Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1225-2023
https://doi.org/10.5194/tc-17-1225-2023
Research article
 | 
14 Mar 2023
Research article |  | 14 Mar 2023

Topographic and vegetation controls of the spatial distribution of snow depth in agro-forested environments by UAV lidar

Vasana Dharmadasa, Christophe Kinnard, and Michel Baraër

Related authors

Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024,https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Reviews and syntheses: Recent advances in microwave remote sensing in support of terrestrial carbon cycle science in Arctic–boreal regions
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023,https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Drone-based ground-penetrating radar (GPR) application to snow hydrology
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022,https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Modelling glacier mass balance and climate sensitivity in the context of sparse observations: application to Saskatchewan Glacier, western Canada
Christophe Kinnard, Olivier Larouche, Michael N. Demuth, and Brian Menounos
The Cryosphere, 16, 3071–3099, https://doi.org/10.5194/tc-16-3071-2022,https://doi.org/10.5194/tc-16-3071-2022, 2022
Short summary
High-temporal-resolution hydrometeorological data collected in the tropical Cordillera Blanca, Peru (2004–2020)
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022,https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Improved snow property retrievals by solving for topography in the inversion of at-sensor radiance measurements
Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn
The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024,https://doi.org/10.5194/tc-18-5015-2024, 2024
Short summary
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024,https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024,https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024,https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024,https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary

Cited articles

Anderton, S. P., White, S., and Alvera, B.: Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Process., 18, 435–453, https://doi.org/10.1002/hyp.1319, 2004. 
Aygün, O., Kinnard, C., Campeau, S., and Krogh, S. A.: Shifting hydrological processes in a Canadian agroforested catchment due to a warmer and wetter climate, Water, 12, 739, https://doi.org/10.3390/w12030739, 2020. 
Bair, E. H., Abreu Calfa, A., Rittger, K., and Dozier, J.: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan, The Cryosphere, 12, 1579–1594, https://doi.org/10.5194/tc-12-1579-2018, 2018. 
Baños, I. M., García, A. R., Alavedra, J. M. I., Figueras, P. O. i., Iglesias, J. P., Figueras, P. M. I., and López, J. T.: Assessment of airborne lidar for snowpack depth modeling, B. Soc. Geol. Mex., 63, 95–107, 2011. 
Blue Marble Geographics: Global Mapper, Blue Marble Geographics, Hallowell, ME, USA, 2020. 
Download
Short summary
This study highlights the successful usage of UAV lidar to monitor small-scale snow depth distribution. Our results show that underlying topography and wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. This emphasizes the importance of including and better representing these processes in physically based models for accurate snowpack estimates.