Articles | Volume 15, issue 5
https://doi.org/10.5194/tc-15-2187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning
Ahmad Hojatimalekshah
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Zachary Uhlmann
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Christopher A. Hiemstra
US Department of Agriculture, Forest Service, Geospatial Management
Office, Salt Lake City, UT 84138, USA
Christopher J. Tennant
US Army Corps of Engineers, Sacramento, CA 95814, USA
Jake D. Graham
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Lucas Spaete
Minnesota Department of Natural Resources, Division of Forestry,
Resource Assessment, Grand Rapids, MN 55744, USA
Arthur Gelvin
US Army Corps of Engineer, Cold Regions Research and Engineering Laboratory, Hanover, NH 03755, USA
Hans-Peter Marshall
Department of Geosciences, Boise State University, Boise, ID 83725, USA
James P. McNamara
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Josh Enterkine
Department of Geosciences, Boise State University, Boise, ID 83725, USA
Related authors
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024, https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024, https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar-derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and nine automated snow monitoring stations.
Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn
The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024, https://doi.org/10.5194/tc-18-5015-2024, 2024
Short summary
Short summary
Remotely sensed properties of snow are dependent on accurate terrain information, which for a lot of the cryosphere and seasonal snow zones is often insufficient in accuracy. However, as we show in this paper, we can bypass this issue by optimally solving for the terrain by utilizing the raw radiance data returned to the sensor. This method performed well when compared to validation datasets and has the potential to be used across a variety of different snow climates.
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024, https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Short summary
Snow provides water for billions of people, but the amount of snow is difficult to detect remotely. During the 2020 and 2021 winters, a radar was flown over mountains in Colorado, USA, to measure the amount of snow on the ground, while our team collected ground observations to test the radar technique’s capabilities. The technique yielded accurate measurements of the snowpack that had good correlation with ground measurements, making it a promising application for the upcoming NISAR satellite.
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024, https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024, https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Short summary
Accurate knowledge of firn grain size is crucial for many ice sheet research applications. Unfortunately, collecting detailed measurements of firn grain size is difficult. We demonstrate that scanning firn cores with a near-infrared imager can quickly produce high-resolution maps of both grain size and ice layer distributions. We map grain size and ice layer stratigraphy in 14 firn cores from Greenland and document changes to grain size and ice layer content from the extreme melt summer of 2012.
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
EGUsphere, https://doi.org/10.5194/egusphere-2024-548, https://doi.org/10.5194/egusphere-2024-548, 2024
Short summary
Short summary
Tracking seasonal snow on glaciers is critical for understanding glacier health. However, current snow detection methods struggle to distinguish seasonal snow from glacier ice. To address this, we developed a new automated workflow for tracking seasonal snow on glaciers using satellite imagery and machine learning. Applying this method can help provide insights into glacier health, water resources, and the effects of climate change on snow cover over broad spatial scales.
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024, https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary
Short summary
The seasonal snowpack provides water resources to billions of people worldwide. Large-scale mapping of snow water equivalent (SWE) with high resolution is critical for many scientific and economics fields. In this work we used the radar remote sensing interferometric synthetic aperture radar (InSAR) to estimate the SWE change between 2 d. The error in the estimated SWE change is less than 2 cm for in situ stations. Additionally, the retrieved SWE using InSAR is correlated with lidar snow depth.
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024, https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023, https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Short summary
Mountain snowmelt provides water for billions of people across the globe. Despite its importance, we cannot currently measure the amount of water in mountain snowpacks from satellites. In this research, we test the ability of an experimental snow remote sensing technique from an airplane in preparation for the same sensor being launched on a future NASA satellite. We found that the method worked better than expected for estimating important snowpack properties.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Karun Pandit, Hamid Dashti, Andrew T. Hudak, Nancy F. Glenn, Alejandro N. Flores, and Douglas J. Shinneman
Biogeosciences, 18, 2027–2045, https://doi.org/10.5194/bg-18-2027-2021, https://doi.org/10.5194/bg-18-2027-2021, 2021
Short summary
Short summary
A dynamic global vegetation model, Ecosystem Demography (EDv2.2), is used to understand spatiotemporal dynamics of a semi-arid shrub ecosystem under alternative fire regimes. Multi-decadal point simulations suggest shrub dominance for a non-fire scenario and a contrasting phase of shrub and C3 grass growth for a fire scenario. Regional gross primary productivity (GPP) simulations indicate moderate agreement with MODIS GPP and a GPP reduction in fire-affected areas before showing some recovery.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
Miguel A. Aguayo, Alejandro N. Flores, James P. McNamara, Hans-Peter Marshall, and Jodi Mead
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-451, https://doi.org/10.5194/hess-2020-451, 2020
Manuscript not accepted for further review
Karun Pandit, Hamid Dashti, Nancy F. Glenn, Alejandro N. Flores, Kaitlin C. Maguire, Douglas J. Shinneman, Gerald N. Flerchinger, and Aaron W. Fellows
Geosci. Model Dev., 12, 4585–4601, https://doi.org/10.5194/gmd-12-4585-2019, https://doi.org/10.5194/gmd-12-4585-2019, 2019
Short summary
Short summary
We explored shrub parameters representing sagebrush ecosystems within a dynamic vegetation model and estimated gross primary production (GPP) for two sagebrush sites in the northern Great Basin. Comparison with observations from eddy covariance (EC) tower data showed our modeled results were encouraging, although some seasonal underestimates were apparent. We believe our findings on preliminary parameterization of shrub PFT is an important step towards subsequent studies on shrubland ecosystems.
Gabriel Lewis, Erich Osterberg, Robert Hawley, Hans Peter Marshall, Tate Meehan, Karina Graeter, Forrest McCarthy, Thomas Overly, Zayta Thundercloud, and David Ferris
The Cryosphere, 13, 2797–2815, https://doi.org/10.5194/tc-13-2797-2019, https://doi.org/10.5194/tc-13-2797-2019, 2019
Short summary
Short summary
We present accumulation records from sixteen 22–32 m long firn cores and 4436 km of ground-penetrating radar, covering the past 20–60 years of accumulation, collected across the western Greenland Ice Sheet percolation zone. Trends from both radar and firn cores, as well as commonly used regional climate models, show decreasing accumulation over the 1996–2016 period.
Daniel McGrath, Louis Sass, Shad O'Neel, Chris McNeil, Salvatore G. Candela, Emily H. Baker, and Hans-Peter Marshall
The Cryosphere, 12, 3617–3633, https://doi.org/10.5194/tc-12-3617-2018, https://doi.org/10.5194/tc-12-3617-2018, 2018
Short summary
Short summary
Measuring the amount and spatial pattern of snow on glaciers is essential for monitoring glacier mass balance and quantifying the water budget of glacierized basins. Using repeat radar surveys for 5 consecutive years, we found that the spatial pattern in snow distribution is stable over the majority of the glacier and scales with the glacier-wide average. Our findings support the use of sparse stake networks for effectively measuring interannual variability in winter balance on glaciers.
Sarah E. Godsey, Danny Marks, Patrick R. Kormos, Mark S. Seyfried, Clarissa L. Enslin, Adam H. Winstral, James P. McNamara, and Timothy E. Link
Earth Syst. Sci. Data, 10, 1207–1216, https://doi.org/10.5194/essd-10-1207-2018, https://doi.org/10.5194/essd-10-1207-2018, 2018
Short summary
Short summary
Weather data in mountainous rain-to-snow transition zones are limited, but are vital for water resources. We present a 10-year dataset for this zone that includes hourly temperatures, relative humidity, streamflow, snow depth, precipitation, wind speed/direction, solar energy, and soil moisture at 11 stations. Average air temperatures are near freezing 8 months each year, so that slight warming may determine whether rain falls instead of snow, affecting water supplies and fire risk.
Pertti Ala-aho, Doerthe Tetzlaff, James P. McNamara, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, https://doi.org/10.5194/hess-21-5089-2017, 2017
Short summary
Short summary
We used the Spatially Distributed Tracer-Aided Rainfall-Runoff model (STARR) to simulate streamflows, stable water isotope ratios, snowpack dynamics, and water ages in three snow-influenced experimental catchments with exceptionally long and rich datasets. Our simulations reproduced the hydrological observations in all three catchments, suggested contrasting stream water age distributions between catchments, and demonstrated the importance of snow isotope processes in tracer-aided modelling.
Gabriel Lewis, Erich Osterberg, Robert Hawley, Brian Whitmore, Hans Peter Marshall, and Jason Box
The Cryosphere, 11, 773–788, https://doi.org/10.5194/tc-11-773-2017, https://doi.org/10.5194/tc-11-773-2017, 2017
Short summary
Short summary
We analyze 25 flight lines from NASA's Operation IceBridge Accumulation Radar totaling to determine snow accumulation throughout the dry snow and percolation zone of the Greenland Ice Sheet. Our results indicate that regional differences between IceBridge and model accumulation are large enough to significantly alter the Greenland Ice Sheet surface mass balance, with implications for future global sea-level rise.
Adrian A. Harpold, Michael L. Kaplan, P. Zion Klos, Timothy Link, James P. McNamara, Seshadri Rajagopal, Rina Schumer, and Caitriana M. Steele
Hydrol. Earth Syst. Sci., 21, 1–22, https://doi.org/10.5194/hess-21-1-2017, https://doi.org/10.5194/hess-21-1-2017, 2017
Short summary
Short summary
The phase of precipitation as rain or snow is fundamental to hydrological processes and water resources. Despite its importance, the methods used to predict precipitation phase are inconsistent and often overly simplified. We review these methods and underlying mechanisms that control phase. We present a vision to meet important research gaps needed to improve prediction, including new field-based and remote measurements, validating new and existing methods, and expanding regional prediction.
Clarissa L. Enslin, Sarah E. Godsey, Danny Marks, Patrick R. Kormos, Mark S. Seyfried, James P. McNamara, and Timothy E. Link
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2016-44, https://doi.org/10.5194/essd-2016-44, 2016
Preprint withdrawn
Short summary
Short summary
Weather data in mountainous rain-to-snow transition zones are limited, but vital for water resources. We present a 10-year dataset for this zone that includes hourly temperatures, relative humidity, stream flow, snow depth, precipitation, wind speed/direction, solar energy, and soil moisture at 11 stations. Average air temperatures are near freezing eight months each year, so that slight warming may determine whether rain falls instead of snow, affecting water supplies, ecosystems and fire risk.
Graham A. Sexstone, Steven R. Fassnacht, Juan Ignacio López-Moreno, and Christopher A. Hiemstra
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-188, https://doi.org/10.5194/tc-2016-188, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Seasonal snowpacks vary spatially within mountainous environments and the representation of this variability by modeling can be a challenge. This study uses high-resolution airborne lidar data to evaluate the variability of snow depth within a grid size common for modeling applications. Results suggest that snow depth coefficient of variation is well correlated with ecosystem type, depth of snow, and topography and forest characteristics, and can be parameterized using airborne lidar data.
A. A. Harpold, J. A. Marshall, S. W. Lyon, T. B. Barnhart, B. A. Fisher, M. Donovan, K. M. Brubaker, C. J. Crosby, N. F. Glenn, C. L. Glennie, P. B. Kirchner, N. Lam, K. D. Mankoff, J. L. McCreight, N. P. Molotch, K. N. Musselman, J. Pelletier, T. Russo, H. Sangireddy, Y. Sjöberg, T. Swetnam, and N. West
Hydrol. Earth Syst. Sci., 19, 2881–2897, https://doi.org/10.5194/hess-19-2881-2015, https://doi.org/10.5194/hess-19-2881-2015, 2015
Short summary
Short summary
This review's objective is to demonstrate the transformative potential of lidar by critically assessing both challenges and opportunities for transdisciplinary lidar applications in geomorphology, hydrology, and ecology. We find that using lidar to its full potential will require numerous advances, including more powerful open-source processing tools, new lidar acquisition technologies, and improved integration with physically based models and complementary observations.
P. R. Kormos, D. Marks, C. J. Williams, H. P. Marshall, P. Aishlin, D. G. Chandler, and J. P. McNamara
Earth Syst. Sci. Data, 6, 165–173, https://doi.org/10.5194/essd-6-165-2014, https://doi.org/10.5194/essd-6-165-2014, 2014
Related subject area
Discipline: Snow | Subject: Remote Sensing
Evaluating snow depth retrievals from Sentinel-1 volume scattering over NASA SnowEx sites
Improved snow property retrievals by solving for topography in the inversion of at-sensor radiance measurements
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado
Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data
Tower-based C-band radar measurements of an alpine snowpack
Mapping surface hoar from near-infrared texture in a laboratory
Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign
Temperature-dominated spatiotemporal variability in snow phenology on the Tibetan Plateau from 2002 to 2022
Temporal stability of a new 40-year daily AVHRR Land Surface Temperature dataset for the Pan-Arctic region
Snow water equivalent retrieved from X- and dual Ku-band scatterometer measurements at Sodankylä using the Markov Chain Monte Carlo method
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry
Passive microwave remote-sensing-based high-resolution snow depth mapping for Western Himalayan zones using multifactor modeling approach
Retrieval of snow water equivalent from dual-frequency radar measurements: using time series to overcome the need for accurate a priori information
Snow accumulation, albedo and melt patterns following road construction on permafrost, Inuvik–Tuktoyaktuk Highway, Canada
Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs – Part 1: Measurements, processing, and accuracy assessment
Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs – Part 2: Snow processes and snow–canopy interactions
Evaluating Snow Microwave Radiative Transfer (SMRT) model emissivities with 89 to 243 GHz observations of Arctic tundra snow
Evaluating the utility of active microwave observations as a snow mission concept using observing system simulation experiments
Evaluation of snow depth retrievals from ICESat-2 using airborne laser-scanning data
How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments
Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)
Snowmelt characterization from optical and synthetic-aperture radar observations in the La Joie Basin, British Columbia
Topographic and vegetation controls of the spatial distribution of snow depth in agro-forested environments by UAV lidar
Temporal stability of long-term satellite and reanalysis products to monitor snow cover trends
Towards long-term records of rain-on-snow events across the Arctic from satellite data
Implementing spatially and temporally varying snow densities into the GlobSnow snow water equivalent retrieval
Evaluation of E3SM land model snow simulations over the western United States
Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets
Snow stratigraphy observations from Operation IceBridge surveys in Alaska using S and C band airborne ultra-wideband FMCW (frequency-modulated continuous wave) radar
Brief communication: A continuous formulation of microwave scattering from fresh snow to bubbly ice from first principles
Review article: Global monitoring of snow water equivalent using high-frequency radar remote sensing
Automated avalanche mapping from SPOT 6/7 satellite imagery with deep learning: results, evaluation, potential and limitations
Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation
Snow water equivalent change mapping from slope-correlated synthetic aperture radar interferometry (InSAR) phase variations
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland
Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Mapping liquid water content in snow at the millimeter scale: an intercomparison of mixed-phase optical property models using hyperspectral imaging and in situ measurements
Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow & Ice Monitoring Service
Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas
Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements
Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy
The retrieval of snow properties from SLSTR Sentinel-3 – Part 1: Method description and sensitivity study
The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation
Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States
Mapping avalanches with satellites – evaluation of performance and completeness
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024, https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar-derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and nine automated snow monitoring stations.
Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn
The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024, https://doi.org/10.5194/tc-18-5015-2024, 2024
Short summary
Short summary
Remotely sensed properties of snow are dependent on accurate terrain information, which for a lot of the cryosphere and seasonal snow zones is often insufficient in accuracy. However, as we show in this paper, we can bypass this issue by optimally solving for the terrain by utilizing the raw radiance data returned to the sensor. This method performed well when compared to validation datasets and has the potential to be used across a variety of different snow climates.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024, https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Short summary
Snow provides water for billions of people, but the amount of snow is difficult to detect remotely. During the 2020 and 2021 winters, a radar was flown over mountains in Colorado, USA, to measure the amount of snow on the ground, while our team collected ground observations to test the radar technique’s capabilities. The technique yielded accurate measurements of the snowpack that had good correlation with ground measurements, making it a promising application for the upcoming NISAR satellite.
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024, https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Short summary
Automated stations measure snow properties at a single point but are frequently used to validate data that represent much larger areas. We use lidar snow depth data to see how often the mean snow depth surrounding a snow station is within 10 cm of the snow station depth at different scales. We found snow stations overrepresent the area-mean snow depth in ~ 50 % of cases, but the direction of bias at a site is temporally consistent, suggesting a site could be calibrated to the surrounding area.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
James Dillon, Christopher Donahue, Evan Schehrer, Karl Birkeland, and Kevin Hammonds
The Cryosphere, 18, 2557–2582, https://doi.org/10.5194/tc-18-2557-2024, https://doi.org/10.5194/tc-18-2557-2024, 2024
Short summary
Short summary
Surface hoar crystals are snow grains that form when vapor deposits on a snow surface. They create a weak layer in the snowpack that can cause large avalanches to occur. Thus, determining when and where surface hoar forms is a lifesaving matter. Here, we developed a means of mapping surface hoar using remote-sensing technologies. We found that surface hoar displayed heightened texture, hence the variability of brightness. Using this, we created surface hoar maps with an accuracy upwards of 95 %.
Steven J. Pestana, C. Chris Chickadel, and Jessica D. Lundquist
The Cryosphere, 18, 2257–2276, https://doi.org/10.5194/tc-18-2257-2024, https://doi.org/10.5194/tc-18-2257-2024, 2024
Short summary
Short summary
We compared infrared images taken by GOES-R satellites of an area with snow and forests against surface temperature measurements taken on the ground, from an aircraft, and by another satellite. We found that GOES-R measured warmer temperatures than the other measurements, especially in areas with more forest and when the Sun was behind the satellite. From this work, we learned that the position of the Sun and surface features such as trees that can cast shadows impact GOES-R infrared images.
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024, https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
Short summary
Understanding snow phenology (SP) and its possible feedback are important. We reveal spatiotemporal heterogeneous SP on the Tibetan Plateau (TP) and the mediating effects from meteorological, topographic, and environmental factors on it. The direct effects of meteorology on SP are much greater than the indirect effects. Topography indirectly effects SP, while vegetation directly effects SP. This study contributes to understanding past global warming and predicting future trends on the TP.
Sonia Dupuis, Frank-Michael Göttsche, and Stefan Wunderle
EGUsphere, https://doi.org/10.5194/egusphere-2024-857, https://doi.org/10.5194/egusphere-2024-857, 2024
Short summary
Short summary
The Arctic experienced pronounced warming throughout the last decades. This warming threatens ecosystems, vegetation dynamics, snow cover duration, and permafrost. Traditional monitoring methods like stations and climate models lack the detail needed. Land surface temperature (LST) data derived from satellites offers high spatial and temporal coverage, perfect for studying changes in the Arctic. In particular, LST information from AVHRR provides a 40-year record, valuable for analyzing trends.
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578, https://doi.org/10.5194/tc-18-1561-2024, https://doi.org/10.5194/tc-18-1561-2024, 2024
Short summary
Short summary
We developed an algorithm to estimate snow mass using X- and dual Ku-band radar, and tested it in a ground-based experiment. The algorithm, the Bayesian-based Algorithm for SWE Estimation (BASE) using active microwaves, achieved an RMSE of 30 mm for snow water equivalent. These results demonstrate the potential of radar, a highly promising sensor, to map snow mass at high spatial resolution.
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024, https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary
Short summary
Seasonal snowfall accumulation plays a critical role in climate. The water stored in it is measured by the snow water equivalent (SWE), the amount of water released after completely melting. We demonstrate a Bayesian physical–statistical framework to estimate SWE from airborne X- and Ku-band synthetic aperture radar backscatter measurements constrained by physical snow hydrology and radar models. We explored spatial resolutions and vertical structures that agree well with ground observations.
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024, https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary
Short summary
The seasonal snowpack provides water resources to billions of people worldwide. Large-scale mapping of snow water equivalent (SWE) with high resolution is critical for many scientific and economics fields. In this work we used the radar remote sensing interferometric synthetic aperture radar (InSAR) to estimate the SWE change between 2 d. The error in the estimated SWE change is less than 2 cm for in situ stations. Additionally, the retrieved SWE using InSAR is correlated with lidar snow depth.
Dhiraj Kumar Singh, Srinivasarao Tanniru, Kamal Kant Singh, Harendra Singh Negi, and RAAJ Ramsankaran
The Cryosphere, 18, 451–474, https://doi.org/10.5194/tc-18-451-2024, https://doi.org/10.5194/tc-18-451-2024, 2024
Short summary
Short summary
In situ techniques for snow depth (SD) measurement are not adequate to represent the spatiotemporal variability in SD in the Western Himalayan region. Therefore, this study focuses on the high-resolution mapping of daily snow depth in the Indian Western Himalayan region using passive microwave remote-sensing-based algorithms. Overall, the proposed multifactor SD models demonstrated substantial improvement compared to the operational products. However, there is a scope for further improvement.
Michael Durand, Joel T. Johnson, Jack Dechow, Leung Tsang, Firoz Borah, and Edward J. Kim
The Cryosphere, 18, 139–152, https://doi.org/10.5194/tc-18-139-2024, https://doi.org/10.5194/tc-18-139-2024, 2024
Short summary
Short summary
Seasonal snow accumulates each winter, storing water to release later in the year and modulating both water and energy cycles, but the amount of seasonal snow is one of the most poorly measured components of the global water cycle. Satellite concepts to monitor snow accumulation have been proposed but not selected. This paper shows that snow accumulation can be measured using radar, and that (contrary to previous studies) does not require highly accurate information about snow microstructure.
Jennika Hammar, Inge Grünberg, Steven V. Kokelj, Jurjen van der Sluijs, and Julia Boike
The Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023, https://doi.org/10.5194/tc-17-5357-2023, 2023
Short summary
Short summary
Roads on permafrost have significant environmental effects. This study assessed the Inuvik to Tuktoyaktuk Highway (ITH) in Canada and its impact on snow accumulation, albedo and snowmelt timing. Our findings revealed that snow accumulation increased by up to 36 m from the road, 12-day earlier snowmelt within 100 m due to reduced albedo, and altered snowmelt patterns in seemingly undisturbed areas. Remote sensing aids in understanding road impacts on permafrost.
Anssi Rauhala, Leo-Juhani Meriö, Anton Kuzmin, Pasi Korpelainen, Pertti Ala-aho, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4343–4362, https://doi.org/10.5194/tc-17-4343-2023, https://doi.org/10.5194/tc-17-4343-2023, 2023
Short summary
Short summary
Snow conditions in the Northern Hemisphere are rapidly changing, and information on snow depth is important for decision-making. We present snow depth measurements using different drones throughout the winter at a subarctic site. Generally, all drones produced good estimates of snow depth in open areas. However, differences were observed in the accuracies produced by the different drones, and a reduction in accuracy was observed when moving from an open mire area to forest-covered areas.
Leo-Juhani Meriö, Anssi Rauhala, Pertti Ala-aho, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere, 17, 4363–4380, https://doi.org/10.5194/tc-17-4363-2023, https://doi.org/10.5194/tc-17-4363-2023, 2023
Short summary
Short summary
Information on seasonal snow cover is essential in understanding snow processes and operational forecasting. We study the spatiotemporal variability in snow depth and snow processes in a subarctic, boreal landscape using drones. We identified multiple theoretically known snow processes and interactions between snow and vegetation. The results highlight the applicability of the drones to be used for a detailed study of snow depth in multiple land cover types and snow–vegetation interactions.
Kirsty Wivell, Stuart Fox, Melody Sandells, Chawn Harlow, Richard Essery, and Nick Rutter
The Cryosphere, 17, 4325–4341, https://doi.org/10.5194/tc-17-4325-2023, https://doi.org/10.5194/tc-17-4325-2023, 2023
Short summary
Short summary
Satellite microwave observations improve weather forecasts, but to use these observations in the Arctic, snow emission must be known. This study uses airborne and in situ snow observations to validate emissivity simulations for two- and three-layer snowpacks at key frequencies for weather prediction. We assess the impact of thickness, grain size and density in key snow layers, which will help inform development of physical snow models that provide snow profile input to emissivity simulations.
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, and Rhae Sung Kim
The Cryosphere, 17, 3915–3931, https://doi.org/10.5194/tc-17-3915-2023, https://doi.org/10.5194/tc-17-3915-2023, 2023
Short summary
Short summary
As a future snow mission concept, active microwave sensors have the potential to measure snow water equivalent (SWE) in deep snowpack and forested environments. We used a modeling and data assimilation approach (a so-called observing system simulation experiment) to quantify the usefulness of active microwave-based SWE retrievals over western Colorado. We found that active microwave sensors with a mature retrieval algorithm can improve SWE simulations by about 20 % in the mountainous domain.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023, https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
Short summary
To test the title question, three snow cover products were used in a snow model. Contrary to previous work, higher-spatial-resolution snow cover products only improved the model accuracy marginally. Conclusions are as follows: (1) snow cover and albedo from moderate-resolution sensors continue to provide accurate forcings and (2) finer spatial and temporal resolutions are the future for Earth observations, but existing moderate-resolution sensors still offer value.
Valentina Premier, Carlo Marin, Giacomo Bertoldi, Riccardo Barella, Claudia Notarnicola, and Lorenzo Bruzzone
The Cryosphere, 17, 2387–2407, https://doi.org/10.5194/tc-17-2387-2023, https://doi.org/10.5194/tc-17-2387-2023, 2023
Short summary
Short summary
The large amount of information regularly acquired by satellites can provide important information about SWE. We explore the use of multi-source satellite data, in situ observations, and a degree-day model to reconstruct daily SWE at 25 m. The results show spatial patterns that are consistent with the topographical features as well as with a reference product. Being able to also reproduce interannual variability, the method has great potential for hydrological and ecological applications.
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023, https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Short summary
Mountain snowmelt provides water for billions of people across the globe. Despite its importance, we cannot currently measure the amount of water in mountain snowpacks from satellites. In this research, we test the ability of an experimental snow remote sensing technique from an airplane in preparation for the same sensor being launched on a future NASA satellite. We found that the method worked better than expected for estimating important snowpack properties.
Sara E. Darychuk, Joseph M. Shea, Brian Menounos, Anna Chesnokova, Georg Jost, and Frank Weber
The Cryosphere, 17, 1457–1473, https://doi.org/10.5194/tc-17-1457-2023, https://doi.org/10.5194/tc-17-1457-2023, 2023
Short summary
Short summary
We use synthetic-aperture radar (SAR) and optical observations to map snowmelt timing and duration on the watershed scale. We found that Sentinel-1 SAR time series can be used to approximate snowmelt onset over diverse terrain and land cover types, and we present a low-cost workflow for SAR processing over large, mountainous regions. Our approach provides spatially distributed observations of the snowpack necessary for model calibration and can be used to monitor snowmelt in ungauged basins.
Vasana Dharmadasa, Christophe Kinnard, and Michel Baraër
The Cryosphere, 17, 1225–1246, https://doi.org/10.5194/tc-17-1225-2023, https://doi.org/10.5194/tc-17-1225-2023, 2023
Short summary
Short summary
This study highlights the successful usage of UAV lidar to monitor small-scale snow depth distribution. Our results show that underlying topography and wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. This emphasizes the importance of including and better representing these processes in physically based models for accurate snowpack estimates.
Ruben Urraca and Nadine Gobron
The Cryosphere, 17, 1023–1052, https://doi.org/10.5194/tc-17-1023-2023, https://doi.org/10.5194/tc-17-1023-2023, 2023
Short summary
Short summary
We evaluate the fitness of some of the longest satellite (NOAA CDR, 1966–2020) and reanalysis (ERA5, 1950–2020; ERA5-Land, 1950–2020) products currently available to monitor the Northern Hemisphere snow cover trends using 527 stations as the reference. We found different artificial trends and stepwise discontinuities in all the products that hinder the accurate monitoring of snow trends, at least without bias correction. The study also provides updates on the snow cover trends during 1950–2020.
Annett Bartsch, Helena Bergstedt, Georg Pointner, Xaver Muri, Kimmo Rautiainen, Leena Leppänen, Kyle Joly, Aleksandr Sokolov, Pavel Orekhov, Dorothee Ehrich, and Eeva Mariatta Soininen
The Cryosphere, 17, 889–915, https://doi.org/10.5194/tc-17-889-2023, https://doi.org/10.5194/tc-17-889-2023, 2023
Short summary
Short summary
Rain-on-snow (ROS) events occur across many regions of the terrestrial Arctic in mid-winter. In extreme cases ice layers form which affect wildlife, vegetation and soils beyond the duration of the event. The fusion of multiple types of microwave satellite observations is suggested for the creation of a climate data record. Retrieval is most robust in the tundra biome, where records can be used to identify extremes and the results can be applied to impact studies at regional scale.
Pinja Venäläinen, Kari Luojus, Colleen Mortimer, Juha Lemmetyinen, Jouni Pulliainen, Matias Takala, Mikko Moisander, and Lina Zschenderlein
The Cryosphere, 17, 719–736, https://doi.org/10.5194/tc-17-719-2023, https://doi.org/10.5194/tc-17-719-2023, 2023
Short summary
Short summary
Snow water equivalent (SWE) is a valuable characteristic of snow cover. In this research, we improve the radiometer-based GlobSnow SWE retrieval methodology by implementing spatially and temporally varying snow densities into the retrieval procedure. In addition to improving the accuracy of SWE retrieval, varying snow densities were found to improve the magnitude and seasonal evolution of the Northern Hemisphere snow mass estimate compared to the baseline product.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023, https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary
Short summary
Understanding global snow cover is critical for comprehending climate change and its impacts on the lives of billions of people. Satellites are the best way to monitor global snow cover, yet snow varies at a finer spatial resolution than most satellite images. We assessed subpixel snow mapping methods across a spectrum of conditions using airborne lidar. Spectral-unmixing methods outperformed older operational methods and are ready to to advance snow cover mapping at the global scale.
Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold
The Cryosphere, 17, 175–193, https://doi.org/10.5194/tc-17-175-2023, https://doi.org/10.5194/tc-17-175-2023, 2023
Short summary
Short summary
Alaskan glaciers' loss of ice mass contributes significantly to ocean surface rise. It is important to know how deeply and how much snow accumulates on these glaciers to comprehend and analyze the glacial mass loss process. We reported the observed seasonal snow depth distribution from our radar data taken in Alaska in 2018 and 2021, developed a method to estimate the annual snow accumulation rate at Mt. Wrangell caldera, and identified transition zones from wet-snow zones to ablation zones.
Ghislain Picard, Henning Löwe, and Christian Mätzler
The Cryosphere, 16, 3861–3866, https://doi.org/10.5194/tc-16-3861-2022, https://doi.org/10.5194/tc-16-3861-2022, 2022
Short summary
Short summary
Microwave satellite observations used to monitor the cryosphere require radiative transfer models for their interpretation. These models represent how microwaves are scattered by snow and ice. However no existing theory is suitable for all types of snow and ice found on Earth. We adapted a recently published generic scattering theory to snow and show how it may improve the representation of snows with intermediate densities (~500 kg/m3) and/or with coarse grains at high microwave frequencies.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 16, 3517–3530, https://doi.org/10.5194/tc-16-3517-2022, https://doi.org/10.5194/tc-16-3517-2022, 2022
Short summary
Short summary
Knowing where avalanches occur is very important information for several disciplines, for example avalanche warning, hazard zonation and risk management. Satellite imagery can provide such data systematically over large regions. In our work we propose a machine learning model to automate the time-consuming manual mapping. Additionally, we investigate expert agreement for manual avalanche mapping, showing that our network is equally as good as the experts in identifying avalanches.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Jayson Eppler, Bernhard Rabus, and Peter Morse
The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022, https://doi.org/10.5194/tc-16-1497-2022, 2022
Short summary
Short summary
We introduce a new method for mapping changes in the snow water equivalent (SWE) of dry snow based on differences between time-repeated synthetic aperture radar (SAR) images. It correlates phase differences with variations in the topographic slope which allows the method to work without any "reference" targets within the imaged area and without having to numerically unwrap the spatial phase maps. This overcomes the key challenges faced in using SAR interferometry for SWE change mapping.
Sebastian Buchelt, Kirstine Skov, Kerstin Krøier Rasmussen, and Tobias Ullmann
The Cryosphere, 16, 625–646, https://doi.org/10.5194/tc-16-625-2022, https://doi.org/10.5194/tc-16-625-2022, 2022
Short summary
Short summary
In this paper, we present a threshold and a derivative approach using Sentinel-1 synthetic aperture radar time series to capture the small-scale heterogeneity of snow cover (SC) and snowmelt. Thereby, we can identify start of runoff and end of SC as well as perennial snow and SC extent during melt with high spatiotemporal resolution. Hence, our approach could support monitoring of distribution patterns and hydrological cascading effects of SC from the catchment scale to pan-Arctic observations.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022, https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary
Short summary
The amount of water within a snowpack is important information for predicting snowmelt and wet-snow avalanches. From within a controlled laboratory, the optimal method for measuring liquid water content (LWC) at the snow surface or along a snow pit profile using near-infrared imagery was determined. As snow samples melted, multiple models to represent wet-snow reflectance were assessed against a more established LWC instrument. The best model represents snow as separate spheres of ice and water.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, and Stefan Wunderle
The Cryosphere, 15, 4261–4279, https://doi.org/10.5194/tc-15-4261-2021, https://doi.org/10.5194/tc-15-4261-2021, 2021
Short summary
Short summary
We performed a comprehensive accuracy assessment of an Advanced Very High Resolution Radiometer global area coverage snow-cover extent time series dataset for the Hindu Kush Himalayan (HKH) region. The sensor-to-sensor consistency, the accuracy related to snow depth, elevations, land-cover types, slope, and aspects, and topographical variability were also explored. Our analysis shows an overall accuracy of 94 % in comparison with in situ station data, which is the same with MOD10A1 V006.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Pinja Venäläinen, Kari Luojus, Juha Lemmetyinen, Jouni Pulliainen, Mikko Moisander, and Matias Takala
The Cryosphere, 15, 2969–2981, https://doi.org/10.5194/tc-15-2969-2021, https://doi.org/10.5194/tc-15-2969-2021, 2021
Short summary
Short summary
Information about snow water equivalent (SWE) is needed in many applications, including climate model evaluation and forecasting fresh water availability. Space-borne radiometer observations combined with ground snow depth measurements can be used to make global estimates of SWE. In this study, we investigate the possibility of using sparse snow density measurement in satellite-based SWE retrieval and show that using the snow density information in post-processing improves SWE estimations.
Linlu Mei, Vladimir Rozanov, Christine Pohl, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2757–2780, https://doi.org/10.5194/tc-15-2757-2021, https://doi.org/10.5194/tc-15-2757-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 1 of two companion papers and shows the method description and sensitivity study. The paper investigates the major factors, including the assumptions of snow optical properties, snow particle distribution and atmospheric conditions (cloud and aerosol), impacting snow property retrievals from satellite observation.
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021, https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 2 of two companion papers and shows the results and validation. The paper performs the new retrieval algorithm on the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument and compares the retrieved snow properties with ground-based measurements, aircraft measurements and other satellite products.
Jennifer M. Jacobs, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, Elizabeth A. Burakowski, Christina Herrick, and Eunsang Cho
The Cryosphere, 15, 1485–1500, https://doi.org/10.5194/tc-15-1485-2021, https://doi.org/10.5194/tc-15-1485-2021, 2021
Short summary
Short summary
This pilot study describes a proof of concept for using lidar on an unpiloted aerial vehicle to map shallow snowpack (< 20 cm) depth in open terrain and forests. The 1 m2 resolution snow depth map, generated by subtracting snow-off from snow-on lidar-derived digital terrain models, consistently had 0.5 to 1 cm precision in the field, with a considerable reduction in accuracy in the forest. Performance depends on the point cloud density and the ground surface variability and vegetation.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Cited articles
Bewley, D., Alila, Y., and Varhola, A.: Variability of snow water equivalent
and snow energetics across a large catchment subject to Mountain Pine Beetle
infestation and rapid salvage logging, J. Hydrol., 388,
464–479, https://doi.org/10.1016/j.jhydrol.2010.05.031, 2010.
Broxton, P. D., Harpold, A. A., Biederman, J. A., Troch, P. A., Molotch, N.
P., and Brooks, P. D.: Quantifying the effects of vegetation structure on
snow accumulation and ablation in mixed-conifer forests, Ecohydrology, 8,
1073–1094, https://doi.org/10.1002/eco.1565, 2015.
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016.
Cimoli, E., Marcer, M., Vandecrux, B., Bøggild, C. E., Williams, G., and
Simonsen, S. B.: Application of Low-Cost UASs and Digital Photogrammetry for
High-Resolution Snow Depth Mapping in the Arctic, Remote Sens.-Basel, 9,
1144, https://doi.org/10.3390/rs9111144, 2017.
Clawges, R., Vierling, K., Vierling, L., and Rowell, E.: The use of airborne
lidar to assess avian species diversity, density, and occurrence in a
pine/aspen forest, Remote Sens. Environ., 112, 2064–2073,
https://doi.org/10.1016/j.rse.2007.08.023, 2008.
Currier, W. R. and Lundquist, J. D.: Snow Depth Variability at the Forest
Edge in Multiple Climates in the Western United States, Water Resour. Res.,
54, 8756–8773, https://doi.org/10.1029/2018WR022553, 2018.
Currier, W. R., Pflug, J., Mazzotti, G., Jonas, T., Deems, J. S., Bormann,
K. J., Painter, T. H., Hiemstra, C. A., Gelvin, A., Uhlmann, Z., Spaete, L.,
Glenn, N. F., and Lundquist, J. D.: Comparing Aerial Lidar Observations With
Terrestrial Lidar and Snow-Probe Transects From NASA's 2017 SnowEx Campaign,
Water Resour. Res., 55, 6285–6294, https://doi.org/10.1029/2018WR024533, 2019.
Deems, J. S., Fassnacht, S. R., and Elder, K. J.: Fractal Distribution of
Snow Depth from Lidar Data, J. Hydrometeorol., 7, 285–297,
https://doi.org/10.1175/JHM487.1, 2006.
Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow
depth: a review, J. Glaciol., 59, 467–479, https://doi.org/10.3189/2013JoG12J154,
2013.
Dickerson-Lange, S. E., Lutz, J. A., Gersonde, R., Martin, K. A., Forsyth,
J. E., and Lundquist, J. D.: Observations of distributed snow depth and snow
duration within diverse forest structures in a maritime mountain watershed,
Water Resour. Res., 51, 9353–9366, https://doi.org/10.1002/2015WR017873, 2015.
Dickerson-Lange, S. E., Gersonde, R. F., Hubbart, J. A., Link, T. E., Nolin,
A. W., Perry, G. H., Roth, T. R., Wayand, N. E., and Lundquist, J. D.: Snow
disappearance timing is dominated by forest effects on snow accumulation in
warm winter climates of the Pacific Northwest, United States,
Hydrol. Process., 31, 1846–1862, https://doi.org/10.1002/hyp.11144, 2017.
ESRI: ArcGIS Desktop: Release 10.4.1, Environmental Systems Research Institute, Redlands, California, USA, 2015.
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z., and
Schepaschenko, D. G.: Boreal forest health and global change, Science,
349, 819–822, https://doi.org/10.1126/science.aaa9092, 2015.
Gleason, K. E., Nolin, A. W., and Roth, T. R.: Charred forests increase
snowmelt: Effects of burned woody debris and incoming solar radiation on
snow ablation, Geophys. Res. Lett., 40, 4654–4661,
https://doi.org/10.1002/grl.50896, 2013.
Glenn, N., Spaete, L., Uhlmann, Z., Merriman, C., Raymondi, A., and Tennant,
C.: SnowEx17 Boise State University Terrestrial Laser Scanner (TLS) Point
Cloud, Version 1 [data set], National Snow & Ice Data Center (NSIDC), https://doi.org/10.5067/IWGD4WFMCQNW, 2019.
Grünewald, T., Schirmer, M., Mott, R., and Lehning, M.: Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment, The Cryosphere, 4, 215–225, https://doi.org/10.5194/tc-4-215-2010, 2010.
Güntner, A., Stuck, J., Werth, S., Döll, P., Verzano, K., and Merz,
B.: A global analysis of temporal and spatial variations in continental
water storage, Water Resour. Res., 43, https://doi.org/10.1029/2006WR005247, 2007.
Hanley, T. A. and Rose, C. L.: Influence of overstory on snow depth and density in hemlock-spruce stands: implications for management of deer habitat in Southeastern Alaska., U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, https://doi.org/10.2737/PNW-RN-459, 1987.
Harder, P., Schirmer, M., Pomeroy, J., and Helgason, W.: Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle, The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016, 2016.
Harder, P., Pomeroy, J. W., and Helgason, W. D.: Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques, The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, 2020.
Hardy, J. P. and Albert, M. R.: Snow-induced thermal variations around a
single conifer tree, Hydrol. Process., 9, 923–933,
https://doi.org/10.1002/hyp.3360090808, 1995.
Hartzell, P. J., Gadomski, P. J., Glennie, C. L., Finnegan, D. C., and Deems,
J. S.: Rigorous error propagation for terrestrial laser scanning with
application to snow volume uncertainty, J. Glaciol., 61, 1147–1158,
https://doi.org/10.3189/2015JoG15J031, 2015.
Hedrick, A. R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky,
M., Marshall, H., Kormos, P. R., Bormann, K. J., and Painter, T. H.: Direct
Insertion of NASA Airborne Snow Observatory-Derived Snow Depth Time Series
Into the iSnobal Energy Balance Snow Model, Water Resour. Res., 54,
8045–8063, https://doi.org/10.1029/2018WR023190, 2018.
Hiemstra, C. and Gelvin, A. B.: SnowEx17 CRREL Terrestrial Laser
Scanner (TLS) Point Cloud, Version 1, NASA National Snow and Ice Data Center, Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/YOIPYEWCZOD5, 2019.
Homan, J. W., Luce, C. H., McNamara, J. P., and Glenn, N. F.: Improvement of
distributed snowmelt energy balance modeling with MODIS-based NDSI-derived
fractional snow-covered area data, Hydrol. Process., 25, 650–660,
https://doi.org/10.1002/hyp.7857, 2011.
Hopkinson, C., Sitar, M., Chasmer, L., and Treitz, P.: Mapping Snowpack Depth
beneath Forest Canopies Using Airborne Lidar, Photogramm. Eng. Rem. S.,
70, 323–330, https://doi.org/10.14358/PERS.70.3.323, 2004.
Jacobs, J. M., Hunsaker, A. G., Sullivan, F. B., Palace, M., Burakowski, E. A., Herrick, C., and Cho, E.: Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States, The Cryosphere, 15, 1485–1500, https://doi.org/10.5194/tc-15-1485-2021, 2021.
Jenicek, M., Pevna, H., and Matejka, O.: Canopy structure and topography
effects on snow distribution at a catchment scale: Application of
multivariate approaches, J. Hydrol. Hydromech., 66, 43–54, https://doi.org/10.1515/johh-2017-0027, 2018.
Kim, E., Gatebe, C., Hall, D., Newlin, J., Misakonis, A., Elder, K., Marshall, H. P., Hiemstra, C., Brucker, L., De Marco, E., Crawford, C., Kang, D. H., and Entin, J.: NASA's snowex campaign: Observing seasonal snow in a forested environment, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 23–28 July 2017, 1388–1390, https://doi.org/10.1109/IGARSS.2017.8127222, 2017.
Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex
topography with terrestrial laser scanner: Application to the Rangitikei
canyon (N-Z), ISPRS J. Photogramm., 82, 10–26, https://doi.org/10.1016/j.isprsjprs.2013.04.009, 2013.
Lee, S., Park, J., Choi, E., and Kim, D.: Factors Influencing the Accuracy
of Shallow Snow Depth Measured Using UAV-Based Photogrammetry, Remote Sens.-Basel, 13, 828, https://doi.org/10.3390/rs13040828, 2021.
Luce, C. H., Tarboton, D. G., and Cooley, K. R.: Sub-grid parameterization of
snow distribution for an energy and mass balance snow cover model,
Hydrol. Process., 13, 1921–1933,
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1921::AID-HYP867>3.0.CO;2-S, 1999.
Mazzotti, G., Currier, W. R., Deems, J. S., Pflug, J. M., Lundquist, J. D.,
and Jonas, T.: Revisiting Snow Cover Variability and Canopy Structure Within
Forest Stands: Insights From Airborne Lidar Data, Water Resour. Res., 55,
6198–6216, https://doi.org/10.1029/2019WR024898, 2019.
Moeser, D., Stähli, M., and Jonas, T.: Improved snow interception
modeling using canopy parameters derived from airborne LiDAR data, Water
Resour. Res., 51, 5041–5059, https://doi.org/10.1002/2014WR016724, 2015a.
Moeser, D., Morsdorf, F., and Jonas, T.: Novel forest structure metrics from
airborne LiDAR data for improved snow interception estimation,
Agr. Forest Meteorol., 208, 40–49, https://doi.org/10.1016/j.agrformet.2015.04.013,
2015b.
Nolin, A. W. and Daly, C.: Mapping “At Risk” Snow in the Pacific
Northwest, J. Hydrometeorol., 7, 1164–1171, https://doi.org/10.1175/JHM543.1, 2006.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J.
S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann,
C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M., Seidel, F. C.,
and Winstral, A.: The Airborne Snow Observatory: Fusion of scanning lidar,
imaging spectrometer, and physically-based modeling for mapping snow water
equivalent and snow albedo, Remote Sens. Environ., 184, 139–152,
https://doi.org/10.1016/j.rse.2016.06.018, 2016.
Pomeroy, J. W., Marks, D., Link, T., Ellis, C., Hardy, J., Rowlands, A., and
Granger, R.: The impact of coniferous forest temperature on incoming
longwave radiation to melting snow, Hydrol. Process., 23, 2513–2525,
https://doi.org/10.1002/hyp.7325, 2009.
Qiu, H., Huggins, D. R., Wu, J. Q., Barber, M. E., McCool, D. K., and Dun,
S.: Residue Management Impacts on Field-Scale Snow Distribution and Soil
Water Storage, T. ASABE, 54, 1639–1647, https://doi.org/10.13031/2013.39852, 2011.
R Core Team: The R Project for Statistical Computing, available at:
https://www.r-project.org/, last access: 16 September 2020.
Revuelto, J., López-Moreno, J. I., Azorin-Molina, C., and
Vicente-Serrano, S. M.: Canopy influence on snow depth distribution in a
pine stand determined from terrestrial laser data: Canopy influence on snow
depth distribution, Water Resour. Res., 51, 3476–3489,
https://doi.org/10.1002/2014WR016496, 2015.
Revuelto, J., López-Moreno, J.-I., Azorin-Molina, C.,
Alonso-González, E., and Sanmiguel-Vallelado, A.: Small-Scale Effect of
Pine Stand Pruning on Snowpack Distribution in the Pyrenees Observed with a
Terrestrial Laser Scanner, Forests, 7, 166, https://doi.org/10.3390/f7080166, 2016a.
Revuelto, J., Vionnet, V., López-Moreno, J.-I., Lafaysse, M., and Morin,
S.: Combining snowpack modeling and terrestrial laser scanner observations
improves the simulation of small scale snow dynamics, J. Hydrol.,
533, 291–307, https://doi.org/10.1016/j.jhydrol.2015.12.015, 2016b.
Roussel, J.-R., Auty, D., De Boissieu, F., Sánchez Meador, A., Jean-François, B., Demetrios, G.: lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications, available at: https://CRAN.R-project.org/package=lidR, last access: 16 September 2020.
Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I.,
Barr, A., Bartlett, P., Boone, A., Deng, H., Douville, H., Dutra, E., Elder,
K., Ellis, C., Feng, X., Gelfan, A., Goodbody, A., Gusev, Y., Gustafsson,
D., Hellström, R., Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V.,
Kuragina, A., Lettenmaier, D., Li, W.-P., Luce, C., Martin, E., Nasonova,
O., Pumpanen, J., Pyles, R. D., Samuelsson, P., Sandells, M., Schädler,
G., Shmakin, A., Smirnova, T. G., Stähli, M., Stöckli, R., Strasser,
U., Su, H., Suzuki, K., Takata, K., Tanaka, K., Thompson, E., Vesala, T.,
Viterbo, P., Wiltshire, A., Xia, K., Xue, Y., and Yamazaki, T.: Evaluation of
forest snow processes models (SnowMIP2), J. Geophys. Res.-Atmos., 114, D06111, https://doi.org/10.1029/2008JD011063, 2009.
Schirmer, M., Wirz, V., Clifton, A., and Lehning, M.: Persistence in
intra-annual snow depth distribution: 1. Measurements and topographic
control, Water Resour. Res., 47, https://doi.org/10.1029/2010WR009426, 2011.
Seyednasrollah, B. and Kumar, M.: Net radiation in a snow-covered
discontinuous forest gap for a range of gap sizes and topographic
configurations, J. Geophys. Res.-Atmos., 119, 10323–10342,
https://doi.org/10.1002/2014JD021809, 2014.
Silva, C. A., Crookston, N. L., Hudak, A. T., Vierling, L. A., Klauberg, C., Cardil, A., and Hamamura, C.: rLiDAR: LiDAR Data Processing and Visualization, available at: https://github.com/carlos-alberto-silva/rLiDAR, last access: 1 September 2020.
Simonson, W. D., Allen, H. D., and Coomes, D. A.: Applications of airborne
lidar for the assessment of animal species diversity,
Methods Ecol. Evol., 5, 719–729, https://doi.org/10.1111/2041-210X.12219, 2014.
Sun, N., Wigmosta, M., Zhou, T., Lundquist, J., Dickerson-Lange, S., and
Cristea, N.: Evaluating the functionality and streamflow impacts of
explicitly modelling forest-snow interactions and canopy gaps in a
distributed hydrologic model, Hydrol. Process., 32, 2128–2140,
https://doi.org/10.1002/hyp.13150, 2018.
Tennant, C. J., Harpold, A. A., Lohse, K. A., Godsey, S. E., Crosby, B. T.,
Larsen, L. G., Brooks, P. D., Van Kirk, R. W., and Glenn, N. F.: Regional
sensitivities of seasonal snowpack to elevation, aspect, and vegetation
cover in western North America, Water Resour. Res., 53, 6908–6926,
https://doi.org/10.1002/2016WR019374, 2017.
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic,
meteorologic, and canopy controls on the scaling characteristics of the
spatial distribution of snow depth fields, Water Resour. Res., 43,
https://doi.org/10.1029/2006WR005317, 2007.
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Scaling properties and
spatial organization of snow depth fields in sub-alpine forest and alpine
tundra, Hydrol. Process., 23, 1575–1590, https://doi.org/10.1002/hyp.7270, 2009.
Winstral, A., Marks, D., and Gurney, R.: Simulating wind-affected snow
accumulations at catchment to basin scales, Adv. Water Resour., 55,
64–79, https://doi.org/10.1016/j.advwatres.2012.08.011, 2013.
Yang, T., Li, Q., Chen, X., Hamdi, R., De Maeyer, P., Kurban, A., and Li, L.:
Improving snow simulation with more realistic vegetation parameters in a
regional climate model in the Tianshan Mountains, Central Asia, J. Hydrol., 590, 125525, https://doi.org/10.1016/j.jhydrol.2020.125525, 2020.
Zheng, Z., Kirchner, P. B., and Bales, R. C.: Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data, The Cryosphere, 10, 257–269, https://doi.org/10.5194/tc-10-257-2016, 2016.
Short summary
We describe the relationships between snow depth, vegetation canopy, and local-scale processes during the snow accumulation period using terrestrial laser scanning (TLS). In addition to topography and wind, our findings suggest the importance of fine-scale tree structure, species type, and distributions on snow depth. Snow depth increases from the canopy edge toward the open areas, but wind and topographic controls may affect this trend. TLS data are complementary to wide-area lidar surveys.
We describe the relationships between snow depth, vegetation canopy, and local-scale processes...