Articles | Volume 15, issue 12
The Cryosphere, 15, 5447–5471, 2021
https://doi.org/10.5194/tc-15-5447-2021
The Cryosphere, 15, 5447–5471, 2021
https://doi.org/10.5194/tc-15-5447-2021
Research article
07 Dec 2021
Research article | 07 Dec 2021

Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls

Jamey Stutz et al.

Viewed

Total article views: 2,221 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,638 556 27 2,221 33 19 28
  • HTML: 1,638
  • PDF: 556
  • XML: 27
  • Total: 2,221
  • Supplement: 33
  • BibTeX: 19
  • EndNote: 28
Views and downloads (calculated since 17 Oct 2020)
Cumulative views and downloads (calculated since 17 Oct 2020)

Viewed (geographical distribution)

Total article views: 2,077 (including HTML, PDF, and XML) Thereof 2,073 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Discussed (final revised paper)

Discussed (preprint)

Latest update: 08 Aug 2022
Download
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.