Articles | Volume 15, issue 5
https://doi.org/10.5194/tc-15-2187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning
Ahmad Hojatimalekshah
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Zachary Uhlmann
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Christopher A. Hiemstra
US Department of Agriculture, Forest Service, Geospatial Management
Office, Salt Lake City, UT 84138, USA
Christopher J. Tennant
US Army Corps of Engineers, Sacramento, CA 95814, USA
Jake D. Graham
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Lucas Spaete
Minnesota Department of Natural Resources, Division of Forestry,
Resource Assessment, Grand Rapids, MN 55744, USA
Arthur Gelvin
US Army Corps of Engineer, Cold Regions Research and Engineering Laboratory, Hanover, NH 03755, USA
Hans-Peter Marshall
Department of Geosciences, Boise State University, Boise, ID 83725, USA
James P. McNamara
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Josh Enterkine
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Related authors
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024, https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Kajsa Holland-Goon, Randall Bonnell, Daniel McGrath, W. Brad Baxter, Tate Meehan, Ryan Webb, Chris Larsen, Hans-Peter Marshall, Megan Mason, and Carrie Vuyovich
EGUsphere, https://doi.org/10.5194/egusphere-2025-2435, https://doi.org/10.5194/egusphere-2025-2435, 2025
Short summary
Short summary
As part of the NASA SnowEx23 campaign, we conducted detailed snowpack experiments in Alaska’s boreal forests and Arctic tundra. We collected ground-penetrating radar measurements of snow depth along 44 short transects. We then excavated the snowpack from below the transects and measured snow depth, noting any vegetation and void spaces. We used the detailed in situ measurements to evaluate uncertainties in ground-penetrating radar and airborne lidar methods for snow depth retrieval.
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
The Cryosphere, 19, 1675–1693, https://doi.org/10.5194/tc-19-1675-2025, https://doi.org/10.5194/tc-19-1675-2025, 2025
Short summary
Short summary
Tracking seasonal snow on glaciers is critical for understanding glacier health. Yet previous work has not directly compared machine learning algorithms for snow classification across satellite image products. To address this, we developed a new automated workflow for tracking seasonal snow on glaciers using several image products and machine learning models. Applying this method can help provide insights into glacier health, water resources, and the effects of climate change on snow cover.
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024, https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar-derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and nine automated snow monitoring stations.
Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn
The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024, https://doi.org/10.5194/tc-18-5015-2024, 2024
Short summary
Short summary
Remotely sensed properties of snow are dependent on accurate terrain information, which for a lot of the cryosphere and seasonal snow zones is often insufficient in accuracy. However, as we show in this paper, we can bypass this issue by optimally solving for the terrain by utilizing the raw radiance data returned to the sensor. This method performed well when compared to validation datasets and has the potential to be used across a variety of different snow climates.
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024, https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Short summary
Snow provides water for billions of people, but the amount of snow is difficult to detect remotely. During the 2020 and 2021 winters, a radar was flown over mountains in Colorado, USA, to measure the amount of snow on the ground, while our team collected ground observations to test the radar technique’s capabilities. The technique yielded accurate measurements of the snowpack that had good correlation with ground measurements, making it a promising application for the upcoming NISAR satellite.
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024, https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024, https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Short summary
Accurate knowledge of firn grain size is crucial for many ice sheet research applications. Unfortunately, collecting detailed measurements of firn grain size is difficult. We demonstrate that scanning firn cores with a near-infrared imager can quickly produce high-resolution maps of both grain size and ice layer distributions. We map grain size and ice layer stratigraphy in 14 firn cores from Greenland and document changes to grain size and ice layer content from the extreme melt summer of 2012.
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024, https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary
Short summary
The seasonal snowpack provides water resources to billions of people worldwide. Large-scale mapping of snow water equivalent (SWE) with high resolution is critical for many scientific and economics fields. In this work we used the radar remote sensing interferometric synthetic aperture radar (InSAR) to estimate the SWE change between 2 d. The error in the estimated SWE change is less than 2 cm for in situ stations. Additionally, the retrieved SWE using InSAR is correlated with lidar snow depth.
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024, https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023, https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Short summary
Mountain snowmelt provides water for billions of people across the globe. Despite its importance, we cannot currently measure the amount of water in mountain snowpacks from satellites. In this research, we test the ability of an experimental snow remote sensing technique from an airplane in preparation for the same sensor being launched on a future NASA satellite. We found that the method worked better than expected for estimating important snowpack properties.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Karun Pandit, Hamid Dashti, Andrew T. Hudak, Nancy F. Glenn, Alejandro N. Flores, and Douglas J. Shinneman
Biogeosciences, 18, 2027–2045, https://doi.org/10.5194/bg-18-2027-2021, https://doi.org/10.5194/bg-18-2027-2021, 2021
Short summary
Short summary
A dynamic global vegetation model, Ecosystem Demography (EDv2.2), is used to understand spatiotemporal dynamics of a semi-arid shrub ecosystem under alternative fire regimes. Multi-decadal point simulations suggest shrub dominance for a non-fire scenario and a contrasting phase of shrub and C3 grass growth for a fire scenario. Regional gross primary productivity (GPP) simulations indicate moderate agreement with MODIS GPP and a GPP reduction in fire-affected areas before showing some recovery.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
Miguel A. Aguayo, Alejandro N. Flores, James P. McNamara, Hans-Peter Marshall, and Jodi Mead
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-451, https://doi.org/10.5194/hess-2020-451, 2020
Manuscript not accepted for further review
Cited articles
Bewley, D., Alila, Y., and Varhola, A.: Variability of snow water equivalent
and snow energetics across a large catchment subject to Mountain Pine Beetle
infestation and rapid salvage logging, J. Hydrol., 388,
464–479, https://doi.org/10.1016/j.jhydrol.2010.05.031, 2010.
Broxton, P. D., Harpold, A. A., Biederman, J. A., Troch, P. A., Molotch, N.
P., and Brooks, P. D.: Quantifying the effects of vegetation structure on
snow accumulation and ablation in mixed-conifer forests, Ecohydrology, 8,
1073–1094, https://doi.org/10.1002/eco.1565, 2015.
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016.
Cimoli, E., Marcer, M., Vandecrux, B., Bøggild, C. E., Williams, G., and
Simonsen, S. B.: Application of Low-Cost UASs and Digital Photogrammetry for
High-Resolution Snow Depth Mapping in the Arctic, Remote Sens.-Basel, 9,
1144, https://doi.org/10.3390/rs9111144, 2017.
Clawges, R., Vierling, K., Vierling, L., and Rowell, E.: The use of airborne
lidar to assess avian species diversity, density, and occurrence in a
pine/aspen forest, Remote Sens. Environ., 112, 2064–2073,
https://doi.org/10.1016/j.rse.2007.08.023, 2008.
Currier, W. R. and Lundquist, J. D.: Snow Depth Variability at the Forest
Edge in Multiple Climates in the Western United States, Water Resour. Res.,
54, 8756–8773, https://doi.org/10.1029/2018WR022553, 2018.
Currier, W. R., Pflug, J., Mazzotti, G., Jonas, T., Deems, J. S., Bormann,
K. J., Painter, T. H., Hiemstra, C. A., Gelvin, A., Uhlmann, Z., Spaete, L.,
Glenn, N. F., and Lundquist, J. D.: Comparing Aerial Lidar Observations With
Terrestrial Lidar and Snow-Probe Transects From NASA's 2017 SnowEx Campaign,
Water Resour. Res., 55, 6285–6294, https://doi.org/10.1029/2018WR024533, 2019.
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Fractal Distribution of
Snow Depth from Lidar Data, J. Hydrometeorol., 7, 285–297,
https://doi.org/10.1175/JHM487.1, 2006.
Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow
depth: a review, J. Glaciol., 59, 467–479, https://doi.org/10.3189/2013JoG12J154,
2013.
Dickerson-Lange, S. E., Lutz, J. A., Gersonde, R., Martin, K. A., Forsyth,
J. E., and Lundquist, J. D.: Observations of distributed snow depth and snow
duration within diverse forest structures in a maritime mountain watershed,
Water Resour. Res., 51, 9353–9366, https://doi.org/10.1002/2015WR017873, 2015.
Dickerson-Lange, S. E., Gersonde, R. F., Hubbart, J. A., Link, T. E., Nolin,
A. W., Perry, G. H., Roth, T. R., Wayand, N. E., and Lundquist, J. D.: Snow
disappearance timing is dominated by forest effects on snow accumulation in
warm winter climates of the Pacific Northwest, United States,
Hydrol. Process., 31, 1846–1862, https://doi.org/10.1002/hyp.11144, 2017.
ESRI: ArcGIS Desktop: Release 10.4.1, Environmental Systems Research Institute, Redlands, California, USA, 2015.
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z., and
Schepaschenko, D. G.: Boreal forest health and global change, Science,
349, 819–822, https://doi.org/10.1126/science.aaa9092, 2015.
Gleason, K. E., Nolin, A. W., and Roth, T. R.: Charred forests increase
snowmelt: Effects of burned woody debris and incoming solar radiation on
snow ablation, Geophys. Res. Lett., 40, 4654–4661,
https://doi.org/10.1002/grl.50896, 2013.
Glenn, N., Spaete, L., Uhlmann, Z., Merriman, C., Raymondi, A., and Tennant,
C.: SnowEx17 Boise State University Terrestrial Laser Scanner (TLS) Point
Cloud, Version 1 [data set], National Snow & Ice Data Center (NSIDC), https://doi.org/10.5067/IWGD4WFMCQNW, 2019.
Grünewald, T., Schirmer, M., Mott, R., and Lehning, M.: Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment, The Cryosphere, 4, 215–225, https://doi.org/10.5194/tc-4-215-2010, 2010.
Güntner, A., Stuck, J., Werth, S., Döll, P., Verzano, K., and Merz,
B.: A global analysis of temporal and spatial variations in continental
water storage, Water Resour. Res., 43, https://doi.org/10.1029/2006WR005247, 2007.
Hanley, T. A. and Rose, C. L.: Influence of overstory on snow depth and density in hemlock-spruce stands: implications for management of deer habitat in Southeastern Alaska., U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, https://doi.org/10.2737/PNW-RN-459, 1987.
Harder, P., Schirmer, M., Pomeroy, J., and Helgason, W.: Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle, The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016, 2016.
Harder, P., Pomeroy, J. W., and Helgason, W. D.: Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques, The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, 2020.
Hardy, J. P. and Albert, M. R.: Snow-induced thermal variations around a
single conifer tree, Hydrol. Process., 9, 923–933,
https://doi.org/10.1002/hyp.3360090808, 1995.
Hartzell, P. J., Gadomski, P. J., Glennie, C. L., Finnegan, D. C., and Deems,
J. S.: Rigorous error propagation for terrestrial laser scanning with
application to snow volume uncertainty, J. Glaciol., 61, 1147–1158,
https://doi.org/10.3189/2015JoG15J031, 2015.
Hedrick, A. R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky,
M., Marshall, H., Kormos, P. R., Bormann, K. J., and Painter, T. H.: Direct
Insertion of NASA Airborne Snow Observatory-Derived Snow Depth Time Series
Into the iSnobal Energy Balance Snow Model, Water Resour. Res., 54,
8045–8063, https://doi.org/10.1029/2018WR023190, 2018.
Hiemstra, C. and Gelvin, A. B.: SnowEx17 CRREL Terrestrial Laser
Scanner (TLS) Point Cloud, Version 1, NASA National Snow and Ice Data Center, Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/YOIPYEWCZOD5, 2019.
Homan, J. W., Luce, C. H., McNamara, J. P., and Glenn, N. F.: Improvement of
distributed snowmelt energy balance modeling with MODIS-based NDSI-derived
fractional snow-covered area data, Hydrol. Process., 25, 650–660,
https://doi.org/10.1002/hyp.7857, 2011.
Hopkinson, C., Sitar, M., Chasmer, L., and Treitz, P.: Mapping Snowpack Depth
beneath Forest Canopies Using Airborne Lidar, Photogramm. Eng. Rem. S.,
70, 323–330, https://doi.org/10.14358/PERS.70.3.323, 2004.
Jacobs, J. M., Hunsaker, A. G., Sullivan, F. B., Palace, M., Burakowski, E. A., Herrick, C., and Cho, E.: Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States, The Cryosphere, 15, 1485–1500, https://doi.org/10.5194/tc-15-1485-2021, 2021.
Jenicek, M., Pevna, H., and Matejka, O.: Canopy structure and topography
effects on snow distribution at a catchment scale: Application of
multivariate approaches, J. Hydrol. Hydromech., 66, 43–54, https://doi.org/10.1515/johh-2017-0027, 2018.
Kim, E., Gatebe, C., Hall, D., Newlin, J., Misakonis, A., Elder, K., Marshall, H. P., Hiemstra, C., Brucker, L., De Marco, E., Crawford, C., Kang, D. H., and Entin, J.: NASA's snowex campaign: Observing seasonal snow in a forested environment, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 23–28 July 2017, 1388–1390, https://doi.org/10.1109/IGARSS.2017.8127222, 2017.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
canyon (N-Z), ISPRS J. Photogramm., 82, 10–26, https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013.
Lee, S., Park, J., Choi, E., and Kim, D.: Factors Influencing the Accuracy
of Shallow Snow Depth Measured Using UAV-Based Photogrammetry, Remote Sens.-Basel, 13, 828, https://doi.org/10.3390/rs13040828, 2021.
Luce, C. H., Tarboton, D. G., and Cooley, K. R.: Sub-grid parameterization of
snow distribution for an energy and mass balance snow cover model,
Hydrol. Process., 13, 1921–1933,
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1921::AID-HYP867>3.0.CO;2-S, 1999.
Mazzotti, G., Currier, W. R., Deems, J. S., Pflug, J. M., Lundquist, J. D.,
and Jonas, T.: Revisiting Snow Cover Variability and Canopy Structure Within
Forest Stands: Insights From Airborne Lidar Data, Water Resour. Res., 55,
6198–6216, https://doi.org/10.1029/2019WR024898, 2019.
Moeser, D., Stähli, M., and Jonas, T.: Improved snow interception
modeling using canopy parameters derived from airborne LiDAR data, Water
Resour. Res., 51, 5041–5059, https://doi.org/10.1002/2014WR016724, 2015a.
Moeser, D., Morsdorf, F., and Jonas, T.: Novel forest structure metrics from
airborne LiDAR data for improved snow interception estimation,
Agr. Forest Meteorol., 208, 40–49, https://doi.org/10.1016/j.agrformet.2015.04.013,
2015b.
Nolin, A. W. and Daly, C.: Mapping “At Risk” Snow in the Pacific
Northwest, J. Hydrometeorol., 7, 1164–1171, https://doi.org/10.1175/JHM543.1, 2006.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J.
S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann,
C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M., Seidel, F. C.,
and Winstral, A.: The Airborne Snow Observatory: Fusion of scanning lidar,
imaging spectrometer, and physically-based modeling for mapping snow water
equivalent and snow albedo, Remote Sens. Environ., 184, 139–152,
https://doi.org/10.1016/j.rse.2016.06.018, 2016.
Pomeroy, J. W., Marks, D., Link, T., Ellis, C., Hardy, J., Rowlands, A., and
Granger, R.: The impact of coniferous forest temperature on incoming
longwave radiation to melting snow, Hydrol. Process., 23, 2513–2525,
https://doi.org/10.1002/hyp.7325, 2009.
Qiu, H., Huggins, D. R., Wu, J. Q., Barber, M. E., McCool, D. K., and Dun,
S.: Residue Management Impacts on Field-Scale Snow Distribution and Soil
Water Storage, T. ASABE, 54, 1639–1647, https://doi.org/10.13031/2013.39852, 2011.
R Core Team: The R Project for Statistical Computing, available at:
https://www.r-project.org/, last access: 16 September 2020.
Revuelto, J., López-Moreno, J. I., Azorin-Molina, C., and
Vicente-Serrano, S. M.: Canopy influence on snow depth distribution in a
pine stand determined from terrestrial laser data: Canopy influence on snow
depth distribution, Water Resour. Res., 51, 3476–3489,
https://doi.org/10.1002/2014WR016496, 2015.
Revuelto, J., López-Moreno, J.-I., Azorin-Molina, C.,
Alonso-González, E., and Sanmiguel-Vallelado, A.: Small-Scale Effect of
Pine Stand Pruning on Snowpack Distribution in the Pyrenees Observed with a
Terrestrial Laser Scanner, Forests, 7, 166, https://doi.org/10.3390/f7080166, 2016a.
Revuelto, J., Vionnet, V., López-Moreno, J.-I., Lafaysse, M., and Morin,
S.: Combining snowpack modeling and terrestrial laser scanner observations
improves the simulation of small scale snow dynamics, J. Hydrol.,
533, 291–307, https://doi.org/10.1016/j.jhydrol.2015.12.015, 2016b.
Roussel, J.-R., Auty, D., De Boissieu, F., Sánchez Meador, A., Jean-François, B., Demetrios, G.: lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications, available at: https://CRAN.R-project.org/package=lidR, last access: 16 September 2020.
Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I.,
Barr, A., Bartlett, P., Boone, A., Deng, H., Douville, H., Dutra, E., Elder,
K., Ellis, C., Feng, X., Gelfan, A., Goodbody, A., Gusev, Y., Gustafsson,
D., Hellström, R., Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V.,
Kuragina, A., Lettenmaier, D., Li, W.-P., Luce, C., Martin, E., Nasonova,
O., Pumpanen, J., Pyles, R. D., Samuelsson, P., Sandells, M., Schädler,
G., Shmakin, A., Smirnova, T. G., Stähli, M., Stöckli, R., Strasser,
U., Su, H., Suzuki, K., Takata, K., Tanaka, K., Thompson, E., Vesala, T.,
Viterbo, P., Wiltshire, A., Xia, K., Xue, Y., and Yamazaki, T.: Evaluation of
forest snow processes models (SnowMIP2), J. Geophys. Res.-Atmos., 114, D06111, https://doi.org/10.1029/2008JD011063, 2009.
Schirmer, M., Wirz, V., Clifton, A., and Lehning, M.: Persistence in
intra-annual snow depth distribution: 1. Measurements and topographic
control, Water Resour. Res., 47, https://doi.org/10.1029/2010WR009426, 2011.
Seyednasrollah, B. and Kumar, M.: Net radiation in a snow-covered
discontinuous forest gap for a range of gap sizes and topographic
configurations, J. Geophys. Res.-Atmos., 119, 10323–10342,
https://doi.org/10.1002/2014JD021809, 2014.
Silva, C. A., Crookston, N. L., Hudak, A. T., Vierling, L. A., Klauberg, C., Cardil, A., and Hamamura, C.: rLiDAR: LiDAR Data Processing and Visualization, available at: https://github.com/carlos-alberto-silva/rLiDAR, last access: 1 September 2020.
Simonson, W. D., Allen, H. D., and Coomes, D. A.: Applications of airborne
lidar for the assessment of animal species diversity,
Methods Ecol. Evol., 5, 719–729, https://doi.org/10.1111/2041-210X.12219, 2014.
Sun, N., Wigmosta, M., Zhou, T., Lundquist, J., Dickerson-Lange, S., and
Cristea, N.: Evaluating the functionality and streamflow impacts of
explicitly modelling forest-snow interactions and canopy gaps in a
distributed hydrologic model, Hydrol. Process., 32, 2128–2140,
https://doi.org/10.1002/hyp.13150, 2018.
Tennant, C. J., Harpold, A. A., Lohse, K. A., Godsey, S. E., Crosby, B. T.,
Larsen, L. G., Brooks, P. D., Van Kirk, R. W., and Glenn, N. F.: Regional
sensitivities of seasonal snowpack to elevation, aspect, and vegetation
cover in western North America, Water Resour. Res., 53, 6908–6926,
https://doi.org/10.1002/2016WR019374, 2017.
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic,
meteorologic, and canopy controls on the scaling characteristics of the
spatial distribution of snow depth fields, Water Resour. Res., 43,
https://doi.org/10.1029/2006WR005317, 2007.
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Scaling properties and
spatial organization of snow depth fields in sub-alpine forest and alpine
tundra, Hydrol. Process., 23, 1575–1590, https://doi.org/10.1002/hyp.7270, 2009.
Winstral, A., Marks, D., and Gurney, R.: Simulating wind-affected snow
accumulations at catchment to basin scales, Adv. Water Resour., 55,
64–79, https://doi.org/10.1016/j.advwatres.2012.08.011, 2013.
Yang, T., Li, Q., Chen, X., Hamdi, R., De Maeyer, P., Kurban, A., and Li, L.:
Improving snow simulation with more realistic vegetation parameters in a
regional climate model in the Tianshan Mountains, Central Asia, J. Hydrol., 590, 125525, https://doi.org/10.1016/j.jhydrol.2020.125525, 2020.
Zheng, Z., Kirchner, P. B., and Bales, R. C.: Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data, The Cryosphere, 10, 257–269, https://doi.org/10.5194/tc-10-257-2016, 2016.
Short summary
We describe the relationships between snow depth, vegetation canopy, and local-scale processes during the snow accumulation period using terrestrial laser scanning (TLS). In addition to topography and wind, our findings suggest the importance of fine-scale tree structure, species type, and distributions on snow depth. Snow depth increases from the canopy edge toward the open areas, but wind and topographic controls may affect this trend. TLS data are complementary to wide-area lidar surveys.
We describe the relationships between snow depth, vegetation canopy, and local-scale processes...