Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1225-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1225-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Topographic and vegetation controls of the spatial distribution of snow depth in agro-forested environments by UAV lidar
Vasana Dharmadasa
CORRESPONDING AUTHOR
Department of Environmental Sciences, University of Québec at
Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
Center for Northern Studies (CEN), Québec City, QC GV1 0A6, Canada
Research Centre for Watershed–Aquatic Ecosystem Interactions (RIVE),
University of Québec at Trois-Rivières, Trois-Rivières, QC G8Z
4M3, Canada
CentrEau, the Québec Water Management Research Centre, Québec
City, QC GV1 0A6, Canada
Christophe Kinnard
Department of Environmental Sciences, University of Québec at
Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
Center for Northern Studies (CEN), Québec City, QC GV1 0A6, Canada
Research Centre for Watershed–Aquatic Ecosystem Interactions (RIVE),
University of Québec at Trois-Rivières, Trois-Rivières, QC G8Z
4M3, Canada
Michel Baraër
Department of Construction Engineering, École de technologie
supérieure, Montréal, QC H3C 1K3, Canada
CentrEau, the Québec Water Management Research Centre, Québec
City, QC GV1 0A6, Canada
Related authors
No articles found.
Bastien Charonnat, Michel Baraer, Eole Valence, Janie Masse-Dufresne, Chloé Monty, Kaiyuan Wang, Elise Devoie, and Jeffrey M. McKenzie
EGUsphere, https://doi.org/10.5194/egusphere-2025-117, https://doi.org/10.5194/egusphere-2025-117, 2025
Short summary
Short summary
Climate change is altering water cycle in mountain regions as glaciers melt, but slower-degrading rock glaciers remain influential. This study examines how a rock glacier in Yukon, Canada, interacts with a riverbed, using advanced methods like thermal and time-lapse imagery. It shows that rock glaciers shape river channels, affect groundwater flow, and encourage ice formation in winter. These findings reveal how rock glaciers link mountain ice to deep groundwater, impacting water resources.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023, https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Short summary
This review supports the integration of microwave spaceborne information into carbon cycle science for Arctic–boreal regions. The microwave data record spans multiple decades with frequent global observations of soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties, and land cover. This record holds substantial unexploited potential to better understand carbon cycle processes.
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022, https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary
Short summary
The internal properties of the snow cover shape the annual hygrogram of northern and alpine regions. This study develops a multi-method approach to measure the evolution of snowpack internal properties. The snowpack hydrological property evolution was evaluated with drone-based ground-penetrating radar (GPR) measurements. In addition, the combination of GPR observations and time domain reflectometry measurements is shown to be able to be adapted to monitor the snowpack moisture over winter.
Christophe Kinnard, Olivier Larouche, Michael N. Demuth, and Brian Menounos
The Cryosphere, 16, 3071–3099, https://doi.org/10.5194/tc-16-3071-2022, https://doi.org/10.5194/tc-16-3071-2022, 2022
Short summary
Short summary
This study implements a physically based, distributed glacier mass balance model in a context of sparse direct observations. Carefully constraining model parameters with ancillary data allowed for accurately reconstructing the mass balance of Saskatchewan Glacier over a 37-year period. We show that the mass balance sensitivity to warming is dominated by increased melting and that changes in glacier albedo and air humidity are the leading causes of increased glacier melt under warming scenarios.
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022, https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
Short summary
This article presents detailed and comprehensive hydrological and meteorological datasets collected over the past two decades throughout the Cordillera Blanca, Peru. With four weather stations and six streamflow gauges ranging from 3738 to 4750 m above sea level, this network displays a vertical breadth of data and enables detailed research of atmospheric and hydrological processes in a tropical high mountain region.
Anna Chesnokova, Michel Baraër, and Émilie Bouchard
The Cryosphere, 14, 4145–4164, https://doi.org/10.5194/tc-14-4145-2020, https://doi.org/10.5194/tc-14-4145-2020, 2020
Short summary
Short summary
In the context of a ubiquitous increase in winter discharge in cold regions, our results show that icing formations can help overcome the lack of direct observations in these remote environments and provide new insights into winter runoff generation. The multi-technique approach used in this study provided important information about the water sources active during the winter season in the headwaters of glacierized catchments.
Cited articles
Anderton, S. P., White, S., and Alvera, B.: Evaluation of spatial
variability in snow water equivalent for a high mountain catchment,
Hydrol. Process., 18, 435–453, https://doi.org/10.1002/hyp.1319, 2004.
Aygün, O., Kinnard, C., Campeau, S., and Krogh, S. A.: Shifting
hydrological processes in a Canadian agroforested catchment due to a warmer
and wetter climate, Water, 12, 739, https://doi.org/10.3390/w12030739, 2020.
Bair, E. H., Abreu Calfa, A., Rittger, K., and Dozier, J.: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan, The Cryosphere, 12, 1579–1594, https://doi.org/10.5194/tc-12-1579-2018, 2018.
Baños, I. M., García, A. R., Alavedra, J. M. I., Figueras, P. O.
i., Iglesias, J. P., Figueras, P. M. I., and López, J. T.: Assessment of
airborne lidar for snowpack depth modeling, B. Soc.
Geol. Mex., 63, 95–107, 2011.
Blue Marble Geographics: Global Mapper, Blue Marble Geographics, Hallowell,
ME, USA, 2020.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Brown, R. D.: Analysis of snow cover variability and change in Québec,
1948–2005, Hydrol. Process., 24, 1929–1954, 2010.
Broxton, P., Leeuwen, W. J. V., and Biederman, J.: Improving snow water
equivalent maps with machine learning of snow survey and lidar measurements,
Water Resour. Res, 55, 3739–3757, https://doi.org/10.1029/2018WR024146, 2019.
Broxton, P. D., Harpold, A. A., Biederman, J. A., Troch, P. A., Molotch, N.
P., and Brooks, P. D.: Quantifying the effects of vegetation structure on
snow accumulation and ablation in mixed-conifer forests, Ecohydrology, 8,
1073–1094, 2015.
Cho, E., Hunsaker, A. G., Jacobs, J. M., Palace, M., Sullivan, F. B., and
Burakowski, E. A.: Maximum entropy modeling to identify physical drivers of
shallow snowpack heterogeneity using unpiloted aerial system (UAS) lidar,
J. Hydrol., 602, 126722, https://doi.org/10.1016/j.jhydrol.2021.126722, 2021.
Clark, M., Hendrikx, J., Slater, A., Kavetski, D., Anderson, B., Cullen, N.
J., Kerr, T., Hreinsson, E., and Woods, R.: Representing spatial variability
of snow water equivalent in hydrologic and land surface models: A review,
Water Resour. Res., 47, W07539, https://doi.org/10.1029/2011WR010745, 2011.
Clemenzi, I., Pellicciotti, F., and Burlando, P.: Snow depth structure,
fractal behavior, and interannual consistency over Haut glacier d'Arolla,
Switzerland, Water Resour. Res., 54, 7929–7945, https://doi.org/10.1029/2017WR021606,
2018.
Currier, W., Pflug, J. M., Mazzotti, G., Jonas, T., Deems, J. S., Bormann,
K., Painter, T., Hiemstra, C., Gelvin, A., Uhlmann, Z., Spaete, L., Glenn,
N., and Lundquist, J. D.: Comparing aerial lidar observations with
terrestrial lidar and snow probe transects from NASA's 2017 SnowEx campaign,
Water Resour. Res., 55, 6285–6294, https://doi.org/10.1029/2018WR024533, 2019.
Currier, W. R. and Lundquist, J. D.: Snow depth variability at the forest
edge in multiple climates in the western United States, Water Resour. Res.,
54, 8756–8773, https://doi.org/10.1029/2018WR022553, 2018.
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Fractal distribution of
snow depth from lidar data, J. Hydrometeorol., 7, 285–297, 2006.
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Interannual consistency in
fractal snow depth patterns at two Colorado mountain sites, J.
Hydrometeorol., 9, 977–988, https://doi.org/10.1175/2008JHM901.1, 2008.
Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow
depth: a review, J. Glaciol., 59, 467–479, https://doi.org/10.3189/2013JoG12J154, 2013.
Dharmadasa, V., Kinnard, C., and Baraër, M.: An accuracy assessment of
snow depth measurements in agro-forested environments by UAV lidar, Remote
Sensing, 14, 1649, https://doi.org/10.3390/rs14071649, 2022.
Egli, L., Jonas, T., Grünewald, T., Schirmer, M., and Burlando, P.:
Dynamics of snow ablation in a small Alpine catchment observed by repeated
terrestrial laser scans, Hydrol. Process., 26, 1574–1585, https://doi.org/10.1002/hyp.8244, 2012.
Elder, K., Michaelsen, J., and Dozier, J.: Small basin modelling of snow
water equivalence using binary regression tree methods, Biogeochemistry of
Seasonally Snow-Covered Areas, IAHS-AIHS and IUGG XXI General Assembly,
Boulder, Colorado, July 1995, 129–139, 1995.
Elder, K., Rosenthal, W., and Davis, R. E.: Estimating the spatial
distribution of snow water equivalence in a montane watershed, Hydrol.
Process., 12, 1793–1808, 1998.
Environment and Climate Change Canada: Hourly Data Report, https://climate.weather.gc.ca/, last access: 16 July 2021a.
Environment and Climate Change Canada: Canadian Climate Normals 1981–2010,
Edited, https://climate.weather.gc.ca/ (last access: 10 August 2020), 2021b.
Erxleben, J., Elder, K., and Davis, R.: Comparison of spatial interpolation
methods for estimating snow distribution in the Colorado Rocky Mountains,
Hydrol. Process., 16, 3627–3649, 2002.
Essery, R., Rutter, N., Pomeroy, J., Baxter, R., Stähli, M., Gustafsson,
D., Barr, A., Bartlett, P., and Elder, K.: SNOWMIP2 an evaluation of forest
snow process simulations, B. Am. Meteorol. Soc., 90,
1120–1135, 2009.
Evans, J. S. and Hudak, A. T.: A multiscale curvature algorithm for
classifying discrete return LiDAR in forested environments, IEEE
T. Geosci. Remote, 45, 1029–1038, https://doi.org/10.1109/TGRS.2006.890412, 2007.
Fassnacht, S. R. and Deems, J. S.: Measurement sampling and scaling for deep
montane snow depth data, Hydrol. Process., 20, 829–838, 2006.
Filhol, S. and Sturm, M.: The smoothing of landscapes during snowfall with
no wind, J. Glaciol., 65, 173–187, https://doi.org/10.1017/jog.2018.104,
2019.
Fujihara, Y., Takase, K., Chono, S., Ichion, E., Ogura, A., and Tanaka, K.:
Influence of topography and forest characteristics on snow distributions in
a forested catchment, J. Hydrol., 546, 289–298, 2017.
Geodetics, Inc.: Geo-iNAV®, Geo-RelNAV®, Geo-PNT®, Geo-Pointer™, Geo-hNAV™, Geo-MMS™and Geo-RR™Commercial User Manual
(Document 20134 Rev X), Geodetics, Inc., San Diego, CA, USA, 2018.
Geodetics, Inc.: LiDARTool™User Manual (Document 20149 Rev I),
Geodetics, Inc., San Diego, CA, USA, 2019.
Golding, D. L. and Swanson, R. H.: Snow distribution patterns in clearings
and adjacent forest, Water Resour. Res., 22, 1931–1940, 1986.
GreenValley-International: LiDAR360 User Guide, GreenValley International,
Ltd, Berkeley, CA, USA, 2020.
Grünewald, T., Stötter, J., Pomeroy, J. W., Dadic, R., Moreno Baños, I., Marturià, J., Spross, M., Hopkinson, C., Burlando, P., and Lehning, M.: Statistical modelling of the snow depth distribution in open alpine terrain, Hydrol. Earth Syst. Sci., 17, 3005–3021, https://doi.org/10.5194/hess-17-3005-2013, 2013.
Harder, P., Schirmer, M., Pomeroy, J., and Helgason, W.: Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle, The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016, 2016.
Harder, P., Pomeroy, J. W., and Helgason, W. D.: Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques, The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, 2020.
Harpold, A. A., Guo, Q., Molotch, N., Brooks, P. D., Bales, R.,
Fernandez-Diaz, J. C., Musselman, K. N., and Swetnam, T. L.: Lidar-derived
snowpack data sets from mixed conifer forests across the Western United
States, Water Resour. Res, 50, 2749–2755, 2014.
Hedstrom, N. R. and Pomeroy, J. W.: Measurements and modelling of snow
interception in the boreal forest, Hydrol. Process., 12, 1611–1625,
1998.
Helfricht, K., Schöber, J., Schneider, K., Sailer, R., and Kuhn, M.:
Interannual persistence of the seasonal snow cover in a glacierized
catchment, J. Glaciol., 60, 889–904, https://doi.org/10.3189/2014JoG13J197,
2014.
Hojatimalekshah, A., Uhlmann, Z., Glenn, N. F., Hiemstra, C. A., Tennant, C. J., Graham, J. D., Spaete, L., Gelvin, A., Marshall, H.-P., McNamara, J. P., and Enterkine, J.: Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning, The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021, 2021.
Hopkinson, C., Sitar, M., Chasmer, L., and Treitz, P.: Mapping snowpack
depth beneath forest canopies using airborne lidar, Photogramm.
Eng. Rem. S., 70, 323–330, 2004.
Hopkinson, C., Collins, T., Anderson, A., Pomeroy, J., and Spooner, I.:
Spatial snow depth assessment using lidar transect samples and public GIS
data layers in the Elbow River watershed, Alberta, Can. Water Resour.
J., 37, 69–87, 2012a.
Hopkinson, C., Pomeroy, J., Debeer, C., Ellis, C., and Anderson, A.:
Relationships between snowpack depth and primary lidar point cloud
derivatives in a mountainous environment, Remote Sensing and Hydrology,
Jackson Hole, Wyoming, USA, 27–30 September 2010, 2012b.
Jacobs, J. M., Hunsaker, A. G., Sullivan, F. B., Palace, M., Burakowski, E. A., Herrick, C., and Cho, E.: Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States, The Cryosphere, 15, 1485–1500, https://doi.org/10.5194/tc-15-1485-2021, 2021.
James, N. A. and Matteson, D. S.: ecp: An R package for nonparametric
multiple change point analysis of multivariate data, J. Stat.
Softw., 62, 1–25, https://doi.org/10.18637/jss.v062.i07, 2014.
Jennings, S. B., Brown, N. D., and Sheil, D.: Assessing forest canopies and
understorey illumination: canopy closure, canopy cover and other measures,
Forestry, 72, 59–74, https://doi.org/10.1093/forestry/72.1.59, 1999.
Jerome, H. F.: Greedy function approximation: A gradient boosting machine,
Ann. Stat., 29, 1189–1232, https://doi.org/10.1214/aos/1013203451, 2001.
Jost, G., Weiler, M., Gluns, D. R., and Alila, Y.: The influence of forest
and topography on snow accumulation and melt at the watershed-scale, J.
Hydrol., 347, 101–115, 2007.
Kirchner, P. B., Bales, R. C., Molotch, N. P., Flanagan, J., and Guo, Q.: LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California, Hydrol. Earth Syst. Sci., 18, 4261–4275, https://doi.org/10.5194/hess-18-4261-2014, 2014.
Koutantou, K., Mazzotti, G., and Brunner, P.: UAV-BASED LIDAR HIGH-RESOLUTION SNOW DEPTH MAPPING IN THE SWISS ALPS: COMPARING FLAT AND STEEP FORESTS, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 477–484, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-477-2021, 2021.
Koutantou, K., Mazzotti, G., Brunner, P., Webster, C., and Jonas, T.:
Exploring snow distribution dynamics in steep forested slopes with UAV-borne
LiDAR, Cold Reg. Sci. Technol., 200, 103587, https://doi.org/10.1016/j.coldregions.2022.103587, 2022.
Lehning, M., Grünewald, T., and Schirmer, M.: Mountain snow distribution
governed by an altitudinal gradient and terrain roughness, Geophys.
Res. Lett., 38, L19504, https://doi.org/10.1029/2011GL048927, 2011.
Lendzioch, T., Langhammer, J., and Jenicek, M.: TRACKING FOREST AND OPEN AREA EFFECTS ON SNOW ACCUMULATION BY UNMANNED AERIAL VEHICLE PHOTOGRAMMETRY, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 917–923, https://doi.org/10.5194/isprs-archives-XLI-B1-917-2016, 2016.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R
News, 2/3, 18–22, 2002.
Liston, G. E. and Elder, K.: A distributed snow-evolution modeling system
(SnowModel), J. Hydrometeorol., 7, 1259–1276, 2006.
Liston, G. E. and Sturm, M.: A snow-transport model for complex terrain,
J. Glaciol., 44, 498–516, 1998.
López-Moreno, J. I. and Latron, J.: Spatial heterogeneity in snow water
equivalent induced by forest canopy in a mixed beech-fir stand in the
Pyrenees, Ann. Glaciol., 49, 83–90, 2008.
Mazzotti, G., Currier, W., Deems, J. S., Pflug, J. M., Lundquist, J. D., and
Jonas, T.: Revisiting snow cover variability and canopy structure within
forest stands: Insights from airborne lidar data, Water Resour. Res., 55,
6198–6216, https://doi.org/10.1029/2019WR024898, 2019.
Mazzotti, G., Essery, R., Moeser, C. D., and Jonas, T.: Resolving
small-scale forest snow patterns using an energy balance snow model with a
one-layer canopy, Water Resour. Res, 56, e2019WR026129, https://doi.org/10.1029/2019WR026129, 2020a.
Mazzotti, G., Essery, R., Webster, C., Malle, J., and Jonas, T.:
Process-level evaluation of a hyper-resolution forest snow model using
distributed multisensor observations, Water Resour. Res, 56, e2020WR027572,
https://doi.org/10.1029/2020WR027572, 2020b.
Mendoza, P. A., Musselman, K. N., Revuelto, J., Deems, J. S.,
López-Moreno, J. I., and McPhee, J.: Interannual and seasonal
variability of snow depth scaling behavior in a subalpine catchment, Water
Resour. Res, 56, e2020WR027343, https://doi.org/10.1029/2020WR027343, 2020a.
Mendoza, P. A., Shaw, T. E., McPhee, J., Musselman, K. N., Revuelto, J., and
MacDonell, S.: Spatial distribution and scaling properties of lidar-derived
snow depth in the extratropical Andes, Water Resour. Res, 56, e2020WR028480,
https://doi.org/10.1029/2020WR028480, 2020b.
Molotch, N. P., Colee, M. T., Bales, R. C., and Dozier, J.: Estimating the
spatial distribution of snow water equivalent in an alpine basin using
binary regression tree models: The impact of digital elevation data and
independent variable selection, Hydrol. Process., 19, 1459–1479,
2005.
Morsdorf, F., Kötz, B., Meier, E., Itten, K. I., and Allgöwer, B.:
Estimation of LAI and fractional cover from small footprint airborne laser
scanning data based on gap fraction, Remote Sens. Environ., 104,
50–61, 2006.
Mott, R., Schirmer, M., and Lehning, M.: Scaling properties of wind and snow
depth distribution in an Alpine catchment, J. Geophys. Res.,
116, D06106, https://doi.org/10.1029/2010JD014886, 2011.
Musselman, K. N., Molotch, N. P., and Brooks, P. D.: Effects of vegetation
on snow accumulation and ablation in a mid-latitude sub-alpine forest,
Hydrol. Process., 22, 2767–2776, https://doi.org/10.1002/hyp.7050, 2008.
Painter, T., Berisford, D., Boardman, J., Bormann, K. J., Deems, J., Gehrke,
F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann, C., Mcgurk,
B., Ramirez, P., Richardson, M., Skiles, S., Seidel, F., and Winstral, A.:
The Airborne Snow Observatory: Fusion of scanning lidar, imaging
spectrometer, and physically-based modeling for mapping snow water
equivalent and snow albedo, Remote Sens. Environ., 184, 139–152,
2016.
Paquotte, A. and Baraer, M.: Hydrological behavior of an ice-layered
snowpack in a non-mountainous environment, Hydrol. Process., 36,
e14433, https://doi.org/10.1002/hyp.14433, 2021.
Plattner, C., L. N. , A., B., and Brenning: The spatial variability of snow
accumulation on Vernagtferner, Austrian Alps, in Winter 2003/2004,
Zeitschrift für Gletscherkunde und Glazialgeologie, 39, 43–57, 2004.
Pomeroy, J. W. and Granger, R. J.: Sustainability of the western Canadian
boreal forest under changing hydrological conditions-Snow accumulation and
ablation, Sustainability of Water Resources under Increasing Uncertainty
(Proceedings of an international Symposium S1), Rabat, Morocco, 23 April–3
May 1997, 237–242, 1997.
Pomeroy, J. W., Parviainen, J., Hedstrom, N., and Gray, D. M.: Coupled
modelling of forest snow interception and sublimation, Hydrol.
Process., 12, 2317–2337, 1998.
Pomeroy, J. W., Gray, D. M., Brown, T., Hedstrom, N. R., Quinton, W. L.,
Granger, R. J., and Carey, S. K.: The cold regions hydrological model: a
platform for basing process representation and model structure on physical
evidence, Hydrol. Process., 21, 2650–2667, https://doi.org/10.1002/hyp.6787,
2007.
Probst, P. and Boulesteix, A.-L.: To tune or not to tune the number of trees
in random forest, J. Mach. Learn. Res., 18, 6673–6690, 2017.
Revuelto, J., López-Moreno, J. I., Azorin-Molina, C., and Vicente-Serrano, S. M.: Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence, The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, 2014.
Richardson, J. J., Moskal, L. M., and Kim, S.-H.: Modeling approaches to
estimate effective leaf area index from aerial discrete-return lidar,
Agr. Forest Meteorol., 149, 1152–1160, 2009.
Roth, T. R. and Nolin, A. W.: Forest impacts on snow accumulation and ablation across an elevation gradient in a temperate montane environment, Hydrol. Earth Syst. Sci., 21, 5427–5442, https://doi.org/10.5194/hess-21-5427-2017, 2017.
Royer, A., Roy, A., Jutras, S., and Langlois, A.: Review article: Performance assessment of radiation-based field sensors for monitoring the water equivalent of snow cover (SWE), The Cryosphere, 15, 5079–5098, https://doi.org/10.5194/tc-15-5079-2021, 2021.
Safa, H., Krogh, S. A., Greenberg, J., Kostadinov, T. S., and Harpold, A.
A.: Unraveling the controls on snow disappearance in montane conifer forests
using multi-site lidar, Water Resour. Res., 57, e2020WR027522, https://doi.org/10.1029/2020WR027522, 2021.
Schirmer, M. and Lehning, M.: Persistence in intra-annual snow depth
distribution: 2. Fractal analysis of snow depth development, Water Resour.
Res., 47, W09517, https://doi.org/10.1029/2010WR009429, 2011.
Sena, N., Chokmani, K., Gloaguen, E., and Bernier, M.: Analyse
multi-échelles de la variabilité spatiale de l'équivalent en eau
de la neige (EEN) sur le territoire de l'Est du Canada, Hydrolog.
Sci. J., 62, 359–377, 2017.
SPH-Engineering: UgCS Desktop application version 3.2 (113) User Manual, SPH
Engineering, Baložu Pilsēta, Latvia, 2019.
Sun, W., Xu, G., Gong, P., and Liang, S.: Fractal analysis of remotely
sensed images: A review of methods and applications, Int. J.
Remote Sens., 27, 4963–4990, https://doi.org/10.1080/01431160600676695, 2006.
Tinkham, W. T., Smith, A. M. S., Marshall, H., Link, T., Falkowski, M., and
Winstral, A.: Quantifying spatial distribution of snow depth errors from
lidar using random forest, Remote Sens. Environ., 141, 105–115,
https://doi.org/10.1016/j.rse.2013.10.021, 2014.
Trujillo, E., Ramírez, J. A., and Elder, K. J.:
Topographic, meteorologic, and canopy controls on the scaling
characteristics of the spatial distribution of snow depth fields, Water
Resour. Res., 43, W07409, https://doi.org/10.1029/2006WR005317, 2007.
Trujillo, E., Ramírez, J. A., and Elder, K.: Scaling properties and
spatial organization of snow depth fields in sub alpine forest and alpine
tundra, Hydrol. Process., 23, 1575–1590, https://doi.org/10.1002/hyp.7270, 2009.
Tyralis, H., Papacharalampous, G., and Langousis, A.: A brief review of
random forests for water scientists and practitioners and their recent
history in water resources, Water, 11, 910, https://doi.org/10.3390/w11050910, 2019.
Valence, E., Baraer, M., Rosa, E., Barbecot, F., and Monty, C.: Drone-based ground-penetrating radar (GPR) application to snow hydrology, The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022, 2022.
Varhola, A., Coops, N. C., Weiler, M., and Moore, R. D.: Forest canopy
effects on snow accumulation and ablation: An integrative review of
empirical results, J. Hydrol., 392, 219–233, 2010a.
Varhola, A., Coops, N. C., Bater, C. W., Teti, P., Boon, S., and Weiler,
M.: The influence of ground- and lidar-derived forest structure metrics on
snow accumulation and ablation in disturbed forests, Can. J.
Forest Res., 40, 812–821, 2010b.
Veatch, W., Brooks, P. D., Gustafson, J. R., and Molotch, N. P.: Quantifying
the effects of forest canopy cover on net snow accumulation at a
continental, mid-latitude site, Ecohydrology, 2, 115–128, 2009.
Webster, R. and Oliver, M.: Geostatistics for environmental scientists,
second edition, Chichester, England, John Wiley & Sons Ltd., https://doi.org/10.1002/9780470517277.ch1, 2007.
Wilcoxon, F.: Individual comparisons by ranking methods, Biometrics, 1,
80–83, 1945.
Winkler, R. D., Spittlehouse, D. L., and Golding, D. L.: Measured
differences in snow accumulation and melt among clearcut, juvenile, and
mature forests in southern British Columbia, Hydrol. Process., 19,
51–62, 2005.
Winstral, A. and Marks, D.: Simulating wind fields and snow redistribution
using terrain based parameters to model snow accumulation and melt over a
semi arid mountain catchment, Hydrol. Process., 16, 3585–3603, https://doi.org/10.1002/hyp.1238, 2002.
Winstral, A., Elder, K., and Davis, R. E.: Spatial snow modeling of
wind-redistributed snow using terrain-based parameters, J.
Hydrometeorol., 3, 524–538, https://doi.org/10.1175/1525-7541(2002)003<0524:Ssmowr>2.0.Co;2, 2002.
Woods, S. W., Ahl, R., Sappington, J., and McCaughey, W.: Snow accumulation
in thinned lodgepole pine stands, Montana, USA, Forest Ecol.
Manage., 235, 202–211, 2006.
Yang, J., Jiang, L., Luojus, K., Pan, J., Lemmetyinen, J., Takala, M., and Wu, S.: Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach, The Cryosphere, 14, 1763–1778, https://doi.org/10.5194/tc-14-1763-2020, 2020.
Zhang, X., Gao, R., Sun, Q., and Cheng, J.: An automated rectification
method for unmanned aerial vehicle LiDAR point cloud data based on laser
intensity, Remote Sensing, 11, 811, https://doi.org/10.3390/rs11070811, 2019.
Zheng, Z., Kirchner, P. B., and Bales, R. C.: Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data, The Cryosphere, 10, 257–269, https://doi.org/10.5194/tc-10-257-2016, 2016.
Zheng, Z., Ma, Q., Qian, K., and Bales, R. C.: Canopy effects on snow
accumulation: observations from lidar, canonical-view photos, and continuous
ground measurements from sensor networks, Remote Sensing, 10, 1769, https://doi.org/10.3390/rs10111769, 2018.
Zheng, Z., Ma, Q., Jin, S., Su, Y., Guo, Q., and Bales, R. C.: Canopy and
terrain interactions affecting snowpack spatial patterns in the Sierra
Nevada of California, Water Resour. Res., 55, 8721–8739, https://doi.org/10.1029/2018wr023758, 2019.
Short summary
This study highlights the successful usage of UAV lidar to monitor small-scale snow depth distribution. Our results show that underlying topography and wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. This emphasizes the importance of including and better representing these processes in physically based models for accurate snowpack estimates.
This study highlights the successful usage of UAV lidar to monitor small-scale snow depth...