Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1225-2023
https://doi.org/10.5194/tc-17-1225-2023
Research article
 | 
14 Mar 2023
Research article |  | 14 Mar 2023

Topographic and vegetation controls of the spatial distribution of snow depth in agro-forested environments by UAV lidar

Vasana Dharmadasa, Christophe Kinnard, and Michel Baraër

Related authors

Reviews and syntheses: Recent advances in microwave remote sensing in support of arctic-boreal carbon cycle science
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer Baltzer, Christophe Kinnard, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2023-137,https://doi.org/10.5194/egusphere-2023-137, 2023
Short summary
Drone-based ground-penetrating radar (GPR) application to snow hydrology
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022,https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Modelling glacier mass balance and climate sensitivity in the context of sparse observations: application to Saskatchewan Glacier, western Canada
Christophe Kinnard, Olivier Larouche, Michael N. Demuth, and Brian Menounos
The Cryosphere, 16, 3071–3099, https://doi.org/10.5194/tc-16-3071-2022,https://doi.org/10.5194/tc-16-3071-2022, 2022
Short summary
High-temporal-resolution hydrometeorological data collected in the tropical Cordillera Blanca, Peru (2004–2020)
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022,https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
Proglacial icings as records of winter hydrological processes
Anna Chesnokova, Michel Baraër, and Émilie Bouchard
The Cryosphere, 14, 4145–4164, https://doi.org/10.5194/tc-14-4145-2020,https://doi.org/10.5194/tc-14-4145-2020, 2020
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023,https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Snowmelt characterization from optical and synthetic-aperture radar observations in the La Joie Basin, British Columbia
Sara E. Darychuk, Joseph M. Shea, Brian Menounos, Anna Chesnokova, Georg Jost, and Frank Weber
The Cryosphere, 17, 1457–1473, https://doi.org/10.5194/tc-17-1457-2023,https://doi.org/10.5194/tc-17-1457-2023, 2023
Short summary
Temporal stability of long-term satellite and reanalysis products to monitor snow cover trends
Ruben Urraca and Nadine Gobron
The Cryosphere, 17, 1023–1052, https://doi.org/10.5194/tc-17-1023-2023,https://doi.org/10.5194/tc-17-1023-2023, 2023
Short summary
Towards long-term records of rain-on-snow events across the Arctic from satellite data
Annett Bartsch, Helena Bergstedt, Georg Pointner, Xaver Muri, Kimmo Rautiainen, Leena Leppänen, Kyle Joly, Aleksandr Sokolov, Pavel Orekhov, Dorothee Ehrich, and Eeva Mariatta Soininen
The Cryosphere, 17, 889–915, https://doi.org/10.5194/tc-17-889-2023,https://doi.org/10.5194/tc-17-889-2023, 2023
Short summary
Implementing spatially and temporally varying snow densities into the GlobSnow snow water equivalent retrieval
Pinja Venäläinen, Kari Luojus, Colleen Mortimer, Juha Lemmetyinen, Jouni Pulliainen, Matias Takala, Mikko Moisander, and Lina Zschenderlein
The Cryosphere, 17, 719–736, https://doi.org/10.5194/tc-17-719-2023,https://doi.org/10.5194/tc-17-719-2023, 2023
Short summary

Cited articles

Anderton, S. P., White, S., and Alvera, B.: Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Process., 18, 435–453, https://doi.org/10.1002/hyp.1319, 2004. 
Aygün, O., Kinnard, C., Campeau, S., and Krogh, S. A.: Shifting hydrological processes in a Canadian agroforested catchment due to a warmer and wetter climate, Water, 12, 739, https://doi.org/10.3390/w12030739, 2020. 
Bair, E. H., Abreu Calfa, A., Rittger, K., and Dozier, J.: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan, The Cryosphere, 12, 1579–1594, https://doi.org/10.5194/tc-12-1579-2018, 2018. 
Baños, I. M., García, A. R., Alavedra, J. M. I., Figueras, P. O. i., Iglesias, J. P., Figueras, P. M. I., and López, J. T.: Assessment of airborne lidar for snowpack depth modeling, B. Soc. Geol. Mex., 63, 95–107, 2011. 
Blue Marble Geographics: Global Mapper, Blue Marble Geographics, Hallowell, ME, USA, 2020. 
Download
Short summary
This study highlights the successful usage of UAV lidar to monitor small-scale snow depth distribution. Our results show that underlying topography and wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. This emphasizes the importance of including and better representing these processes in physically based models for accurate snowpack estimates.