Articles | Volume 15, issue 5
https://doi.org/10.5194/tc-15-2187-2021
https://doi.org/10.5194/tc-15-2187-2021
Research article
 | 
06 May 2021
Research article |  | 06 May 2021

Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning

Ahmad Hojatimalekshah, Zachary Uhlmann, Nancy F. Glenn, Christopher A. Hiemstra, Christopher J. Tennant, Jake D. Graham, Lucas Spaete, Arthur Gelvin, Hans-Peter Marshall, James P. McNamara, and Josh Enterkine

Related authors

Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024,https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary

Cited articles

Bewley, D., Alila, Y., and Varhola, A.: Variability of snow water equivalent and snow energetics across a large catchment subject to Mountain Pine Beetle infestation and rapid salvage logging, J. Hydrol., 388, 464–479, https://doi.org/10.1016/j.jhydrol.2010.05.031, 2010. 
Broxton, P. D., Harpold, A. A., Biederman, J. A., Troch, P. A., Molotch, N. P., and Brooks, P. D.: Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests, Ecohydrology, 8, 1073–1094, https://doi.org/10.1002/eco.1565, 2015. 
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016. 
Cimoli, E., Marcer, M., Vandecrux, B., Bøggild, C. E., Williams, G., and Simonsen, S. B.: Application of Low-Cost UASs and Digital Photogrammetry for High-Resolution Snow Depth Mapping in the Arctic, Remote Sens.-Basel, 9, 1144, https://doi.org/10.3390/rs9111144, 2017. 
Clawges, R., Vierling, K., Vierling, L., and Rowell, E.: The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest, Remote Sens. Environ., 112, 2064–2073, https://doi.org/10.1016/j.rse.2007.08.023, 2008. 
Download
Short summary
We describe the relationships between snow depth, vegetation canopy, and local-scale processes during the snow accumulation period using terrestrial laser scanning (TLS). In addition to topography and wind, our findings suggest the importance of fine-scale tree structure, species type, and distributions on snow depth. Snow depth increases from the canopy edge toward the open areas, but wind and topographic controls may affect this trend. TLS data are complementary to wide-area lidar surveys.
Share