Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1927-2022
https://doi.org/10.5194/tc-16-1927-2022
Research article
 | 
20 May 2022
Research article |  | 20 May 2022

Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations

Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann

Related authors

Hysteresis of idealized, instability-prone outlet glaciers in response to pinning-point buttressing variation
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 18, 4011–4028, https://doi.org/10.5194/tc-18-4011-2024,https://doi.org/10.5194/tc-18-4011-2024, 2024
Short summary
Timescales of outlet-glacier flow with negligible basal friction: theory, observations and modeling
Johannes Feldmann and Anders Levermann
The Cryosphere, 17, 327–348, https://doi.org/10.5194/tc-17-327-2023,https://doi.org/10.5194/tc-17-327-2023, 2023
Short summary
Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet
Tanja Schlemm, Johannes Feldmann, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1979–1996, https://doi.org/10.5194/tc-16-1979-2022,https://doi.org/10.5194/tc-16-1979-2022, 2022
Short summary

Cited articles

Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual Variations in Meltwater Input to the Southern Ocean from Antarctic Ice Shelves, Nat. Geosci., 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020. a, b
Alley, K. E., Scambos, T. A., Siegfried, M. R., and Fricker, H. A.: Impacts of Warm Water on Antarctic Ice Shelf Stability through Basal Channel Formation, Nat. Geosci., 9, 290–293, https://doi.org/10.1038/ngeo2675, 2016. a, b, c
Alley, K. E., Scambos, T. A., Alley, R. B., and Holschuh, N.: Troughs Developed in Ice-Stream Shear Margins Precondition Ice Shelves for Ocean-Driven Breakup, Sci. Adv., 5, eaax2215, https://doi.org/10.1126/sciadv.aax2215, 2019. a, b, c
Alley, R. B., Anandakrishnan, S., Dupont, T. K., Parizek, B. R., and Pollard, D.: Effect of Sedimentation on Ice-Sheet Grounding-Line Stability, Science, 315, 1838–1841, https://doi.org/10.1126/science.1138396, 2007. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b, c, d, e, f, g, h
Download
Short summary
We use a numerical model to simulate the flow of a simplified, buttressed Antarctic-type outlet glacier with an attached ice shelf. We find that after a few years of perturbation such a glacier responds much stronger to melting under the ice-shelf shear margins than to melting in the central fast streaming part of the ice shelf. This study explains the underlying physical mechanism which might gain importance in the future if melt rates under the Antarctic ice shelves continue to increase.
Share