Articles | Volume 15, issue 12
Research article
07 Dec 2021
Research article |  | 07 Dec 2021

Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls

Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff


Total article views: 3,334 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,415 862 57 3,334 67 40 46
  • HTML: 2,415
  • PDF: 862
  • XML: 57
  • Total: 3,334
  • Supplement: 67
  • BibTeX: 40
  • EndNote: 46
Views and downloads (calculated since 17 Oct 2020)
Cumulative views and downloads (calculated since 17 Oct 2020)

Viewed (geographical distribution)

Total article views: 3,334 (including HTML, PDF, and XML) Thereof 3,143 with geography defined and 191 with unknown origin.
Country # Views %
  • 1


Discussed (final revised paper)

Discussed (preprint)

Latest update: 16 Apr 2024
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.