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Abstract. Accurate knowledge of snow depth distributions
in forested regions is crucial for applications in hydrology
and ecology. In such a context, understanding and assessing
the effect of vegetation and topographic conditions on snow
depth variability is required. In this study, the spatial distribu-
tion of snow depth in two agro-forested sites and one conif-
erous site in eastern Canada was analyzed for topographic
and vegetation effects on snow accumulation. Spatially dis-
tributed snow depths were derived by unmanned aerial ve-
hicle light detection and ranging (UAV lidar) surveys con-
ducted in 2019 and 2020. Distinct patterns of snow accu-
mulation and erosion in open areas (fields) versus adjacent
forested areas were observed in lidar-derived snow depth
maps at all sites. Omnidirectional semi-variogram analysis
of snow depths showed the existence of a scale break dis-
tance of less than 10 m in the forested area at all three sites,
whereas open areas showed comparatively larger scale break
distances (i.e., 11–14 m). The effect of vegetation and topo-
graphic variables on the spatial variability in snow depths at
each site was investigated with random forest models. Re-
sults show that the underlying topography and the wind redis-
tribution of snow along forest edges govern the snow depth
variability at agro-forested sites, while forest structure vari-
ability dominates snow depth variability in the coniferous
environment. These results highlight the importance of in-
cluding and better representing these processes in physically
based models for accurate estimates of snowpack dynamics.

1 Introduction

Knowledge of spring snowpack conditions is essential to ac-
curately estimate water availability and flood peaks follow-
ing the onset of melt (Hopkinson et al., 2004). Many stud-
ies showed that addressing the spatial distribution of snow
depth prior to melting is more important than spatial differ-
ences in melt behavior when estimating snowmelt dynam-
ics of the snowpack (e.g., Schirmer and Lehning, 2011; Egli
et al., 2012). Evaluating snowpack conditions in forested re-
gions is particularly crucial as the forest cover significantly
modifies snow accumulation and ablation processes due to
canopy interception and changes energy balance processes
within the canopy. These changes produce a marked effect
on downstream hydrographs (Roth and Nolin, 2017). In ad-
dition, forests can also influence differential snow accumu-
lation by preferential deposition of wind-blown snow along
the forest edges (Essery et al., 2009; Currier and Lundquist,
2018).

Spatial variability in the snow cover is mainly con-
trolled by topography, vegetation type, and vegetation den-
sity (Golding and Swanson, 1986; Jost et al., 2007; Varhola
et al., 2010a; Koutantou et al., 2022). With the advent of
remote sensing techniques, airborne (piloted and unpiloted)
laser (lidar: light detection and ranging) scanning techniques
have been extensively used to monitor snowpacks due to
their strong penetration ability through the canopy to de-
tect underlying snow cover/ground (Hopkinson et al., 2004;
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Morsdorf et al., 2006; Hopkinson et al., 2012b; Deems et
al., 2013; Harpold et al., 2014; Zheng et al., 2016; Currier
and Lundquist, 2018; Zheng et al., 2018; Mazzotti et al.,
2019; Harder et al., 2020; Jacobs et al., 2021). Lidar scan-
ning also typically allows micro variability to be captured
and allows high-resolution (< 10 m) snow depth and cover
maps to be produced (e.g., Deems et al., 2013; Harder et al.,
2020; Koutantou et al., 2021; Dharmadasa et al., 2022).

Snow spatial variability can occur on more than one scale
due to different processes acting over multiple scales (Deems
et al., 2006; Clark et al., 2011). Several studies emphasized a
multiscale behavior of snow depths with two distinct regions
(scales) separated by a scale break at a location varying from
meters to tens of meters, with a more strongly spatially corre-
lated snow depth structure before the scale break (Deems et
al., 2006; Fassnacht and Deems, 2006; Trujillo et al., 2007;
Deems et al., 2008; Trujillo et al., 2009; Mott et al., 2011;
Schirmer and Lehning, 2011; Helfricht et al., 2014; Clemenzi
et al., 2018; Mendoza et al., 2020a, b). In turn, this suggests
the existence of different combinations of processes control-
ling the snow accumulation and distribution over these two
distinct scales. For instance, these studies emphasized that
canopy interception causes a short scale break distance in
forested areas (9–12 m) where the effect of wind redistribu-
tion is minimal (Deems et al., 2006; Trujillo et al., 2007).
Comparatively longer distances (15–65 m) were reported in
tundra regions and explained by the interaction of wind, veg-
etation, and terrain roughness (Trujillo et al., 2009), while
shorter distances (6 and 20 m) in non-vegetated areas are ex-
plained by the interaction of the wind with terrain roughness
in sheltered and exposed mountain slopes (Mott et al., 2011;
Schirmer and Lehning, 2011). The estimation of this scale
break location is important when choosing the horizontal res-
olution required for remotely sensed or in situ data collection
efforts, as well as model scales in order to represent the snow-
pack variability at different scales.

In addition to the scaling properties of snow distribution,
the relationship between snow depth, topography, and for-
est structure is also an important aspect for understanding
and assessing small-scale snow heterogeneity in forested en-
vironments. The need to quantify these complex relation-
ships has inspired the development of numerous empirical
models (e.g., Anderton et al., 2004; Winkler et al., 2005;
Grünewald et al., 2013) and process-based models (e.g., Hed-
strom and Pomeroy, 1998; Liston and Elder, 2006; Mazzotti
et al., 2020a, b). While process-based models are applicable
to a wide range of conditions, they do require an extensive
amount of input data. Contrarily, empirical models are use-
ful in establishing a general relationship between the vari-
ables and provide a first-order estimate of their effects on
snow processes. However, they do not explicitly account for
governing processes and thus may not make accurate predic-
tions under specific conditions (Varhola et al., 2010a). Nev-
ertheless, the use and effectiveness of empirical models like
multiple linear regressions (MLRs) (Jost et al., 2007; Lehn-

ing et al., 2011; Grünewald et al., 2013; Revuelto et al., 2014;
Zheng et al., 2016, 2018) and binary regression trees (BRTs)
(Elder et al., 1995, 1998; Winstral et al., 2002; Anderton
et al., 2004; Molotch et al., 2005; Baños et al., 2011; Re-
vuelto et al., 2014) to relate snow depth and SWE (snow
water equivalent) patterns to terrain and land cover predic-
tors are well documented. Compared to linear methods, tree-
based methods have the ability to describe more complex and
nonlinear relationships between snow depth and landscape
variables (Erxleben et al., 2002; Veatch et al., 2009; Bair et
al., 2018). In recent years, random forest (RF) models, an
ensemble machine learning algorithm that combines several
randomized decision trees and aggregates their predictions,
have gained popularity in water science and hydrological ap-
plications (Tyralis et al., 2019). The use of the ensemble bag-
ging approach in RF models reduces overfitting, which is
a well-known issue with traditional decision trees, and pro-
vides more accurate and unbiased error estimates (Breiman,
2001). As of yet, there have been only a handful of studies
that used RF models to estimate snow depths and SWE (Bair
et al., 2018; Yang et al., 2020) other than those that used
RF algorithms to quantify the relative importance of predic-
tor variables (Zheng et al., 2016) or to predict spatially dis-
tributed lidar vertical errors (Tinkham et al., 2014).

To our knowledge, to date, there have only been a few
previous studies that estimated snow depths by unpiloted
aerial vehicle (UAV)-based lidar (Harder et al., 2020; Cho
et al., 2021; Jacobs et al., 2021; Koutantou et al., 2021;
Dharmadasa et al., 2022). None of them explicitly examined
how terrain and vegetation characteristics influence snow
heterogeneity in different landscapes. From previous studies,
Koutantou et al. (2022) used UAV lidar data on two opposing
slopes with a heterogeneous forest cover at a high spatiotem-
poral scale to show the effect of canopy structure and solar
radiation on snow dynamics, excluding the effect of micro-
topography. The main objective of this paper is to study the
small-scale spatial variability in snow depth by UAV lidar
and investigate the terrain (including the effect of microto-
pography) and vegetation controls on this snow depth het-
erogeneity in an agro-forested and a boreal landscape. The
study sites are based in southern Quebec, Canada, where
forests intertwined with mosaics of open agricultural fields
in low-lying lands (agro-forested landscapes) play a signifi-
cant role in altering the spatial distribution of the snow cover
(Aygün et al., 2020). Much uncertainty still exists about the
micro- and meso-scale spatial variability in snow cover and
associated hydrological processes in these landscapes partly
due to a lack of detailed and simultaneous micrometeoro-
logical and snowpack observations (Brown, 2010; Sena et
al., 2017; Valence et al., 2022). To our knowledge, there
has been no application of UAV laser scanning to investi-
gate the small-scale snow cover heterogeneity in this type
of landscape. This study will specifically explore the follow-
ing: (1) how the snow accumulation and its scaling charac-
teristics vary between and within forested and open environ-
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ments and (2) the relationship between snow depth, topogra-
phy, and forest structure in different sites. Motivated by pre-
vious works (Currier and Lundquist, 2018; Mazzotti et al.,
2019), we specifically investigate how the forest edges modu-
late the accumulation patterns in agro-forested environments.
Given the relatively flat topography in these environments,
we hypothesize that preferential accumulation along forest
edges may represent a significant factor of spatial variability
in snow depth.

2 Data and methods

2.1 Study sites

Small-scale snow depth heterogeneity was investigated at
three selected sites that represent the typical landscape in
southern Quebec (Fig. 1). Sainte-Marthe and Saint-Maurice
are agro-forested sites located in the St. Lawrence River low-
lands. Irrigation canals and streams flowing through the open
agricultural areas are very common in these agro-forested
landscapes. The main crop type in the agricultural areas is
soya. The forested area in Sainte-Marthe consists of a dense
deciduous forest with sugar maple (Acer saccharum), red
maple (Acer rubrum), and a small conifer plantation to the
southwest. Saint-Maurice has a highly to moderately dense
mixed forest with poplar (Populus x canadensis), red maple,
white pine (Pinus strobus), and balsam fir (Abies balsamea)
being the dominant tree species. Forêt Montmorency (here-
after Montmorency) is a dense boreal forest with balsam
fir, black spruce (Picea mariana), and white spruce (Picea
glauca) tree species farther north on the Canadian Shield.
Forest gaps associated with clear-cutting and regeneration
practices are common in this area. Adjacent to the forest is
an open area hosting the NEIGE-FM snow research station,
which hosts a variety of precipitation gauges and snowpack
measuring sensors and is part of the World Meteorological
Organization’s (WMO) station network (Royer et al., 2021).
Table 1 summarizes the physiographic and climatic condi-
tions at each site. Land use information presented in Fig. 1
was obtained from the Québec Ministry of Forests, Wildlife,
and Parks (MFFP). For interpretation purposes, open agricul-
tural areas in Sainte-Marthe and Saint-Maurice and the small
open area in Montmorency (NEIGE-FM site) are referred to
as “field” herein.

Although the lidar data acquisition years are different be-
tween agro-forested sites and boreal forest due to logistical
reasons, the study years are representative of the long-term
climatological conditions at the sites (Fig. S1 in the Sup-
plement) and hence allowed for an inter-site comparison of
snow depths.

2.2 Data processing

All lidar surveys were performed with a Geo-MMS system
mounted onto a DJI M600 Pro UAV platform. The Geo-

MMS system is comprised of a Velodyne VLP-16 lidar sen-
sor, a real-time dual-antenna global navigation satellite sys-
tem (GNSS)-aided inertial navigation system (INS) for pre-
cise heading, and a tactical MG364 inertial measurement unit
(IMU). The nominal accuracy of the point cloud provided
by Geo-MMS is ±5 cm (rms, root mean square) (Geodetics,
2018), whereas the nominal uncorrelated relative error of two
lidar point clouds is approximately±7 cm (

√
52+ 52). Flight

paths for the surveys were prepared in UgCS flight control
software (Sph-Engineering, 2019), and the flight parameters
were optimized to reduce overall INS errors and maximize
the mapping efficiency in the forested areas. Table 2 outlines
the flight parameters and equipment settings used in surveys.

Raw lidar data sets collected from the flights were post-
processed in Geodetics LiDARTool (Geodetics, 2019) with
post-processing kinematic (PPK) correction. The PPK option
regenerated a significantly more accurate trajectory file by
combining the onboard GNSS data with GNSS base station
data. Then, this post-processed trajectory file was merged
with the raw laser data to produce a geo-referenced x,y,z
point cloud. Noise removal was applied next. We also em-
ployed a trial-and-error, manual boresight calibration method
to correct for boresight errors in the data, as recommended by
the manufacturer (Geodetics, 2019). The final post-processed
point clouds have a vertical absolute accuracy range of 3–
6 cm and a relative accuracy range of 4–6 cm (Dharmadasa
et al., 2022).

To classify the bare-surface points, we used the multiscale
curvature algorithm (Evans and Hudak, 2007) implemented
in the commercial Global Mapper software (Blue Marble Ge-
ographics, 2020). Parameters of the algorithm were adjusted
according to the vertical spread of the flight strips over open
terrain, the local slope of the terrain and canals/streams, and
the presence/absence of buildings. The reader is referred to
Dharmadasa et al. (2022) for a comprehensive overview of
the UAV lidar system and post-processing of raw data.

2.2.1 Snow depth maps

Snow depth maps were obtained by differencing winter
(snow-on) and summer (snow-off) digital elevation mod-
els (DEMs) generated from bare-surface points at each site.
Bare-surface points were aggregated to a grid resolution of
1.4 m using the binning method in Global Mapper (Blue Mar-
ble Geographics, 2020). This grid resolution was selected
based on the manual snow depth sampling strategy used by
Dharmadasa et al. (2022) to validate the snow depth maps
and aimed to minimize the effect of positional errors in the
manual measurements made with GNSS. The manual sam-
pling strategy consisted of five snow depth measurements
taken at each sampling location in a diagonal cross shape at
1 m apart, and the average of these five measurements rep-
resents a 1.4× 1.4 m (

√
12+ 12) grid cell. As final filtering,

spurious negative snow depths were set to zero, as they are
physically inconsistent and need to be filtered (Hopkinson et
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Figure 1. Overview of the study sites with lidar survey extents. Field and forest areas within each lidar extent are delineated with brown and
green colors, respectively. (a) Sainte-Marthe, (b) Saint-Maurice, and (c) Montmorency. Contour intervals intentionally differ between sites
for better readability (adapted from Dharmadasa et al., 2022).

Table 1. Site characteristics and lidar data collection information (adapted from Dharmadasa et al., 2022).

Sainte-Marthe Saint-Maurice Montmorency

Elevation range, m 70–78 46–50 670–700
MAAT, ◦C 6.0 4.7 0.5
Total precipitation, mm yr−1 1000 1063 1600
Snowfall/total precipitation, % 15 16 40
Winter season November–March November–March October–April
Lidar survey extent, km2 0.22 0.25 0.12
Forest area/total area, % 40 40 92
Forest type Deciduous Mixed Boreal
Mean canopy density, % > 80 60–80 60–80
Snow-on flight date 12 March 2020 11 March 2020 29 March 2019
Snow-off flight date 11 May 2020 2 May 2020 13 June 2019

MAAT signifies mean annual air temperature. Climatic data presented here were based on the climate averages
(1981–2010) at the nearest Environment and Climate Change Canada (2021b) meteorological stations to the sites (station
climate IDs 7016470, 7017585, and 7042388 for Sainte-Marthe, Saint-Maurice, and Montmorency). None of the snow-on
flights were conducted right after a storm.

al., 2012a). Negative snow depths accounted for a very small
portion of the total area (< 0.1 %) sampled and had a negligi-
ble effect on the statistics derived from the snow depth maps.
The validation of UAV lidar snow depths with manual mea-
surements showed a RMSE of 0.079–0.160 m in the decidu-
ous forested environment and 0.096–0.190 m in the conifer-
ous forested environment (Dharmadasa et al., 2022), which

are comparable to previous efforts with UAV lidar (Harder et
al., 2016; Jacobs et al., 2021) and airborne lidar (Harpold et
al., 2014; Painter et al., 2016). More details about the snow
depth validation can be found in Dharmadasa et al. (2022).
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Table 2. Flight parameters and equipment settings.

Flight parameters Equipment settings

Flying speed 3 m s−1 Wavelength 905 nm
Flight altitude 40 m a.g.l. Laser pulse repetition rate 18.08 kHz
Field of view (horizontal) 145◦ Field of view (vertical) ±15◦

Distance between parallel flight lines 64 m Laser RPM 1200
Ground overlap 20 % Return type Dual
Point density 603 points m−2

2.2.2 Terrain metrics

To typify the terrain characteristics, we derived four vari-
ables from the summer DEM, i.e., elevation (Elevation),
slope (Slope), aspect (Aspect), and topographic wind shelter-
ing index (TWSI) at 1.4 m resolution (Supplement Figs. S2–
S4). Topographic variables other than elevation need to be
considered when studying areas that encompass a small el-
evation range (Zheng et al., 2016), such as our sites. El-
evation was obtained directly from the DEM, while Slope
and Aspect were derived using ArcGIS 10.2 software. Slope
was calculated as the first derivative of the DEM, while As-
pect was derived in two orthogonal components, i.e., west–
east (Aspect_WE) and south–north (Aspect_SN) exposures.
Aspect_WE (west-negative, east-positive) and Aspect_SN
(south-negative, north-positive) were calculated directly as
the sine and cosine of the aspect, respectively. The TWSI was
produced using the RSAGA package in CRAN. This variable
considers the sheltering effects of the local topography in the
dominant wind direction. Several studies showed that TWSI
is a good measure to characterize sheltering and exposure of
the local terrain providing a reasonable representation of the
local wind field and thus the redistribution of snow by wind
(Winstral et al., 2002; Winstral and Marks, 2002; Plattner et
al., 2004; Molotch et al., 2005). Negative TWSI values cor-
respond to terrain exposure and positive values to sheltering
from the wind. TWSI is similar to the Sx parameter used by
Revuelto et al. (2014), but the TWSI is calculated based on
prescribed dominant wind directions in contrast to the eight
directions used by them. Dominant wind directions were ex-
tracted from hourly wind data for the study period considered
(winter season in each study year as indicated in Table 1) at
each site (Fig. 2). Wind data were collected from an auto-
matic weather station located 1.4 km away from the Sainte-
Marthe site and the closest Environment Canada wind mea-
suring stations at the other sites. The closest station to Saint-
Maurice (climate ID 7018561) was 19 km away from the site
and 0.25 km away from the Montmorency site (climate ID
7042395) (ECCC, 2021a).

2.2.3 Vegetation descriptors

Vegetation-related variables were rasterized from the clas-
sified winter point cloud in LiDAR360 (Greenvalley-

International, 2020). The forestry module of LiDAR360 con-
tains tools that allow users to calculate essential forest met-
rics and accurately extract individual tree parameters like
crown diameter, crown area, and tree diameter by breast
height from airborne lidar data. In this study, the leaf area
index (LAI), canopy cover (CC), and gap fraction (GF) were
estimated at 1.4 m resolution for the forest cover higher
than 2 m (Supplement Figs. S2–S4). A 2 m height thresh-
old was selected as canopies > 2 m have been shown to
have a strong influence on snow accumulation (Varhola et
al., 2010b; Zheng et al., 2016, 2019). The function used to
calculate LAI is based on the Beer–Lambert law (Richard-
son et al., 2009). The estimated LAI is contingent on the
average scan angle, GF, and extinction coefficient. GF, the
amount of open area within the canopy which is not blocked
by branches or foliage, is calculated as the total number of
ground points to the total number of lidar points within a
grid cell. CC, which is defined as the percentage of vertical
projection of forest canopy to the forest land area (Jennings
et al., 1999), is calculated as the total number of vegetation
returns to total returns (Morsdorf et al., 2006; CC= 1−GF).
Refer to Richardson et al. (2009) and Morsdorf et al. (2006)
for the equations used by LiDAR360 to estimate the forest
metrics. In addition, canopy height (CH) was derived by sub-
tracting the DEM from the digital surface model (DSM).

2.2.4 Site variable

A binary variable, Site, representing forested (1) and field (0)
pixels, was derived to investigate systematic effects, if any,
of land cover that were not captured by vegetation or terrain
metrics (Supplement Figs. S2–S4). This variable was derived
by manually mapping field and forested area boundaries at
each site (as indicated in Fig. 1) in ArcGIS 10.2 software.
After delineating forest and field boundaries, the area inside
the forest boundary was assigned a value of 1, and the area
inside the field boundary was assigned a value of 0.

2.2.5 Forest edge descriptors

We investigated forest edge effects on snow accumulation us-
ing an approach inspired from Currier and Lundquist (2018)
and Mazzotti et al. (2019) using MATLAB software. Analo-
gous to their analyses, we added directionality to forest edges
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Figure 2. Winter period wind rose plots of the sites. (a) Sainte-Marthe, (b) Saint-Maurice, and (c) Montmorency.

to examine if preferential snow accumulation occurred wind-
ward or leeward of forest edges due to snow redistribution
by wind or reduced ablation due to shading from the forest.
Pixels were first classified as north-facing (NFE) when they
were within a maximum search distance dmax northward of
the forest edge. Forest edges (the boundary between field and
forest areas) were extracted from the Site variable. Based on
previous results by Currier and Lundquist (2018), dmax was
set to 2H , where H is the typical tree height derived from
the canopy height model at each site. The 2H distance re-
flects the typical shading of the ground by the canopy. H is
15 m in Sainte-Marthe, 20 m in Saint-Maurice, and 12 m in
Montmorency. A tolerance of ±45◦ was used for the search
direction for NFE. Pixels were further classified as wind-
ward (WFE) and leeward (LFE) when they were within a
maximum search distance of the forest edge in the domi-
nant wind direction. A range of search directions was used
to constrain the dominant wind directions at each site, based
on wind roses (Fig. 2). Two dominant wind cones, 270± 15◦

and 50± 15◦, were used in Sainte-Marthe, as well as one
dominant wind cone in Saint-Maurice (210± 15◦) and one
in Montmorency (310± 15◦). dmax was initially varied be-
tween 6–10H for pixels in open terrain based on Currier
and Lundquist (2018), which represents the typical length
scale of preferential snow accumulation at the forest edge.
After a few trials, a final value of 10H was retained, which
showed the highest correlation with snow depth. Moreover,
the 10H distance at each site (150, 200, and 120 m in Sainte-
Marthe, Saint-Maurice, and Montmorency, respectively) en-
compassed the preferential snow accumulation seen along
the forest edges on the lidar-derived snow depth maps. A
maximum search distance of 1H was used for pixels within
the forest in order to detect if preferential accumulation from
blowing snow penetrated the forest. This value was chosen
based on visual observations in the field, which suggested

Figure 3. Graphical illustration of forest edges and respective max-
imum search distances, dmax. 10H indicates the maximum search
distance in the open field from the forest edge in the windward and
the leeward direction, 1H indicates the maximum search distance in
the forest from the forest edge in the windward and the leeward di-
rection, and 2H indicates the maximum search distance northward
of the forest edge for shading effects.

limited penetration of blowing snow inside the forest. Fig-
ure 3 shows a schematic illustration of the forest edge pa-
rameters described.

A new index of proximity to the forest edge, FE, was cal-
culated by scaling the distance between each pixel and the
forest edge (d) by the maximum search distance, dmax:

FE=
dmax− d

dmax
. (1)

FE (either NFE, WFE, or LFE, depending on the initial clas-
sification) is equal to 1 when a pixel is situated on the for-
est edge and equal to 0 when it is located at or beyond the
maximum search distance dmax. The novelty of this approach
is to derive a continuous predictor of forest edge proximity
while considering the dominant wind direction, as opposed
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to the simpler binary classification introduced by Currier and
Lundquist (2018). Maps of the forest edge descriptors for
each site can be found in Figs. S2–S4.

2.3 Data analysis

Data analysis was primarily focused on assessing the small-
scale snow depth heterogeneity at the selected sites. Lidar-
derived snow depth data were analyzed for inter- (agro-
forested versus coniferous) and intra-site (field versus forest)
variability. First, the scale dependence of snow depth vari-
ability was explored using semi-variogram analysis. Then,
the site-specific topographic and vegetation control on the
snow depth spatial heterogeneity was examined with RF re-
gression models. All the statistical analyses were performed
in R software.

2.3.1 Spatial correlation analysis

To analyze the small-scale spatial variability in the snow
depth map at each study site, omnidirectional semi-
variograms were used. Semi-variogram analysis allows us
to constrain the dominant scales of snow depth variability
and to compare them between land cover types and sites.
Canals/streams were discarded from the snow depth maps
for this analysis to ensure the stationarity of the surface; i.e.,
snow depths in canals/streams would have a unidirectional
spatial correlation which could alter the relationship of the
overall terrain by introducing biases. In addition, omnidirec-
tional semi-variograms of snow depth were compared with
those obtained from bare-earth topography in the field and
topography+ vegetation surface (DSM, bare-earth topogra-
phy+ trees) in the forest to investigate the influence of to-
pography and vegetation interactions on snow depth. More-
over, directional semi-variograms of snow depth were also
computed to establish possible influences of dominant wind
directions on snow depth variability at each site.

The semi-variogram γ (r) is expressed as

γ (rk)=
1

2N(rk)

∑
(i,j)∈N(rk)

{
zi − zj

}2
, (2)

where r is the lag distance of bin k,N(rk) is the total number
of pairs of points in the kth bin, and zi and zj are the snow
depth values at two different point locations i and j (Webster
and Oliver, 2007).

Half of the maximum point pair distance (Sun et al.,
2006) was taken as the maximum lag distance for the
semi-variogram calculations with 50 log-width bins. Log-
width distance bins provide equal bin widths when semi-
variograms are transformed to log–log scale and help resolve
the semi-variogram at short length scales by allowing greater
bin density at shorter lag distance compared to linear-width
bins (Deems et al., 2006).

In the case of scale invariance, the semi-variogram can be
described by a power law:

γ (r)= arb, (3)

where a and b are coefficients selected to minimize the
squared residuals.

To identify scale breaks in semi-variograms, the following
steps were implemented following a similar approach sug-
gested by Mendoza et al. (2020a).

– First, a change point analysis was conducted on the
semi-variograms in log–log space using the ecp pack-
age in R (James and Matteson, 2014) to identify pos-
sible break points, which allows sections of the semi-
variogram with similar trends to be delineated.

– Then, linear least-square regression models were fitted
in log–log space for each cluster of points identified in
step 1.

– Finally, we checked whether the changes in the slopes of
the log–log linear models were larger than 20 % and that
the 95 % confidence limits of the slopes did not overlap,
and we verified that the R2 was greater than 0.9. If all
these conditions were fulfilled, the existence of a scale
break was confirmed.

2.3.2 Random forest model

To investigate the effect of vegetation and topographic vari-
ables on the spatial variability in snow depth, we applied RF
regression models on rasters derived from lidar data. Gener-
ally, in a RF model, two-thirds of the sample data (in-bag)
are used to train the model, while the remaining one-third
(out-of-bag, OOB) are used to estimate how well the trained
model performs. This in-bag and OOB sampling procedure
is akin to the much used k-fold cross-validation approach
(Probst and Boulesteix, 2017; Tyralis et al., 2019). As such,
model performance statistics (mean square error, MSE, and
variance explained) are derived from the OOB predictions,
which give an independent error assessment of the model
(Breiman, 2001). The RF algorithm also calculates the pre-
dictor importance (importance of a variable) by estimating
how much the prediction error increases when OOB data for
the respective variable are permuted while all others are left
unchanged (Liaw and Wiener, 2002), i.e., how much the pre-
diction error increases (or decreases) when the variable of
interest is removed (included) from the RF model.

The RF analyses were conducted in R with grid resolutions
of 1.4 m at all sites. Data were not separated into discrete
training and test sets so that we would not create an artificial
bias by data splitting. As such, all data were inputted into
the RF model, and the error metrics were calculated on the
OOB samples as described above. As a precautionary mea-
sure, we excluded collinear variables prior to building the RF
models using the variance inflation factor (VIF) function in
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R. This was done mainly because our objective was to inves-
tigate the relative contribution of different variables to snow
depth variability in forest versus the field rather than deriving
a model with maximum predictive capacity. While RF can
handle collinearity in a predictive mode, collinearity makes it
difficult to separately evaluate the predictive power (variable
importance) of the predictors (Bair et al., 2018). The number
of trees in the ensemble (ntree) and the number of variables at
each node (mtry) were tuned before training each RF model.

We used the following procedure to identify the potential
predictors of RF models at each site. Elevation was discarded
from the analysis since the elevation range at all sites was too
small (Table 1) to produce any meaningful local orographic
effect on precipitation or adiabatic effects on air temperature
(e.g., Mazzotti et al., 2019), and it could mask other local
topographic effects on accumulation related to slope, aspect,
and terrain roughness (wind sheltering) due to collinearity. In
addition, irrespective of the variable type, collinear variables
were identified and discarded prior to building the RF mod-
els at all sites. As such, the topographical variables Slope,
Aspect_WE, Aspect_SN, and TWSI were used at all sites.
However, the vegetation descriptors (LAI, CC, GF, and CH)
were strongly intercorrelated (with correlation coefficient, r ,
of 0.82–1.00) and hence could not be used together in a pre-
dictive model, at least not without compromising the inter-
pretation of variable importance in the RF model. Therefore,
LAI was selected as the most representative forest structure
indicator in the RF analysis, as it has been shown to be a
strong predictor of snow accumulation in forests (Hedstrom
and Pomeroy, 1998; Pomeroy et al., 1998; Broxton et al.,
2015; Lendzioch et al., 2016). Moreover, a sensitivity anal-
ysis showed that the choice of forest structure descriptor has
a negligible impact on the performance (R2) of RF models
(Supplement Table S1). The selection of the windward and
leeward forest edge descriptors (WFE and LFE) was guided
by the landscape setting at each site. In Sainte-Marthe, both
WFE and LFE have large extents (Supplement Fig. S2) but
are collinear due to the two dominant and opposing wind di-
rections. Including both variables in the RF model would
thus compromise the interpretation of the variable impor-
tance. Hence, we opted to use the WFE only in the final RF
analysis. In Saint-Maurice, LFE has only a few pixels (Sup-
plement Fig. S3) and was hence omitted. In Montmorency,
LFE seemingly has more influence on snow depth variabil-
ity with its larger extent than the WFE (Supplement Fig. S4).
This is also more logical as the open areas in Montmorency
constitute a large gap within an overall forested environment,
so deposition is expected leeward of the forest edge with lit-
tle remobilization (erosion) within the gap. NFE was used at
all sites to see the effect of forest edge shading on the snow
depth variability.

The RF model results were first examined for the rela-
tive importance of predictor variables (variable importance),
which has proven to be useful for evaluating the relative con-
tribution of input variables (Tyralis et al., 2019). Then, the

partial relationships of the predictors with snow depth were
examined and presented. Partial dependence functions are
typically used to help interpret models produced by machine
learning models such as RF (Jerome, 2001). It is a better al-
ternative to variable dependence. Each partial plot was gen-
erated by integrating out the effects of all variables besides
the covariate of interest. Partial dependence data in each plot
were constructed by selecting points evenly spaced along
the distribution of the variable of interest. This subsampling
helps to cut down computational time substantially. We used
the default subsampling of 51 points in our analysis. The per-
formance of RF models in terms of OOB statistics was com-
pared between the different land cover types and sites. Ad-
ditionally, we discuss RF model performances compared to
traditional MLR models.

3 Results

3.1 General snow accumulation patterns

Figure 4 depicts the snow depth maps derived from UAV
lidar data at the study sites. Montmorency shows the high-
est overall snow accumulation. Higher snow accumulation
in canals/streams (area 1 in Fig. 4a, b) and along the forest
edge (area 2 in Fig. 4a, b) is evident in Sainte-Marthe and
Saint-Maurice, whereas in Montmorency, forest gaps (area
4 in Fig. 4c) seem to accumulate more snow. The highest
snow depth in Montmorency corresponds to localized, artifi-
cial snow piles adjacent to the main road as observed during
the field campaign (area 5 in Fig. 4c). Concentric snow ac-
cumulation patterns around the double-fenced precipitation
gauges are also noticeable in the Montmorency snow depth
map (area 6 in Fig. 4c). Compared to the other two sites, the
Montmorency snow depth map comprises more data gaps in
the forested area. Paved roads in Sainte-Marthe (area 3 in
Fig. 4a) and Montmorency (area 3 in Fig. 4c) and the area
surrounding the small house (area 7 in Fig. 4a) in the forest
at Sainte-Marthe appear snow-free due to the snow clearing
operations, as confirmed in field campaigns. Snow clearing
in the proximity of the house in Sainte-Marthe accounts for a
significant portion of zero and/or low snow depths (Fig. 4d)
and biases the mean snow depth in the forest. When this
portion is discarded, the mean snow depth in the forest in-
creases from 0.250 to 0.275 m. In Sainte-Marthe, the mean
snow depth in the field area is higher than that in the adjacent
forested area (Fig. 4d), whereas, at the other two sites, mean
snow depths in the field and forest are similar considering
the measurement error in the lidar system (Fig. 4e, f). A non-
parametric Wilcoxon rank-sum test (Wilcoxon, 1945) was
applied to test whether snow depths within forested and field
areas were statistically different from each other. To remove
spatial autocorrelation, snow depths were subsampled every
20 m (larger than the scale break distances found by semi-
variogram analysis; Fig. 5). The results confirmed that snow
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depth in the Sainte-Marthe field was statistically greater than
that in the forest, and in the other two sites differences were
not statistically significant.

Snow depths in Sainte-Marthe are lower on average (mean
forest = 0.250 m; mean field = 0.374 m) than in Saint-
Maurice (mean forest= 0.591 m; mean field= 0.600 m). The
snow depth is more variable in the forest (higher coefficient
of variation, CV) than in the field in Sainte-Marthe and Mont-
morency, which is not the case in Saint-Maurice, where the
coefficient of variation in the field is slightly larger than in
the forest.

3.2 Spatial correlation analysis

Omnidirectional semi-variograms of snow depth, bare-earth
topography, and topography+ vegetation surface at the study
sites are shown on a log–log scale in Fig. 5. Semi-variograms
were discretely developed for field and forested areas to as-
sess the effect of land cover on the snow depth variability.
Overall, forested areas show more variable (higher semi-
variance values) snow depths than field snow depths at all
sites. Snow depths seem to be more variable in coniferous
forests than in deciduous and mixed forests. Snow depth in
forested areas at all three sites shows a typical multi-scaling
behavior, in which the semi-variance between neighboring
snow depths increases rapidly up to a scale break located at
distances less than 10 m (Fig. 5a, b, and c), followed by a
slower increase thereafter. Similarly, field snow depths ex-
hibit multi-scaling behavior with comparatively larger scale
break distances, with Montmorency showing two scale break
distances (Fig. 5a, b, and c). Topography+ vegetation sur-
faces show the highest semi-variance with scale break dis-
tances similar to forest snow depths (Fig. 5d, e, and f).
Sainte-Marthe bare-earth topography does not exhibit a dis-
tinct scale break (Fig. 5d). In contrast, the bare-earth topogra-
phy at the other two sites shows multi-scaling behavior with
scale break distances larger than 10 m (Fig. 5e, f).

Figure 6 shows directional semi-variograms of snow
depth derived for field and forested areas at each site.
Sainte-Marthe field snow depths show an isotropic behav-
ior (Fig. 6a), whereas the Sainte-Marthe forest shows an
anisotropic behavior along the west–east direction (Fig. 6d).
In contrast, both Saint-Maurice field and forest snow depths
show distinct anisotropic behaviors. Saint-Maurice field
snow depths show a narrow anisotropic pattern along the
northwest–southeast and a broad anisotropic pattern along
the southwest–northeast directions (Fig. 6b), whereas for-
est snow depths show an anisotropic pattern along the
southwest–northeast direction (Fig. 6e). Neither field nor for-
est snow depths in Montmorency show strong anisotropic be-
havior (Fig. 6c, f).

3.3 Random forest analysis

3.3.1 Relative importance of topography and
vegetation to snow depth variability

The relative importance of predictor variables in Fig. 7 sum-
marizes the relative contribution of the different topographic,
vegetation, and forest edge effects on snow depth spatial
variability at each site, i.e., how much the prediction er-
ror decreases if the variable of interest is included in the
RF model compared to when it is excluded. Within the
full domain (field+ forest), windward forest edge proximity
(WFE) has the strongest influence on snow depth variability
in both Sainte-Marthe (0.99) and Saint-Maurice (0.97), and
the north-facing forest edge proximity (NFE) has the least
influence (0.30 and 0.23). However, topographic wind shel-
tering (TWSI) exerts an equally strong impact on snow depth
as WFE in Sainte-Marthe (0.99) compared to that in Saint-
Maurice (0.70). In Montmorency, LAI and NFE have the
most (0.99) and least (0.07) impacts, respectively, on snow
depth variability for the full domain. The importance of vari-
ables somewhat changes when forests and fields are mod-
eled independently, implying different dominant factors/pro-
cesses acting in each environment. For instance, in Sainte-
Marthe, the TWSI dominates (0.74) snow depth variability
in the forest, followed by LAI (0.36), WFE (0.36), and Slope
(0.31). In the Sainte-Marthe field, WFE (0.94), TWSI (0.87),
and Slope (0.62) are the most important variables. In Saint-
Maurice WFE (0.33), TWSI (0.25), and LAI (0.21) have the
highest influence on snow depth variability within the forest,
whereas in the adjacent field WFE (0.99), TWSI (0.64), and
Slope (0.39) predominate. In Montmorency, the importance
of LAI (0.97), TWSI (0.41), and Slope (0.25) is higher for
snow depths within the coniferous forest with gaps, whereas
the snow depths in the small field are mostly influenced by
LFE (0.27), TWSI (0.23), and Slope (0.18).

3.3.2 Partial relationships of predictor variables with
snow depth

As seen in Fig. 8, all variables exhibit mostly nonlinear re-
lationships with snow depth across all sites. Spearman rank
correlation coefficients (ρ) were used to quantify the strength
of the partial relationships and are reported in the graphs.
A positive ρ indicates an increasing monotonic trend, and a
negative ρ indicates a decreasing one. Note that the positive
LAI values in field areas correspond to a few isolated LAI
pixels along the forest edges, the boundary between field and
forest. In general, at all sites and despite the magnitude of
the correlation, the two slope aspect variables (Aspect_WE
and Aspect_SN), as well as forest shading represented by the
north-facing forest edge proximity (NFE), have the least ef-
fect on snow depth variability (i.e., a relatively flat partial re-
lationship in Fig. 8). Moreover, all the relationships between
landscape descriptors and snow depth for the overall domain
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Figure 4. UAV-lidar-derived snow depth maps (grid size 1.4 m) and histograms of snow depth distribution. (a, d) Sainte-Marthe map with
snow surveying date and histogram; (b, e) Saint-Maurice map with snow surveying date and histogram; (c, f) Montmorency map with
snow surveying date and histogram. Field and forest areas are demarcated with brown and green colors in snow depth maps, respectively.
Histograms are derived according to these boundaries. Areas 1 to 7 are discussed in the text.

in Montmorency (field+ forest, blue curves in Fig. 8c), ex-
cept NFE, are governed by the respective variable behavior
in the forest probably due to the large extent of forest at this
site.

With regards to topographical control, all sites show in-
creasing snow depths with increasing slopes in the field, for-
est, and field+ forest (positive ρ values in Fig. 8a, b, and c).
The general relationship of snow depth with TWSI suggests
that increased topographic sheltering from the wind (increas-
ing TWSI values) leads to enhanced snow accumulation. At
the two agro-forested sites (Fig. 8a, b), the greatest contribu-
tion to the overall field+ forest TWSI–snow-depth relation
comes from field snow depths.

As for the influence of vegetation, there is a decrease
in snow depths in response to increasing LAI at all sites,
although the relation is comparatively weak (ρ =−0.65)
in the Sainte-Marthe forest. Snow depth at the two agro-
forested sites shows a general increase in response to in-
creasing distance towards the windward forest edge (WFE),
except within the Saint-Maurice forest. An increase in snow

depth with WFE in the Sainte-Marthe forest indicates more
snow at the edge of the forest decreasing inward, which re-
flects blowing snow penetration from the field inside the for-
est. The increase in snow depth with WFE within the Saint-
Maurice forest for WFE> 0.8 could also reflect the limited
penetration of blowing snow from the field inside the forest.
In Montmorency, the field snow depth shows a nonlinear re-
lation with LFE probably due to the influence of instrumen-
tation at the NEIGE-FM site, while forest snow depths show
a decrease in accumulation moving inward into the forest.

3.3.3 Performance of RF models at each site

Figure 9 displays the RF model estimates versus observed
snow depth with corresponding OOB statistics for each site.
Statistics are presented individually for the field, forest, and
full domain (field+ forest). Among the three sites, Sainte-
Marthe RF model generally performs better with an OOB
R2 of 0.66 and RMSE of 0.083 m, and Montmorency shows
the weakest performance with an R2 of 0.30 and RMSE of
0.261 m. All field models perform comparatively better with
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Figure 5. Omnidirectional semi-variogram for the field and forested areas for (a) Sainte-Marthe snow depth, (b) Saint-Maurice snow depth,
(c) Montmorency snow depth, (d) Sainte-Marthe bare-earth topography and topography+ vegetation, (e) Saint-Maurice bare-earth topog-
raphy and topography+ vegetation, and (f) Montmorency bare-earth topography and topography+ vegetation. In the figure, Topo denotes
bare-earth topography and Topo+ veg denotes topography+ vegetation surface. Vertical lines indicate the dominant scale breaks, and trend
lines represent significant (p< 0.05) log–log linear models with R2 > 0.9 (see methods).

higher R2 and lower RMSE values than the corresponding
forest models.

Table 3 shows the performance of RF models compared
to MLR models using the same predictor variables. All RF
models show better performances with higher R2 and lower
RMSE values than the corresponding MLR models.

4 Discussion

4.1 Spatial variability in forest versus field snow depths

Snow depths in Fig. 4 show remarkable microtopographic
variability across all sites. Our results in Sainte-Marthe
underpin the previous finding that forested areas accumu-
late less snow than the adjacent open areas due to canopy
interception and sublimation losses and sheltering from
wind (Pomeroy and Granger, 1997; Hopkinson et al., 2004;
Varhola et al., 2010a; Zheng et al., 2018; Hojatimalekshah et
al., 2021). But the other two sites show on average a simi-
lar amount of snow accumulation in the field and forest. The
dense coniferous canopy cover in Montmorency prevented
laser shots from reaching the ground at some locations and
consequently resulted in data gaps in the snow depth map

(Fig. 4c). The snow depth patterns in the coniferous site thus
appear to be dominated by canopy closure; i.e., forest clear-
ings have higher snow depths than adjacent canopies. Such
patterns have been previously reported by both ALS (aerial
laser scanning) and UAV lidar studies in western alpine/pre-
alpine environments with different climates (Hopkinson et
al., 2004; Zheng et al., 2016; Mazzotti et al., 2019; Jacobs
et al., 2021). Several authors also highlighted that undersam-
pling of snow depths under the canopy could lead to an over-
estimation of the overall amount of snow in the forest when
gaps (forest clearings) are prevalent, such as in Montmorency
(Harpold et al., 2014; Zheng et al., 2016). This is because the
lidar coverage can be biased towards the gaps, which accu-
mulate more snow than under the canopy; hence the spatially
averaged snow depth is also biased.

At the agro-forested sites, the comparatively higher snow
depths observed in the open field compared to the adjacent
forest patches are in contrast to what Aygün et al. (2020)
observed in similar environments in southern Quebec. They
measured a lower snow accumulation in exposed agricultural
fields (excluding the canals and the forest edge) compared to
the adjacent deciduous and mixed forests. Our results show
that the higher snow depths at the two agro-forested sites
principally correspond to canals and streams in the field and
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Figure 6. Directional semi-variogram of snow depth in (a) Sainte-Marthe field, (b) Saint-Maurice field, (c) Montmorency field, (d) Sainte-
Marthe forest, (e) Saint-Maurice forest, and (f) Montmorency forest.

Figure 7. Relative importance of variables (scaled between 0 and 1) in predicting snow depths. (a) Sainte-Marthe, (b) Saint-Maurice, and
(c) Montmorency.
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Figure 8. Partial relationship of landscape predictor variables with snow depth. (a) Sainte-Marthe, (b) Saint-Maurice, and (c) Montmorency.
Predictor variables are presented by rows and sites by columns.
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Figure 9. RF model performance against observed snow depths. (a) Sainte-Marthe, (b) Saint-Maurice, and (c) Montmorency. The stippled
line depicts the 1 : 1 relationship.

Table 3. Comparison of RF and MLR model performances of study sites.

R2 RMSE

RF Field Forest Field+ forest Field Forest Field+ forest

Sainte-Marthe 0.78 0.29 0.66 0.07 0.10 0.08
Saint-Maurice 0.60 0.17 0.46 0.08 0.10 0.09
Montmorency 0.57 0.29 0.30 0.18 0.27 0.26

MLR

Sainte-Marthe 0.18 0.04 0.21 0.12 0.12 0.13
Saint-Maurice 0.32 0.08 0.17 0.10 0.10 0.11
Montmorency 0.02 0.13 0.12 0.26 0.30 0.29

the forest edge, which trap the snow blown from the open
field with greater fetches. Hence canals/streams and forest
edges constitute the main structuring elements of snow spa-
tial variability at these sites. However, if canals and for-
est edge snow depths are discarded, the agro-forested snow
depth maps illustrate a somewhat similar phenomenon to
Aygün et al. (2020), in which snow depths in the exposed
field are slightly lower than those in the forest. In Saint-
Maurice, clusters of high snow depth values in the central
area of the field in Fig. 4b could be due to local redeposition
of snow by the wind in the microtopography or larger-scale
topographic effects. This could not be verified as unfortu-
nately the manual measurements in Saint-Maurice could not
be retrieved due to a probe malfunction (Dharmadasa et al.,
2022). Yet, the TWSI map (Supplement Fig. S3) suggests
that microtopographic wind sheltering could be the reason
for the local snow deposition closer to the forest edge. The
probable cause for the other larger high-snow-depth clus-
ters between the two streams in the field could not be ex-
plained by the available predictors. They could be explained
by the influence of the narrow riparian strips of bushes and
shrubs surrounding the canals on blowing snow redistribu-
tion. Ultimately, as canopy interception and losses in decid-

uous and mixed forests are expected to be small (Hopkinson
et al., 2012b; Aygün et al., 2020), the number of differential
snow depths between the open field and forest would mostly
depend on the amount of erosion in the field and perhaps
snowmelt losses in the open field prior to peak snow accu-
mulation. Moreover, the snow depth maps suggest that the
redistribution of eroded snow in fields along the forest edges
is a prime process in agro-forested landscapes.

4.2 Scaling characteristics of forest versus field snow
depths

4.2.1 Omnidirectional semi-variograms analysis

Omnidirectional semi-variogram analyses revealed distinct
scaling behaviors in forest versus field snow depths (Fig. 5).
Our results suggest a more variable (high semi-variance val-
ues) and more spatially continuous (larger scale break dis-
tance) snowpack in the Montmorency boreal forest compared
to the temperate forest sites. The snowpack in the mixed
forest at Saint-Maurice was less variable and more spatially
continuous than that in the Sainte-Marthe deciduous forest.
Compared to forested areas, the snowpack in field areas was
less variable and more spatially continuous. We found the
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shortest scale break distance of 4.4 m for the dense decidu-
ous forest in Sainte-Marthe, an intermediate distance of 5 m
for the moderately dense mixed forest in Saint-Maurice, and
a value of 6.5 m for the dense coniferous forest interspersed
with gaps in Montmorency. Several studies reported scale
break distances of 4 m for a shrub-dominated, sparsely dis-
tributed subalpine site (Mendoza et al., 2020b), 7–9 m for
high to moderately dense coniferous forests (Trujillo et al.,
2007, 2009), 12 m for a moderately dense deciduous forest
(Trujillo et al., 2007, 2009), 15.5 m for a dense coniferous
forest with open meadows (Deems et al., 2006; Fassnacht
and Deems, 2006), and 16.5 m for a sparse coniferous forest
(Deems et al., 2006; Fassnacht and Deems, 2006). Our val-
ues are rather smaller than those reported by previous studies,
except Mendoza et al. (2020b). This could be due to struc-
tural characteristics of the forests such as canopy density and
size of open areas (gaps). It is also plausible that the dense
point cloud provided by UAV (∼ 150–600 points m−2: Zhang
et al., 2019; Harder et al., 2020; Jacobs et al., 2021; Dhar-
madasa et al., 2022) was able to resolve spatially distributed
snow depth patterns at finer scales than that permitted by pre-
vious ALS surveys, which had typical point densities of∼ 8–
16 points m−2 (Kirchner et al., 2014; Broxton et al., 2015,
2019; Currier et al., 2019). However, similar to the findings
reported by Deems et al. (2006) and Trujillo et al. (2007)
our topography+ vegetation surface data show scale break
distances at the same order of magnitude as the forest snow
depths at all sites. This indicates that the variability in vege-
tation (trees) governs the pattern of snow deposition and dis-
tribution within the forest (Deems et al., 2006).

The relatively higher scale break distance in the Mont-
morency forest snow depth could be due to the prevailing
large gaps in the forest as a result of silvicultural prac-
tices and the more efficient canopy interception of conifers.
Coniferous trees have a substantial impact on snow depths
as they intercept snow efficiently and unload it around the
crown (Zheng et al., 2019). Thus, a longer correlation length
(at least the diameter of a tree crown) is expected, as well
as greater variability in snow depth in coniferous environ-
ments compared to the more random deciduous tree struc-
tures which have reduced and more transient snow storage
(Mendoza et al., 2020b). Leafless deciduous trees aid faster
unloading of snow through branches as opposed to unload-
ing around the crown in conifers and thus would result in a
smaller correlation length in snow depth.

The difference in scale break distances in field snow
depths compared to bare-earth topography indicates that the
bare-ground surface in field areas was certainly altered by
the snow accumulation. In Sainte-Marthe, snow accumula-
tion increases the roughness of the bare ground, whereas, in
Saint-Maurice, snow accumulation results in a smooth sur-
face compared to the ground underneath; i.e., interactions
of snow with bare ground in the Sainte-Marthe field change
the scale invariance behavior to multi-scaling, and in Saint-
Maurice, these interactions smooth the surface and resulted

in a larger scale break distance than that of the bare ground.
However, the larger scale break distance and gentler slope
of the Sainte-Marthe field semi-variogram (Fig. 5a) com-
pared to Saint-Maurice (Fig. 5b) suggests that the snow-
pack in the Sainte-Marthe field is still smoother and more
spatially continuous than that of Saint-Maurice. This inter-
pretation is supported by the snow depth map in Fig. 4a,
which shows a smooth snow depth pattern that is only dis-
rupted by preferential accumulation within irrigation canal-
s/streams. In the Montmorency field, rather than interactions
of snow with bare ground, the meteorological station net-
work appears to modify the snow accumulation and distribu-
tion patterns and resulted in a different multi-scaling behav-
ior than the bare ground. In general, large scale break dis-
tances (11–14 m) compared to forested areas were found in
field snow depths at all sites except the short, first scale break
distance (5.8 m) in Montmorency. With the absence of veg-
etation in the field in winter and its high exposure to wind
at the two agro-forested sites (Fig. 2a, b), these values are of
similar magnitude to those reported for wind-exposed slopes
in alpine environments (13.8–20.5 m) by Schirmer and Lehn-
ing (2011), Mott et al. (2011), and Mendoza et al. (2020a, b).
In the Montmorency field, mostly sheltered from the wind,
the short and large scale break distances could be due to the
influence of preferential snow accumulation near the meteo-
rological equipment (e.g., concentric snow accumulation pat-
terns around the two double-fenced precipitation gauges in
Fig. 4c).

Generally, the scale break distances found in this study
suggest that the scale selected for modeling or sampling in
similar environments should be well below these values in
order to fully resolve the small-scale variability in the snow
depth.

4.2.2 Directional semi-variograms analysis

Sainte-Marthe field snow depths did not show any direction-
ality, most probably as a result of the interactions of snow
with two dominant and opposing wind directions. In contrast,
Saint-Maurice field snow depths showed anisotropic behav-
iors along and perpendicular to the dominant wind direction.
Narrow anisotropic patterns perpendicular to the dominant
wind direction are due to the snow accumulation alongside
canals. Even though the canals were discarded in the semi-
variogram analysis, as seen from Fig. 4b, preferential snow
accumulation is still significant from the canal margins up to
a few meters into the field. Broader anisotropic patterns along
the dominant wind direction are due to the influence of wind.
This directionality is also shown in the snow depth map in
Fig. 4b, where the change in snow depth values along the
direction perpendicular (northwest–southeast) to the domi-
nant wind direction is more drastic than the change in snow
depths along the dominant wind direction towards the for-
est. However, forest snow depths at both agro-forested sites
show anisotropic behavior, although not very strong, parallel
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to dominant wind directions. This indicates an influence of
blowing snow on the snow distribution patterns in the forest
and hence a possible penetration of blowing snow from field
to forest. The isotropic behavior in the Montmorency field
and forest, on the other hand, is not surprising given that the
site is sheltered from the dominant winds (Fig. 2c).

4.3 Relationship of snow depth to topographic and
vegetation characteristics

4.3.1 At the agro-forested sites

At the two agro-forested sites, field snow depth variabil-
ity is governed by preferential snow accumulation in canal-
s/streams and the microtopography of the local terrain, as
seen by the high relative importance factor of TWSI in
Fig. 7a and b; i.e., adding the TWSI reduces model errors
significantly. As such, the highest wind sheltering values
were found in canals/streams which accumulated more snow
(Fig. 4 and Supplement Figs. S2, S3). Within the forested ar-
eas, the influence of forest structure (LAI) was not as strong
as expected; instead, the influence of microtopography ap-
peared to be mostly governing the snow depth variability.
The lower influence of LAI at these sites probably reflects
the abundance of leafless trees in winter, which reduce in-
terception losses and concurrent spatial snowpack variabil-
ity. Moreover, the microtopography of these landscapes is
closely related to the surficial geology of the sites. Preserved
forested patches in the St. Lawrence River lowlands often
correspond to less favorable soil conditions, such as glacial
till and/or bedrock outcrops and associated rougher micro-
topography. Conversely, agricultural fields are developed on
glaciomarine or fluvioglacial sediments that are flatter in na-
ture and also leveled by machinery (MFFP, Québec Research
and Development Institute for the Agri-Environment (IRDA)
and La Financière Agricole du Québec (FADQ)). Under lim-
ited wind transport, the rougher microtopography in forests
creates a directional bias that promotes the lateral transport
of snow particles (bounce, roll, or ejection) and therefore en-
hances the smoothing of the snow surface (Filhol and Sturm,
2019) which dominates the snow heterogeneity within the
forest. The absence of apparent preferential snow accumula-
tion on different slope orientations in agricultural fields sug-
gests a smoothening of the topography by the snow cover due
to wind redistribution in the field. The more rugged microto-
pography of the forested soil, on the other hand, seems to be
preserved and to influence the snow cover through differen-
tial radiation loading, resulting in more snow accumulation
on northerly slopes in the forest compared to that in the field
(Fig. 8a, b).

At the landscape scale (field+ forest), WFE has the high-
est relative importance (Fig. 7a, b); including WFE decreases
the prediction error in the RF model by a factor of 0.97–0.99
(97 %–99 %) compared to a model excluding WFE. Thus,
the agro-forested sites are dominated by blowing snow ac-

cumulation along the forest edges. This effect is well visible
on the lidar-derived snow depth maps too (Fig. 4a, b). Com-
paratively high wind speeds and more constrained dominant
wind directions (Fig. 2a, b) at these sites create favorable
conditions for the preferential deposition of blowing snow at
the forest edge due to the large expanses of open terrain up-
wind of the windward forest edges. Preferential snow deposi-
tion by wind-induced snow drifting along the forest edge has
been previously reported in alpine environments by Veatch
et al. (2009), Essery et al. (2009), Broxton et al. (2015), and
Currier and Lundquist (2018). However, there seems to be
only limited penetration of blowing snow inside the forest in
windward directions (WFE forest points in Figs. 8a, b and
6d, e).

Shading by the forest edge seemingly does not have a sig-
nificant influence on the snow depth variability at these sites
during the accumulation season. Shading effects would how-
ever probably have some influence on snow depth patterns
during the melting season (Hojatimalekshah et al., 2021).
The spatial heterogeneity of snow depths and associated pro-
cesses challenge distributed snow modeling using hydrologic
response units (HRUs) in agro-forested landscapes (Aygün
et al., 2020), where HRUs are classified as field and forest
patches but disregard boundary effects. Aygün et al. (2020)
modeled (Nash–Sutcliffe efficiency of 0.57 over the 23-year
simulation of SWE) blowing snow transport in fields and the
preferential accumulation in canals and streams, and they as-
sumed that once these were filled, any further blown snow
accumulated in the forest. Our results confirm the preferen-
tial accumulation in field canals and streams but suggest that
further blown snow first preferentially accumulates at the for-
est edge, which should eventually be represented as distinct
HRUs in distributed hydrological models of agro-forested
landscapes.

4.3.2 At the boreal forested site

The findings in agro-forested sites are in contrast with the bo-
real forested environment, where forest structure (LAI) pre-
dominates in the variability in snow depth (Figs. 7 and 8).
The small field appears to have fewer microtopographic fea-
tures and is mostly sheltered from the most frequent winds
coming from the northwest direction (Fig. 2c). The rela-
tively greater positive TWSI values at this site compared
to agro-forested sites imply more rugged microtopography
and a larger degree of wind sheltering in the forested ter-
rain (Fig. 8c and Supplement Fig. S4). However, since wind
is mostly impeded by the coniferous trees, the TWSI–snow-
depth relationship in the forest suggests that the snow dis-
placement is driven by small-scale bounce, roll, or ejection
mechanisms, and preferential snow deposition is driven by
immobilizing mechanisms such as adhesion, cohesion, and
physical interlocking of snow particles (Filhol and Sturm,
2019), as well as unloading of snow by the canopy (Zheng et
al., 2019). The lesser importance of TWSI (0.41 compared to

The Cryosphere, 17, 1225–1246, 2023 https://doi.org/10.5194/tc-17-1225-2023



V. Dharmadasa et al.: Topographic and vegetation controls of the spatial distribution of snow depth 1241

0.97 of LAI, the dominant predictor; Fig. 7) as a snow depth
predictor in the coniferous forest compared to deciduous
(TWSI = 0.74, the dominant predictor) and mixed (TWSI
of 0.25 compared to 0.33 of WFE, the dominant predictor)
forests and the more or less constant snow depth values at
higher TWSI values (Fig. 8c) suggest that microtopography
has a more restricted influence on deeper snowpack at this
site compared to the shallower snowpack at the agro-forested
sites. In other words, in the absence of wind, increasing snow
depths reduce/inhibit surface undulations and promote more
spatially continuous snow cover (Filhol and Sturm, 2019).
The spatial arrangement of the trees may have a greater con-
trol on snow depths in the boreal forest, i.e., forest gaps in
the coniferous forest with various slopes and aspects creating
pronounced and distinct snow depth variabilities inside the
forest (Woods et al., 2006). For instance, in Montmorency,
superimposed TWSI and LAI maps (Supplement Fig. S4)
show that the high snow depth values associated with TWSI
values of 10–12 (Fig. 8c) are associated with a forest gap
that likely prevents snow interception and accumulates more
snow. Our results support the findings of previous studies,
which is that the snow depth distribution in coniferous en-
vironments is mainly governed by the canopy characteristics
such as structure, distribution, and type of vegetation (Win-
kler et al., 2005; López-Moreno and Latron, 2008; Varhola et
al., 2010a; Zheng et al., 2018; Safa et al., 2021; Koutantou et
al., 2022). Our findings however show that the microtopogra-
phy, even under wind-sheltered conditions in the forest, still
explains some of the spatial variability in snow depths, al-
though not as prominent as canopy characteristics.

4.4 Comparison of RF model performances

4.4.1 Comparison between the sites

Our RF model showed variable performances, with overall
OOB R2 of 0.30–0.66 (Fig. 9). All sites have different cli-
mates. The higher performance at Sainte-Marthe could be
due to a combination of different factors. Early snowmelt due
to frequent rain-on-snow events in this region (Paquotte and
Baraer, 2021) and the presence of basal ice as observed in the
field campaigns might have contributed to a more structured
snowpack in the Sainte-Marthe forest and hence improved
the prediction of snow depth compared to the other agro-
forested Saint-Maurice site. The high R2 values in fields at
all sites (0.78 in Sainte-Marthe, 0.60 in Saint-Maurice, and
0.57 in Montmorency) indicate that the models captured the
most relevant processes through the predictor variables con-
sidered. In contrast, the Saint-Maurice forest had the worst
performance (0.17). This could be due to underlying process-
es/variables not considered in our model, possibly associ-
ated with the canopy structure of the mixed forest. Moreover,
the reduced sampling under coniferous trees due to limited
lidar penetration could also have affected grid-scale snow

depth and resulting relationships with landscape metrics in
the Montmorency forest.

4.4.2 Comparison with previous studies

The previous studies that used RF models to estimate snow
depths/SWE (Bair et al., 2018; Yang et al., 2020) were
mainly focused on mountainous watersheds with large ele-
vation gradients and with less or no vegetation and reported
average Nash–Sutcliffe efficiencies as high as∼ 0.7 and RM-
SEs of 44–73 mm, in which the major part of this variance
was explained by elevation. Safa et al. (2021) developed
site-specific RF models to predict snow-covered areas using
vegetation density, average incoming shortwave and long-
wave radiation, total precipitation, and average air temper-
ature and reported mean absolute errors of 0.05–0.12 m in
mixed coniferous sites. In addition, the abundance of stud-
ies that employed MLRs (Jost et al., 2007; Lehning et al.,
2011; Grünewald et al., 2013; Revuelto et al., 2014; Fujihara
et al., 2017) and BRTs (Winstral et al., 2002; Anderton et al.,
2004; Molotch et al., 2005; Revuelto et al., 2014) in alpine
environments with rocky outcrops and pasture or no vege-
tation also reported R2 of 0.25–0.91, in which a substantial
portion of the snow depth variability was explained by terrain
parameters, mostly elevation. However, model performances
are shown to be degraded with the presence of forests. Stud-
ies conducted in forested terrain with relatively small eleva-
tion ranges reported R2 of 0.25–0.51 by MLRs (Zheng et
al., 2016, 2018) and BRTs (Erxleben et al., 2002; Veatch
et al., 2009; Baños et al., 2011). Musselman et al. (2008)
proved that including detailed vegetation information like
micro-scale vegetation-induced solar radiation, distance to
the canopy, and tree bole could improve BRT performance
to 0.68 in a forested area. Compared to previous works in
forested terrain, we believe our model fits (overall R2 of
0.30–0.66) are in a reasonable range.

4.4.3 Comparison to MLR models

The relatively good success of MLRs in previous studies to
study landscape control on snow accumulation is mostly at-
tributed to elevational controls on snow accumulation, i.e.,
orographic enhancement of the precipitation gradient and
adiabatic cooling which promotes higher snowfall fraction
and reduced ablation at higher elevations. However, in low-
elevation landscapes, more complex relationships are ex-
pected between snow depths, vegetation, and topography,
which would likely be poorly captured by linear relation-
ships. As shown in Table 3, our RF models show a signifi-
cant improvement with higher R2 and lower RMSE values
compared to MLR models at all sites. Since the MLR mod-
els at each site were developed using the same predictors de-
scribed in Sect. 2.3.2, this suggests the deficiency of MLR
models in capturing the underlying processes at these sites.
Figure 8 shows that almost all variables have a nonlinear re-
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lationship with snow depth, which linear models are unable
to capture. Our RF results thus highlight the importance of
considering this nonlinearity in statistical models, as RF no-
tably allows nonlinear relationships between snow accumu-
lation and landscape variables to be captured while protect-
ing against the typical overfitting of single decision trees.

4.5 Note on potential variables/predictors in similar
landscapes

One particularity of our sites (also related to the scale of
the analysis) is the negligible elevation range. Many stud-
ies conducted in mountainous environments have shown the
preponderant influence of elevation on the distribution of
snow cover. While the elevation range becomes important
over a larger extent on the Canadian Shield (Montmorency-
type physiography), the low-elevation St. Lawrence lowlands
(Sainte-Marthe and Saint-Maurice) remain mostly flat, and
local topography (terrain roughness), land cover, and land
use are expected to control the spatial distribution of the snow
cover. As confirmed by our results, in agro-forested land cov-
ers, wind-related forest edge effects will also have a substan-
tial impact on snow deposition and distribution patterns.

4.6 Limitations of the study

This study provides insight into the scaling properties of
the snowpack and the effect of different topographic, veg-
etation, and forest edge characteristics on snow depth vari-
ability in open versus forested areas with different canopy
covers. However, there are potential limitations with some
of the methods presented in this study. For instance, de-
spite our efforts to incorporate processes/variables influenc-
ing the spatial distribution of snow depths with available
data, the comparatively lower performance of RF models in
Saint-Maurice and Montmorency indicates that there could
still be some processes/variables that were unable to be ac-
counted for (e.g., soil parameters, snowpack state, and me-
teorological variables). Another limitation comes from the
unexplained snow depth variability that is within the UAV li-
dar system detection limit. Especially in Montmorency, there
were observation gaps by UAV lidar due to the thick canopy
cover that eventually affected the accuracy of snow depth
and ground surfaces rasters and derived landscape descrip-
tors (e.g., slope, LAI). The problems of undersampling snow
depth under canopies and the associated effects on interpo-
lation and spatial-averaging of snow depths have long been
identified but are still not fully resolved. The dominant pre-
dictors identified in this study might also depend on the
timing of the survey date (e.g., near peak snow accumula-
tion versus early and mid-winter or during the melt period).
Hence, repeat surveys with UAV lidar to track the temporal
evolution of the snowpack would be required to fully address
this question in the future. However, the analysis presented
here is thought to largely reflect the typical conditions at the

sites and to portray key differences between agro-forested
and boreal landscapes. The similar key processes identified
at the two agro-forested sites suggest that findings at these
sites could be extrapolated to similar environments. In the
absence of large-scale ALS surveys over snow in Quebec as
done, for example, in the Sierra Nevada, USA (e.g., Zheng
et al., 2019), UAV lidar meanwhile provides opportunities to
map snow depths and test hypotheses regarding the spatial
variability in snow depths. While the statistical framework
used in this study does not allow a full understanding of the
driving processes, it provides a useful identification and rank-
ing of the predictors associated with such processes, such
as forest edge effects, forest structure, and microtopography,
and offers guidance for the development and application of
process-based models in these environments.

5 Conclusions

In this study, including wind-related forest edge effects in
agro-forested sites and incorporating canopy characteristics
in the coniferous site increased the statistical prediction ac-
curacy of snow depth spatial variability by more than 90 %
compared to when these predictors are discarded from the
RF model. This implies the importance of including and bet-
ter representing these processes in physically based mod-
els. Taken together, our results suggest that in agro-forested
landscapes of the St. Lawrence valley, geomorphological as-
semblages drive the differential snow accumulation between
field and forested areas; i.e., rugged glacial deposits with pre-
served forests favor more snow accumulation, whereas flat
glaciomarine sediments in the exposed fields promote snow
erosion. The blowing snow redistributed from the fields gets
trapped in canals/streams and accumulates along the forest
edges, accounting for the highest local snow depths in these
landscapes. Furthermore, within deciduous/mixed forests, it
is rather the underlying topography and/or the forest edges
that govern the snow depth variability, while within the conif-
erous environment, it is the forest structure variability. These
processes are not fully represented in process-based mod-
els. For instance, models like CRHM (Pomeroy et al., 2007)
and SnowModel (Liston and Sturm, 1998) prescribe a sin-
gle, typical LAI for land cover classes. This ignores the vari-
ability within stands which could compromise larger-scale
estimates of snowpacks. The recent development of hyper-
resolution process-based models does account for fine-scale
canopy structure (Mazzotti et al., 2020a, b), yet represent-
ing microtopographic characteristics like terrain roughness
is still problematic. Our results suggest that snow redistri-
bution at forest edges, spatial variability in forest structure,
and better representation of microtopography and prominent
topographical features such as canals are important process-
es/variables that should be taken into account in process-
based models. This highlights the advantage of using high-
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resolution data to characterize small-scale processes and
therefore explicitly resolve snow depth variability.

In addition, since the selected sites are representative of
typical agro-forested and boreal landscapes in southern Que-
bec, the findings of this study could be applied/extrapolated
to similar landscapes in the region and any comparable envi-
ronments where similar processes operate.
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