δ;ζ )dξ,

(A12)

where θ(ξ,0) is the initial temperature distribution, %(ξ)=
e−w0ξ

2/2, and ||8n||2 is defined by the inner product:

||8n||
2
= 〈8n,8n〉 =

1∫
0

8(αn;δ;ζ )%(ξ)8(αn;δ;ζ )dξ.

(A13)

Appendix B: Stationary solution

For the stationary regime, we do not need to apply separation
of variables because the problem reduces to a second-order

ordinary differential equation in only one independent vari-
able ξ :
�= ϑξξ −wϑξ , ξ ∈ L,
ϑξ = γ, ξ = 0,
βϑξ +ϑ = 1, ξ = 1.

(B1)

Even though we have increased the complexity of the
problem with a refined top boundary condition and non-
homogeneous term �, the solution can still be found ana-
lytically:

ϑ(ξ)=�
ξ2

2 2F2

(
1,1;

3
2
,2;−ζ

)
+A erf [aξ ]+B, (B2)

where 2F2(a1,a2;b1,b2,x) is the generalized hyper-
geometric function, ζ = (aξ)2, a = (w0/2)1/2, A=

−γ (π/(4a))1/2, and B = 1−A
(

2aπ−1βe−a
2
+ erf [a]

)
−

�
(
(β + 1/2)2F2(1,1;3/2,2,a2)+βa2

2F2(2,2;5/2,3,a2)/3
)

is a constant given by the top boundary condition. Note
that hypergeometric function can be easily differentiated
following, for example, Eq. (15.2.1) in Abramowitz and
Stegun (1965).

Appendix C: General power-law velocity profiles

In this section, we also assume thermal equilibrium, thus re-
ducing the problem again to a second-order ordinary differ-
ential equation in only one independent variable ξ :

0= ϑξξ −wϑξ , ξ ∈ L,
ϑξ = γ, ξ = 0,
βϑξ +ϑ = 1, ξ = 1,

(C1)

where we have set �= 0 to ensure analytical tractability for
general power-law velocity profiles. This solution is conse-
quently limited to regions where Pe, γ �3, Br.

Unlike the general stationary solution shown in Eq. (B2),
we allow for a general power-law vertical velocity profile of
the form w(ξ)= w0ξ

m. The solution can then be expressed
as

ϑ(ξ)=
pγ

(pw0)
p 0

(
p,pw0ξ

m+1
)
+C, (C2)

whereC = 1−
[
2β(pw0)

pe−pw0 +0(p,w0p)
]
pγ/(pw0)

p,
p = (m+ 1)−1, is a constant given by the top boundary con-
dition, and 0(·, ·) is the upper incomplete gamma function
defined as

0(a,x)=

∞∫
x

e−t ta−1dt. (C3)

Additionally, the solution can also be expressed in terms
of the Kummer confluent hypergeometric function 8 given

https://doi.org/10.5194/tc-18-4215-2024 The Cryosphere, 18, 4215–4232, 2024



4230 D. Moreno-Parada et al.: Analytical solutions for the advective–diffusive ice column

the relation (Abramowitz and Stegun, 1965, Eqs. 6.5.3 and
6.5.12)

0(a,x)= 0(a)− a−1xae−x8(1,1+ a;x). (C4)

Hence, the stationary solution is equivalent to
∼8

(
1,p+ 1;pw0ξ

m+1).
Appendix D: Discretization schemes

Our finite-difference discretization considers unevenly
spaced grids, commonly used in the glaciological commu-
nity where higher resolutions are desired near the base whilst
minimizing the required number of points to reduce compu-
tational costs. We thus build a new coordinate system ζ con-
sidering two types of nonuniform grid spacing: polynomial
and exponential. Given that our original variable ξ ∈ [0,1],
these relations can be expressed as

ζ = ξn, (D1)

where n is the spacing order, and

ζ =
esξ − 1
es − 1

, (D2)

where s is the spacing factor for the exponential grid. In this
study, we have employed n= 2 and s = 2.

We now present the numerical schemes necessary to ac-
count for non-homogeneous grids ζ . The distance between
two adjacent points is defined as hi = ζi+1− ζi . The five-
point symmetric second-order derivative then reads

θξξ (ξi )'
−2hi (2hi+1 +hi+2)+ 2hi+1(2hi+1 +hi+2)

hi−1(hi−1 +hi )(hi−1 +hi +hi+1)Hi
θi−2

+
2(2hi−1 +hi )(2hi+1 +hi+2)− 2hi+1(hi+1 +hi+2)

hi−1hi (hi−1 +hi+1)(hi +hi+1 +hi+2)
θi−1

+
2hi (hi−1 +hi )− 2(hi−1 + 2hi )(2hi+1 +hi+2)+ 2hi+1(hi+1 +hi+2)

(hi−1 +hi+1)hihi+1(hi+1 +hi+2)
θi

+
2(2hi−1 + 2hi )(hi+1 +hi+2)− 2hi (hi−1 +hi )

(hi−1 +hi +hi+1)(hi +hi+1)hi+1hi+2
θi+1

+
2(hi−1 +hi )hi − 2(2hi−1 +hi )hi+1

Hi (hi +hi+1 +hi+2)(hi+1 +hi+2)hi+2
θi+2, (D3)

whereHi = hi−2+hi−1+hi+hi+1+hi+2. This result is con-
sistent with Singh and Bhadauria (2009).

Code and data availability. All scripts to obtain the results pre-
sented herein and to further plot figures can be found at
https://doi.org/10.5281/zenodo.13629594 (Moreno-Parada et al.,
2024).
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