Articles | Volume 15, issue 12
The Cryosphere, 15, 5447–5471, 2021
https://doi.org/10.5194/tc-15-5447-2021
The Cryosphere, 15, 5447–5471, 2021
https://doi.org/10.5194/tc-15-5447-2021
Research article
07 Dec 2021
Research article | 07 Dec 2021

Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls

Jamey Stutz et al.

Related authors

Cosmogenic nuclide dating of two stacked ice masses: Ong Valley, Antarctica
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022,https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Cosmogenic nuclide and solute flux data from central Cuban rivers emphasize the importance of both physical and chemical mass loss from tropical landscapes
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022,https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Slowdown of Shirase Glacier caused by strengthening alongshore winds
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-126,https://doi.org/10.5194/tc-2022-126, 2022
Preprint under review for TC
Short summary
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003–2021)
Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-94,https://doi.org/10.5194/tc-2022-94, 2022
Preprint under review for TC
Short summary
GREB-ISM v1.0: A coupled ice sheet model for the Globally Resolved Energy Balance model for global simulations on timescales of 100 kyr
Zhiang Xie, Dietmar Dommenget, Felicity S. McCormack, and Andrew N. Mackintosh
Geosci. Model Dev., 15, 3691–3719, https://doi.org/10.5194/gmd-15-3691-2022,https://doi.org/10.5194/gmd-15-3691-2022, 2022
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
High-resolution subglacial topography around Dome Fuji, Antarctica, based on ground-based radar surveys over 30 years
Shun Tsutaki, Shuji Fujita, Kenji Kawamura, Ayako Abe-Ouchi, Kotaro Fukui, Hideaki Motoyama, Yu Hoshina, Fumio Nakazawa, Takashi Obase, Hiroshi Ohno, Ikumi Oyabu, Fuyuki Saito, Konosuke Sugiura, and Toshitaka Suzuki
The Cryosphere, 16, 2967–2983, https://doi.org/10.5194/tc-16-2967-2022,https://doi.org/10.5194/tc-16-2967-2022, 2022
Short summary
Cosmogenic nuclide dating of two stacked ice masses: Ong Valley, Antarctica
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022,https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Clouds drive differences in future surface melt over the Antarctic ice shelves
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Étienne Vignon, Hubert Gallée, and Xavier Fettweis
The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022,https://doi.org/10.5194/tc-16-2655-2022, 2022
Short summary
Rapid fragmentation of Thwaites Eastern Ice Shelf
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022,https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Resolving glacial isostatic adjustment (GIA) in response to modern and future ice loss at marine grounding lines in West Antarctica
Jeannette Xiu Wen Wan, Natalya Gomez, Konstantin Latychev, and Holly Kyeore Han
The Cryosphere, 16, 2203–2223, https://doi.org/10.5194/tc-16-2203-2022,https://doi.org/10.5194/tc-16-2203-2022, 2022
Short summary

Cited articles

Anderson, B. M., Hindmarsh, R. C., and Lawson, W. J.: A modelling study of the response of Hatherton Glacier to Ross Ice Sheet grounding line retreat, Global Planet. Change, 42, 143–153, https://doi.org/10.1016/j.gloplacha.2003.11.006, 2004. a
Anderson, J. B., Conway, H., Bart, P. J., Witus, A. E., Greenwood, S. L., McKay, R. M., Hall, B. L., Ackert, R. P., Licht, K., Jakobsson, M., and Stone, J. O.: Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM, Quaternary Sci. Rev., 100, 31–54, https://doi.org/10.1016/j.quascirev.2013.08.020, 2014. a, b, c, d, e, f
Andrews, J. T., Domack, E. W., Cunningham, W. L., Leventer, A., Licht, K. J., Jull, A. J. T., DeMaster, D. J., and Jennings, A. E.: Problems and Possible Solutions Concerning Radiocarbon Dating of Surface Marine Sediments, Ross Sea, Antarctica, Quaternary Res., 52, 206–216, https://doi.org/10.1006/qres.1999.2047, 1999. a
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories, Geophys. J. Int., 198, 537–563, https://doi.org/10.1093/gji/ggu140, 2014. a, b, c
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R., Udintsev, G., Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.: The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0-A new bathymetric compilation covering circum-Antarctic waters, Geophys. Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013. a, b, c, d
Download
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.