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Abstract. Understanding the impact of tree structure on
snow depth and extent is important in order to make predic-
tions of snow amounts and how changes in forest cover may
affect future water resources. In this work, we investigate
snow depth under tree canopies and in open areas to quantify
the role of tree structure in controlling snow depth, as well
as the controls from wind and topography. We use fine-scale
terrestrial laser scanning (TLS) data collected across Grand
Mesa, Colorado, USA (winter 2016–2017), to measure the
snow depth and extract horizontal and vertical tree descrip-
tors (metrics) at six sites. We utilize these descriptors along
with topographical metrics in multiple linear and decision
tree regressions to investigate snow depth variations under
the canopy and in open areas. Canopy, topography, and snow
interaction results indicate that vegetation structural metrics
(specifically foliage height diversity; FHD) along with local-
scale processes like wind and topography are highly influen-
tial in snow depth variation. Our study specifies that wind-
ward slopes show greater impact on snow accumulation than
vegetation metrics. In addition, the results indicate that FHD
can explain up to 27 % of sub-canopy snow depth variation
at sites where the effect of topography and wind is negligi-
ble. Solar radiation and elevation are the dominant controls
on snow depth in open areas. Fine-scale analysis from TLS
provides information on local-scale controls and provides an
opportunity to be readily coupled with lidar or photogramme-
try from uncrewed aerial systems (UASs) as well as airborne

and spaceborne platforms to investigate larger-scale controls
on snow depth.

1 Introduction

Forests are distributed across approximately half of the snow-
covered landmasses on Earth during peak snow extent (Kim
et al., 2017), with snow in non-polar, cold climate zones ac-
counting for 17 % of the total terrestrial water storage (Rut-
ter et al., 2009; Güntner et al., 2007). Estimating the amount
of water stored in this snowpack, the snow water equiva-
lent (SWE), and its spatial distribution under various phys-
iographic conditions is crucial to providing water managers
with parameters to accurately predict runoff timing, duration,
and amount, especially in a changing climate. Snowbound
forested regions are rapidly changing in forest cover compo-
sition (e.g., fire, insect outbreaks, thinning) (Nolin and Daly,
2006; Bewley et al., 2010; Gauthier et al., 2015). Under-
standing how forest characteristics affect snow distribution,
as well as how we might model the relationships between
forests and snow distribution, will benefit water management
objectives.

Generally, complex tree structure reduces snow deposition
by increasing snow–canopy interception. However, canopy
sheltering at windy sites can reverse the influence of intercep-
tion on snow accumulation (Dickerson-Lange et al., 2017).
Shading degrades incoming shortwave radiation, while shel-
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tering reduces the wind speed and turbulent heat transfer
within canopies, resulting in longer snowmelt duration rel-
ative to open areas. The extinction of shortwave radiation by
shading, however, can enhance sub-canopy longwave irradi-
ance from tree trunks (Pomeroy et al., 2009). Reducing wind
speeds within the canopy due to sheltering can also reduce
the spatial heterogeneity of snow depth and extent (Qiu et
al., 2011). Therefore, at windy sites, studies have shown sim-
ilar snow deposition in open areas to that under the canopy
(Dickerson-Lange et al., 2017), changing sub-canopy deposi-
tion and accumulation. These and other studies demonstrate
the complexity between snow processes and vegetation in the
presence of other predominant controls for modeling snow
distribution and properties.

Forest canopy cover can be incorporated into watershed
and regional-scale models as subgrid parameterization via
snow depletion curves by relating canopy cover distributions
to fractional melt patterns (Dickerson-Lange et al., 2015;
Homan et al., 2011; Luce et al., 1999). Pixel-level binary or
weighted snow depth correction factors in gridded models
(Hedrick et al., 2018; Winstral et al., 2013) can be adjusted
for canopy cover, as well as a hybridized approach that ad-
justs radiative inputs differently in open areas and forest gaps
based on their size and relationship to the surrounding forest
(Seyednasrollah and Kumar, 2014). In research pertaining to
forest-snow processes, forest plots may be classified quali-
tatively (e.g., Dickerson-Lange et al., 2015; Pomeroy et al.,
2009) or more recently, at larger scales, quantitatively with
airborne lidar (e.g., Mazzotti et al., 2019). The use of lidar
in spatially distributed modeling efforts is rapidly advancing
(e.g., Hedrick et al., 2018; Painter et al., 2016), and under-
standing how best to describe forest characteristics (cover,
structure, gaps, etc.) relevant to snow distribution is evolving
(Jenicek et al., 2018; Mazzotti et al., 2019; Yang et al., 2020).

Airborne lidar has been used to describe snow depths in
forests starting almost two decades ago (e.g., Hopkinson et
al., 2004) and, more recently, to describe the relationships
among forest characteristics and snow distributions (e.g.,
Moeser et al., 2015a, b; Mazzotti et al., 2019; Zheng et al.,
2016; Tennant et al., 2017). Realizing airborne lidar’s abil-
ity to provide high-resolution snow depth and canopy mea-
surements across large extents, studies have identified vege-
tation characteristics as drivers of snow depth variation. For
example, canopy structure along with the forest canopy edge
were driving factors that governed the snow depth distribu-
tion in a study of alpine climates (Mazzotti et al., 2019). Sim-
ilarly, mean distance to canopy and canopy closure have been
identified as strong metrics for predicting snow interception
(Moeser et al., 2015a). In the wind-dominant case, Trujillo
et al. (2007) observed that snow depth variability occurs at
larger scales than those related to vegetation. They found
that when canopy interception is dominant and wind effect
is minimal, the variation in snow depth is controlled by veg-
etation characteristics. Broxton et al. (2015) found canopy–
snow interception and shading properties in transition zones

result in different snow depths in comparison to the open
and under-the-canopy regions. Further work in snow depth
variability near forest edges acknowledges that snow depth
variations are due to the effects of temperature, wind speed
and direction, solar radiation, and forest distribution (Cur-
rier and Lundquist, 2018). Recently, uncrewed aerial sys-
tems (UASs) have been utilized to measure snow depth us-
ing photogrammetric techniques (e.g., structure from motion;
SfM) in open and sparsely forested areas (Bühler et al., 2016;
Cimoli et al., 2017; Harder et al., 2016; Lee et al., 2021; Ja-
cobs et al., 2021). In addition, a lidar mounted on a UAS can
be collected at different scans angles, making it a reliable
source for sub-canopy measurements and across catchment
scales (∼ 5 km2) (Harder et al., 2020). UAS-based observa-
tions can fill measurement gaps in airborne and spaceborne
lidar measurements and provide the opportunity to assess for-
est and snow relationships at a spatial (and temporal) resolu-
tion higher than airborne lidar and from a different viewing
angle than terrestrial laser scanning (TLS).

Terrestrial laser scanning provides plot-level observations
between forest cover and snow distribution that can be used
to validate UAS, airborne (e.g., Currier et al., 2019), and
spaceborne lidar and confidently upscale local-scale pro-
cesses (Revuelto et al., 2016a, b). Complementary to nadir
observations, TLS provides data collection with viewing an-
gles from the ground and thus can capture fine-scale vege-
tation structure (and corresponding snow depth variations).
Many studies have used TLS data to validate snow depths
and melt (e.g., Deems et al., 2013; Hartzell et al., 2015;
Grünewald et al., 2010), and along with physical modeling,
to understand the role of wind in snow accumulation (e.g.,
Schirmer et al., 2011). While fewer studies have used TLS to
explore forest canopy–snow relationships, TLS provides ex-
citing opportunities to investigate fine-scale processes con-
trolling snow distribution (Revuelto et al., 2015, 2016a, b;
Gleason et al., 2013). Revuelto et al. (2015, 2016a) found
smaller snow depth differences between the canopy and open
areas in regions of thicker snowpack using TLS. They also
demonstrated that shallower snow (snow depth < 0.5 m) oc-
curred closer to the trunks, while deeper snow (snow depth
> 0.5 m) was found at the edge of the canopy where the dom-
inant species was Pinus sylvestris. Gleason et al. (2013) used
TLS to map tree stem density in burned forests and related
this to greater snow accumulation in comparison to unburned
areas. Taken together, previous studies point to the impor-
tance of choosing proper scales to study the controlling pro-
cesses on snow depth variability, and furthermore, the op-
portunities to explore relationships between snow depth and
canopy structure at fine scales (individual trees).

The objective of this study is to further contribute to the
understanding of fine-scale forest canopy–snow interactions
by exploring how forest canopy structure affects snow depth
distribution during the snow accumulation period with TLS.
This study is part of the NASA-led SnowEx 2017 campaign
aimed at evaluating remote sensing snow properties with a
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primary focus on testing the impact of forests on remote
sensing approaches for monitoring SWE. We use TLS data
collected during the accumulation period (single measure-
ments) in midwinter during SnowEx 2017 (winter 2016–
2017) across a number of small TLS study sites in Grand
Mesa, CO. In this study, we explore the following questions:

1. What measures of vegetation best describe a relation-
ship with snow depth under the canopy (sub-canopy)?

2. Are there conditions in which vegetation characteristics
are a more important control on snow depth than topog-
raphy, or vice versa?

3. Does snow depth vary as a function of distance from
the canopy edge? How does tree height influence snow
depth as a function of distance and direction?

2 Study area

The TLS data were collected at six sites (A, F, K, M, N,
and O) across Grand Mesa, Colorado, USA. Grand Mesa is
an approximate 470 km2 plateau with elevation of 2922 to
3440 m, rising along a west-to-east gradient (Fig. 1). Vegeta-
tion in the west, where wind speeds are highest, is predomi-
nantly shrubby cinquefoil (Dasiphora fruticosa) steppe with
isolated Engelmann spruce (Picea engelmannii) tree islands.
The central portion of the mesa becomes semi-continuous
forest cover consisting primarily of Engelmann spruce with
minor subalpine fir (Abies lasiocarpa) and aspen (Populus
tremuloides) trees, all interspersed with subalpine meadows.
Farther to the east, where wind speeds are lowest and eleva-
tion drops, there is dense continuous Engelmann spruce and
subalpine fir forest with some lodgepole pine (Pinus contorta
var. latifolia) and aspen stands at the lowest elevations.

Wind speed data during our TLS data collection period
were available from three stations including a site at the west-
ern extent of forest cover on the plateau (Mesa West, near
site A), a site termed the local-scale observation site (LSOS),
and a site situated in more dense forest in the middle of Grand
Mesa (Mesa Middle, near site M) (Paul Houser, personal
communication, 2017) (Fig. 2). The data were collected from
17 November 2016 to 28 February 2017 and indicate a dom-
inant NE wind direction at site A, though up to 15 m/s wind
speeds from the SW were observed at this site. The predomi-
nant wind direction was from the NW at LSOS, and from the
NW and SE at site M, during the sampling period. In analy-
ses outlined below, we utilized a general E–W direction for
testing the importance of wind (whereas we used a N–S di-
rection for testing shading effects on snow; more below).

3 Methods

3.1 Data and processing

We collected TLS data in snow-off (fall 2016) and snow-
on (winter 2017) conditions at Grand Mesa at several sites
(Fig. 1, Table 1) (Glenn et al., 2019; Hiemstra and Gelvin,
2019). The winter 2017 data collection occurred over 16 d
but without significant snowfall between days. Each site
was scanned once during the duration. A Riegl VZ-1000
(1550 nm) and Leica Scan Station C10 (532 nm) were used.
Multiple scans (at least three) were obtained at each site to
reduce occlusion. The scans were coregistered to produce a
single point cloud for each site and date. Coregistered scans
were then georegistered using surveyed locations within the
plots. The georegistered scans (i.e., area of analysis) for each
site range from approximately 10 000 to 38 000 m2 (Table 1).

The TLS data were then utilized to derive snow depths,
vegetation metrics, and topographic indices. From these data,
we utilized multiple linear regression to investigate relation-
ships between the canopy and snow depths under the canopy
at each of our sites. Snow depth relationships with topog-
raphy in open areas with no trees (of a least 0.5 m height)
were investigated using decision tree regression. Methods of
identifying individual trees, under the canopy and in the open
areas, are described below.

The TLS point clouds were classified into ground or vege-
tation (fall 2016 dataset) and snow or vegetation (winter 2017
dataset) and then used to estimated snow depths at each of
the sites, using several subroutines in CloudCompare (v2.11
alpha; retrieved from http://www.cloudcompare.org/, last ac-
cess: 29 July 2020). The TLS data were also used for indi-
vidual tree segmentation and to extract vegetation parameters
using R 3.5.3 (R Core Team, 2019), lidR (v3.1.1; Roussel et
al., 2020), and rLiDAR (v0.1.1; Silva et al., 2020) packages.
These steps are outlined in Fig. 3.

While we did not independently assess the snow depth ac-
curacy of the TLS data, Currier et al. (2019) assessed the
relative accuracy of the same TLS data to airborne lidar at
two of our sites. They indicate that the median snow depth
difference between the datasets (TLS and airborne) at sites A
and K was less than 5 cm.

3.1.1 Ground, snow, and vegetation classification

The CAractérisation de NUages de POints (CANUPO)
method in CloudCompare was utilized to separate vegetation
from ground and snow returns. This method includes train-
ing and classification. In the training step, we used 10 000
snow and vegetation samples to construct the classifier. We
trained the algorithm at 15 different scales to assign features
related to each class and selected the nine best combinations
of scales (0.1, 0.2, 0.25, 0.5, 0.75, 1, 2, 3, 5 m) to properly
separate different classes. The combination of information
from these scales helped the algorithm detect the dimension
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Figure 1. Study area and location of TLS sites and meteorological stations.

of each feature and assign snow and vegetation labels to the
unclassified point clouds (Lague et al., 2013). CANUPO mis-
classified snow data points near tree stems as vegetation, and
thus we reclassified these points manually using TerraScan
software (Helsinki, Finland). Manual classification included
visually separating snow under the trees from tree trunks.

3.1.2 Snow depth estimation

The M3C2 algorithm (Lague et al., 2013) in CloudCom-
pare was used to estimate under-canopy and open-area snow
depths. In this algorithm, for every single point in the ground
point cloud, a cylinder was defined with a range of differ-

ent radii (projection scales) varying from 10 cm to 3 m and a
length (height) of 3 m (see Lague et al., 2013, for details on
these parameters) (Fig. B1). The orientation of the cylinder
was along the normal vector of planes fitted on the ground
points within a 10 cm radius. We projected all points within
the cylinder onto the cylinder axis and took the vertical dis-
tance between projected snow and ground points as the snow
depth estimation. Through iteration, we found a balance be-
tween including enough TLS points for subsequent analy-
sis and the accuracy of the snow depths (assessed with stan-
dard deviation) by using a 1 m projection scale. The result-
ing snow depth measurement has a relative accuracy of ap-
proximately 2.5 cm based on the maximum standard devi-
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Figure 2. Rose diagrams of meteorological stations A, LSOS, and M.

Figure 3. TLS data processing workflow.

ation from M3C2. Utilizing these measurements, we com-
pared snow depths under the canopy and in the open areas at
each site. We also defined a transition zone as a 10 m buffer
beyond each tree polygon in the direction of the open areas
to identify any relevant differences within this zone.

3.1.3 Individual tree segmentation

We developed a canopy height model at 0.5 m resolution and
identified tree tops to segment individual trees in the R pack-
age lidR. A local maximum was detected to identify tree tops
using window sizes ranging from 1–3 m and minimum tree
heights from 2–6 m, depending upon the site. For areas with
lower tree heights (0.5–2 m), we tiled the data that contained
these trees and segmented them in a similar approach. This
allowed us to more accurately segment distinctly shorter and
taller tree populations within sites by adjusting segmentation
parameters that worked better for those areas. Based on our
preliminary analyses, the Marker-controlled watershed seg-
mentation algorithm was most accurate (compared to li2012,
dalponte2016, and watershed, all available in the lidR pack-
age). In addition, in cases where tall and short trees were

close to each other, the algorithm could not detect shorter
trees with large crown radii. Conversely, the branches far
from the top of the tree may be considered as an individ-
ual tree if a small crown radii is used. This problem was re-
solved by tiling the las files, processing each separately, and
then combining the results. An example of the segmentation
results from site F is shown in Fig. B2. A similar process was
performed for all sites.

To define “under the canopy” and “in the open”, we first
performed segmentation to identify individual trees. Under
the canopy was defined by all snow depth points within the
tree polygons. To define the open area, we merged individ-
ual tree polygons that were less than 3 m from each other
(patches of trees) and used the remaining areas as open.
Site A was the only site dominated by shrubs (Fig. 1, Ta-
ble 1), and we considered the shrub area as open (we re-
moved shrubs in the processing and retained the ground
points below) at this site because the focus of our study was
on tree–snow relationships.

3.1.4 Vegetation and topography

We computed three vegetation metrics (Fig. 4) for each indi-
vidual tree identified in the segmentation process (Table A1).
These were then utilized, along with topographic metrics, to
predict snow depths at each site using a multiple linear re-
gression. Trees with at least 50 % snow cover below the tree
crown (based on the segmented tree polygons) were used
for analysis. The metrics included foliage height diversity
(FHD), crown volume, and the cumulative percentage of veg-
etation returns (zpcum). FHD represents the complexity of
multi-layered vegetation structures (Clawges et al., 2008; Si-
monson et al., 2014). Trees with lower FHD have a lower
number of layers and thus less interception with snow. Crown
volume describes the overstory cover of individual trees and
is estimated by multiplication of crown surface area by crown
height. Studies have shown overstory cover is negatively re-
lated to snow depth under the canopy (Hanley and Rose,
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Figure 4. Graphical examples of trees with different structures and the metrics of foliage height diversity (FHD), crown volume, and the
cumulative percentage of vegetation returns (zpcum). Crown volume is estimated using crown area (CA) multiplied by height (h). Zpcum
is based on 10 layers (zpcum1–zpcum10) (see example in panel a). The dashed red lines are examples of the cumulative layer with > 50 %
of vegetation returns. The foliar complexity (FHD) of panels (a) and (c) is similar but the crown volumes and cumulative percentage of
vegetation returns are different, whereas the FHD of panel (b) is the lowest.

1987). Note that high crown volume does not necessarily
equate to high FHD. The cumulative percentage of vegeta-
tion returns assessed across multiple layers within a tree al-
lows us to understand whether a tree (as a whole) or a specific
layer (cumulative) of the tree crown controls snow accumu-
lation. We used 10 layers, starting at the bottom of each tree
crown. In our preliminary analyses, we used the first cumu-
lative layer that explains the majority of vegetation returns
within the crown (the first layer in which zpcumx > 50 %).
The zpcum4 met this threshold at site A and zpcum5 met this
threshold for all other sites. By using these metrics, we are
able to examine the effects of structural complexity (FHD), a
specific cumulative layer (zpcumx) within the canopy, and/or
the crown volume as a whole on snow depth.

Topographical metrics like elevation, eastness (sin (as-
pect)× slope), and northness (cos (aspect)× slope) are pos-
sible controls on snow depth for both under the canopy and
in open areas. We assumed that eastness represents the effect
of wind based on the predominant wind direction at the study
site and northness expresses the effect of solar radiation on
snow. Slope and aspect were derived for each site using a
nearest-neighbor method in ArcMap 10.4.1 (ESRI, 2015) at
1 m grid resolution.

To investigate the collinearity amongst and between the
vegetation and topographic metrics, a variance inflation fac-

tor was computed. The variance inflation factor was close to
1 for all metrics at all sites except site O. The metrics were
standardized to make sure that the scale of the independent
variables did not affect the regression. We then used the veg-
etation and topographic metrics for each site (except site O)
in a multiple linear regression model to assess their effect on
snow depth under the canopy.

At site O and in the open areas, we utilized a decision tree
regression in lieu of the multiple linear regression model. In
the open areas, we examined the effect of elevation, north-
ness, and eastness on snow depths. Splits in the decision
tree continued until the model could not improve beyond
R2
= 0.001. To avoid overfitting, we validated the model by

a range of complexity parameters (from 0.001 to 0.2) and
pruned the tree by choosing the one with the smallest cross-
validation error. We trained the tree using 70 % of the data
and validated the model prediction using 30 % of the data.

3.1.5 Influence of canopy edge on snow depth

Individual trees were used to assess snow depth variation at
distances of 1 to 10 m away from the canopy edge. This rep-
resents how snow depth changes from the edge of individual
trees to the open areas within a 10 m distance from the edge.
We subsampled our data to only include trees that had good
snow coverage (from TLS) within the buffer. This was deter-
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mined based on the area around the tree having at least 50 %
snow cover (see above).

Snow depth variation from the edge of trees had both in-
creasing and decreasing trends. Thus, we split the data be-
tween increasing and decreasing snow depth trends and fit a
model to each. We standardized the snow depth for each 1 to
10 m interval of individual trees. This allowed us to investi-
gate all of the changes in snow depth across the same scale.
We fit logarithmic (standardized snow depth is the sum of
the intercept and coefficient multiplied by the log (distance))
and linear (standardized snow depth is the sum of the inter-
cept and coefficient multiplied by the distance) models to the
increasing and decreasing snow depths, respectively, for both
individual sites and all sites together.

3.1.6 Gap distribution and directional analysis

We explored whether any of our sites were suitable for un-
derstanding the role of forest gaps (i.e., shading, intercep-
tion) on snow depth distributions. While our study was not
designed to analyze a range of gap distributions, the inher-
ent forest density and distribution gradient that spanned our
sites across Grand Mesa provided this opportunity. In partic-
ular, we sought to identify if sites had a dispersed tree pattern,
such that the gaps were large enough to prevent canopy inter-
ception of snow and thus accumulated deeper snow. Seyed-
nasrollah and Kumar (2014) used a relationship of tree height
and gap radius for evaluation of net radiation. We derived a
similar but simplified gap distribution approach (Eq. 1). We
calculated the average distance of 10 nearest trees to each
individual tree. This gave us a rough estimate of a gap size
around each tree (D). In the next step, we divided that aver-
age distance (D) by the average height (H ) of those 10 near-
est trees (D/H ). This ultimately provides a ratio by which
we can investigate the impact of shading from trees on gaps
combined with gap size.

Dj

Hj
=

1
k

∑k
i=1dij

1
k

∑k
i=1hij

(1)

Equation (1) illustrates the gap distribution for an individual
tree (j ), where Dj is the mean distance of the k closest trees
to tree j ; Hj is the average height of k closest trees to tree j ;
k is the number of neighbors; and dij and hij are the distance
and height of tree i to tree j , respectively.

Secondly, we performed an average nearest-neighbor anal-
ysis of the distribution of trees at each of the sites. In this
analysis, we tested for tightly clustered trees in which gaps
were minimal (clustered), randomly distributed trees where
gaps could potentially lead to deeper snow accumulation
(random) or dispersed trees where no particular pattern ex-
ists, and thus gaps are likely not prevalent (dispersed).

We also investigated whether relationships between tree
heights and snow depth variation are significant based on di-
rection. We did this using the 10 m transition zone (buffer)

for each individual tree. We classified snow depths within
each buffer in the four cardinal directions and fitted a lin-
ear (snow depth=α× (tree height)+β) or non-linear (snow
depth=α×exp(β×tree height)+θ ) model, depending upon
the site, between tree heights and mean snow depth per each
direction. We also performed a directional analysis with a
Wilcoxon signed-rank test for comparing snow depth on the
north and south sides (and east and west) for individual trees
at each site. Note that due to sampling extents, our transition
zone analysis was performed at 1 m increments instead of at
multiples of mean tree height as in previous literature (e.g.,
Currier and Lundquist, 2018).

4 Results

4.1 Snow depths

Using our individual tree analysis, we found higher snow
depths (1–1.6 m on average) in open regions and lower snow
depths in areas dominated by trees (0.8–1.3 m on average)
(see Figs. 5 and 6). Snow depths were 12 %–28 % higher
in the open than under canopy. Mean snow depth percent
change between the 10 m transition zone and under the
canopy ranges from less than 1 % for sites A and K to a
maximum of 7 % at site M. We found the lowest mean snow
depths in our most westerly site (A), which is dominated
by dense clusters of relatively rigid shrubs (Dasiphora fruti-
cosa) and has the lowest tree cover of all sites. The standard
deviation (SD) of snow depths was similar between the tran-
sition zone and under the canopy for four sites (A, F, K, and
O). We found a lower SD of open-area snow depths at site O
compared with under-canopy and transition zones (Fig. 6).

4.2 Influence of vegetation and topography on snow
depth under the canopy

A multiple linear regression model was applied to assess the
effect of vegetation and topographical metrics on snow depth
under the canopy. The regression explained 43 %, 54 %,
27 %, 25 %, and 28 % of snow depth variation at sites A, F, K,
M, and N, respectively (Table 2). Based on the models, FHD
was the most influential vegetation metric at five sites (Ta-
ble 2). Figure B3 shows the distribution of FHD at each of the
sites, with higher FHD demonstrating more evenly spaced
foliar arrangement along an individual tree. Most of the sites
had two peaks of FHD distributions. FHD and snow depth
were negatively related at all sites, i.e., a vertically sparse fo-
liar arrangement resulted in higher snow depths. At site A, a
negative relationship (−0.21) between cumulative percent-
age of returns within the fourth layer (zpcum4) and snow
depth occurred. FHD also showed a higher negative relation-
ship at this site (−0.27) with snow depth. The results indicate
that the effect of eastness, northness, and crown volume was
not significant (p value> 0.001), and elevation positively af-
fected (with a coefficient of 0.14) the snow depth under the
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Figure 5. Snow depths at each site from TLS data.

Table 2. The highest and second-highest coefficients and their associated p values for multiple linear regression between vegetation, topog-
raphy and snow depth under individual trees. The p values > 0.001 are described as not significant.

Site Highest coefficient p value Second-highest coefficient p value Adjusted R2

A FHD (−0.27) < 0.001 Zpcum4 (−0.21) < 0.001 0.43
F Elevation (−0.08) < 0.001 FHD (−0.07) < 0.001 0.54
K FHD (−0.11) < 0.001 Not significant Not significant 0.27
M Northness (0.08) < 0.001 FHD (−0.05) < 0.001 0.25
N FHD (−0.09) < 0.001 Elevation (0.06) < 0.001 0.28

canopy at this site. At site F, elevation and FHD were the
most important features that explained 54 % of snow depth
variation. Vegetation and topography could not explain more
than 30 % of snow depth variance under the canopy at sites K,
M, and N.

Because of collinearity between eastness and northness at
site O, we used a regression tree to investigate the effect of
different features on snow depth under the trees. Eastness and
FHD were the most important features at site O, respectively
(Fig. 7). A decision tree regression for this site explains 74 %
of snow depth variance under the trees. The results also in-
dicate that as we move from east (positive) to west (nega-
tive), the snow increases with higher slopes. In other words,
larger, west-facing slopes are covered by deeper snow. In ad-

dition, shallower snow depths are predicted in the canopy
with higher FHD at this site.

4.3 Influence of slope, aspect, and elevation on snow
depth in open areas

We examined the effect of topography on snow depth in open
areas using a decision tree regression for each site. Based on
the regression tree (Table 3), elevation was the most impor-
tant feature at sites A, F, and K and was the second most
important feature at sites M and N. Decision trees could pre-
dict 38 %, 36 %, 36 %, 31 %, 18 %, and 64 % of snow depth
variations at sites A, F, K, M, N, and O, respectively. The
model slightly overfitted for sites A, M, and N. However, the
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Figure 6. Snow depth under the canopy, within the 10 m transition zone, and in the open.

Table 3. The first and second most important features from decision
tree regressed between topographical features and snow depth in the
open areas.

Site First important Second important Train Test
feature feature R2 R2

A Elevation Northness 0.46 0.38
F Elevation Northness 0.36 0.36
K Elevation Eastness 0.39 0.36
M Northness Elevation 0.39 0.31
N Northness Elevation 0.30 0.18
O Eastness Northness 0.68 0.64

R2 values for the training and testing datasets at the other
three sites are similar. Eastness and northness represent wind
and solar radiation impacts on snow depth variation with re-
gard to topography. Except site O where topography (east-
ness and northness) explained 64 % of snow depth variation,
topographical metrics could not explain more than 38 % of

snow depth at the other sites (Table 3). This is likely a result
of scale, in which our plot sampling size did not adequately
sample the effects of topography and wind on snow depth
variation.

We found that at site A, elevation and northness were in-
fluential for snow depths in the open. High snow depths were
found in open northeast-facing slopes (same as the predom-
inant wind direction) at site A (see Figs. 1, 8b). Site O was
the only site that we found an influence of both eastness and
northness on snow depth. The influence of eastness occurred
in both the open areas and under the canopy (Table 3, Figs. 7,
8a, b). This site has high north- and west-facing slopes (in
both under canopy and the open) with relatively higher snow
depths, whereas south-facing slopes have relatively lower
snow depths.

4.4 Influence of canopy edge on snow depth

We found that snow depths increase with distance from the
canopy edge into the open for the majority of individual trees
(Figs. B4–B9). However, at some sites, we found a decreas-
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Figure 7. Decision tree at site O. Snow depths (m) are represented along with percent of the individual trees used for analysis.

Figure 8. Under-the-canopy (a) and open-area (b) snow depth at different aspects.

ing snow depth trend by moving farther from tree edges.
For example, this occurred on the northwest side of the tree
patches in the southeast portion of site O. This is the area of
site O where the northwest-facing slope has likely the largest
influence on snow depths. The increasing snow depth trend
from the canopy edge occurs in the north where snow depths

are low (less than 1 m). Site A also showed a decreasing snow
depth pattern in the north/northwestern sampled region, and
this is likely due to northeast winds and deeper snow depths
in the northeast-facing slopes in the southern portion of the
site.
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Figure 9. Increasing (a) and decreasing (b) snow depth trends and regression within a 10 m distance from the tree edges for all sites together.
The confidence interval depicted in this figure is 95 %.

Table 4. Logarithmic regression between distance from the tree
edge and increasing snow depth within a 10 m buffer toward the
open. The p values > 0.001 are described as not significant.

Site Intercept Coefficient p value Adjusted
R2

A −1.91 1.27 < 0.001 0.86
F −1.97 1.3 < 0.001 0.91
K −1.9 1.26 < 0.001 0.85
M −1.92 1.27 < 0.001 0.87
N −1.95 1.29 < 0.001 0.89
O −1.9 1.26 < 0.001 0.85
All sites together −1.92 1.27 < 0.001 0.87

Results show that a logarithmic regression can explain
more than 85 % of an increasing snow depth trend at each
site. Figure 9a illustrates the logarithmic regression between
snow depth and distance from the edge for all sites together.
The model coefficients were almost the same for individual
sites as well as all sites together (Table 4). This indicates that
within a 10 m distance from the edge of the trees, snow depth
increases with a unique logarithmic trend.

For decreasing snow depth, a linear regression explained
72 % of snow depth variation at all sites together. However,
snow depth decreases at site K followed a second-order poly-
nomial, which covers only 4 % more variation than simple
linear regression. The coefficient and p values for linear re-
gressions are illustrated in Table 5. Figure 9b also shows the
regression fit between decreasing snow depth and distance
from the tree edge.

4.5 Gap distribution and directional analysis

Our results show that site N has the largest median D/H
ratio (0.74) compared to all other sites of < 0.5 (Table 1).
Site N is the only site with a randomly dispersed tree pattern

Table 5. Linear regression between distance from the tree edge and
decreasing snow depth within a 10 m buffer toward the open. Site
F had no trees with a decreasing trend (n/a). The p values > 0.001
are described as not significant.

Site Coefficient p value Adjusted R2

A −7.6 < 0.001 0.70
F n/a n/a n/a
K −6.2 < 0.001 0.70
M −3.6 < 0.001 0.47
N −4.2 < 0.001 0.63
O −9.0 < 0.001 0.82
All sites together −14.6 < 0.001 0.72

(Table A2) and thus the most likely site to experience lower
interception, possibly resulting in deeper snow.

We found a negative relationship between tree heights and
snow depths based on direction at sites A, K, and O (Ta-
ble A3, Fig. 10). Snow depth decreased exponentially at
site A with an increase in tree height. However, this relation-
ship was linear for sites K and O and was not significant for
the other three sites. An exponential fit could explain 56 %,
61 %, 76 %, and 32 % of snow depth change in the north,
west, south, and east directions at site A, respectively (Ta-
ble A3, Fig. 10a). We found snow depths were different be-
tween the north and south sides of trees at sites A, K, and O
but not for any other sites or directions (Table A4).

5 Discussion

We observed several interesting relationships between veg-
etation canopies, topography, wind, and snow depths across
our sites. As expected, snow depths were deeper in the open
areas compared to under the canopy. However, describing the
relationships between vegetation and snow is complicated by
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Figure 10. Tree height and snow depth within the 10 m transition zone in the south direction for (a) site A and (b) site K. The exponential
and linear fit is shown with a red line along with 95 % confidence interval (gray).

the structure, distribution (pattern), and type of vegetation.
The relationship is further convoluted by local topography
and wind speed/direction. For example, we found that slope,
aspect, and wind (rather than vegetation) might control snow
depths at local scales at two of the sites (A and O). This is not
surprising, as site A was dominated by 0.4–0.6 m tall shrubs
and wind exposed, and site O had a relatively low tree canopy
cover. While site A had the lowest tree canopy cover in our
dataset, we only sampled the edge of a much larger patch of
trees (based on field observations). Our results indicate that
local topographic interactions with wind have a major influ-
ence on snow accumulation, especially when we do not con-
sider the much larger landscape controls. While sites A and
O have slopes within the overall range of all of our sites, the
combination of local slope and aspect for site O appears to
be the driving factor in snow depths. In fact, site O has the
highest mean snow depth (1.44 m), likely due to these local
site conditions.

When our analyses were confined to under the canopy of
individual trees, we generally found a significant relation-
ship between the vertical spatial arrangement of the foliage
(based on the FHD) and snow depth, but this relationship did
not hold across all sites. For example, FHD and northness
explained 25 % of the variance of snow depth at site M. This
site has the highest mean tree heights of the study. Taken to-
gether with northness as the most important feature at this
site, solar radiation likely had higher control on snow depths
than on the particular foliar arrangement of the trees at this
site. Overall, sites M and N had the least effect of vegetation
metrics on snow depth. This may be due to the vegetation pat-
terns at these sites (under-the-canopy slope and aspect have
no effect at site N; Table 2, Fig. 8a). Site M is a relatively
open area with mature Engelmann spruce and subalpine fir
trees in the SW and NE areas of our site. Subalpine fir trees
are generally more slender than Engelmann spruce, and thus
their shape may not be as influential on accumulation of
under-canopy snow depths. Site N has the highest percent
cover and the smallest trees (mean tree height 10.5 m, SD of
2.62 m; Table 1). This second growth canopy is the only site

dominated by lodgepole pine, which are also slender. While
the mean FHD is similar to the other sites, site N is the only
site with trees in a dispersed pattern in which the size of the
gaps likely prevents snow interception and thus provides an
opportunity for snow accumulation. In fact, site N had the
second-highest mean snow depth under the canopy (1.38 m,
compared with 1.44 m at site O; Figs. 6 and 8a). Testing for
a dispersed tree pattern could be beneficial to future studies,
especially because previous research (e.g., Sun et al., 2018)
found gap size to be a control on snowmelt timing; however,
our study was during the accumulation phase so we cannot
draw similar conclusions at site N.

Our models show that FHD is the only control on snow
depth at site K, explaining 27 % of snow variation under the
canopy. The standard deviation of elevation at this site is less
than that at the other sites (Table 1), likely indicating that
snow depth under the canopy is not affected by topography.
This indicates that in the absence of large changes in topog-
raphy, snow depth under the canopy is most likely controlled
by trees. In the open areas, elevation and eastness are pre-
dominant controls on snow depth. The latter is perplexing
because a wind effect was not observed under the canopy
(Table 2) nor along east–west sides of trees (Table A4). In
the absence of other information, we conclude that the spatial
arrangements of the trees may shelter the open area, caus-
ing higher snow depths with no interception. Elevation and
FHD at site F explain 54 % of snow depth variation, which
is the greatest among the sites. The site’s large standard de-
viation of elevation (Table 1) explains why elevation is the
most important control in both under the canopy and in open
areas. The predominant wind direction is from west to east
at the nearby LSOS station. However, our models indicate
that wind has little influence on snow distribution, and rather
solar radiation along with elevation control snow patterns in
the open areas at our scale of analysis.

Our canopy edge analyses generally found that as the dis-
tance increases from the canopy edge, snow depths also in-
crease. This finding is congruent with previous studies which
used airborne lidar across larger spatial extents and lower
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vertical resolutions in the canopy (e.g., Moeser et al., 2015a;
Mazzotti et al., 2019). We leveraged the fine-scale observa-
tions in our dataset to model snow depth increases from the
canopy edge and found the trend to generally follow a loga-
rithmic model at individual and all sites together. In contrast
to our observations, Hardy and Albert (1995) indicate that
snow depth changes uniformly from the tree edges towards
the open. However, the patterns we observed in our TLS data
are similar to those Mazzotti et al. (2019) observed from air-
borne lidar at Grand Mesa over the same time frame. While
we observed snow depth to decrease non-linearly with dis-
tance from canopy edge at one site, a linear decrease was the
norm amongst sites and was likely mediated by wind and/or
topography feedbacks at sites A and O. In summary, we ex-
pect snow depth increases from the canopy edge toward the
open areas, but wind and topographic controls may affect this
trend.

We did not find high snow depth accumulation or variabil-
ity within a transition zone similar to the findings of Broxton
et al. (2015). While their study included similar tree species,
wind speeds, and elevation, their spatial scale of analysis was
larger with the use of airborne lidar. The relation between
tree height and snow depth in cardinal directions from indi-
vidual trees indicates that we expect shallower snow within
the 10 m transition zone from taller trees (Fig. 10). In other
words, two adjacent trees with different heights affect snow
depth differently in any one direction and shorter trees gen-
erally retain deeper snow in all directions. We expected the
opposite to occur, i.e., taller trees should create larger shad-
ows and provide more shading/sheltering. As our snow-on
datasets are from the accumulation season, we may not see
shading effects of taller trees in the transition zone; negli-
gible melt had occurred at the time of these surveys. If our
datasets extended throughout the season (our data indicate a
single measurement in time), we might expect these relation-
ships to change.

Following previous studies that show a directional rela-
tionship with snow depths (e.g., Mazzotti et al., 2019; Cur-
rier and Lundquist, 2018), we found significantly different
snow depths between the north and south sides of trees at
sites A, K, and O. This may be due to the local topography
and wind at sites A and O. Additionally, previous lidar-based
canopy–snow interaction studies (Trujillo et al., 2007, 2009;
Deems et al., 2006) relied on simple canopy models using
maximum height. Our results show that in nearly all situa-
tions, structural information contained in denser lidar point
clouds have more predictive capability.

A limitation of our study is that the results are site spe-
cific and cannot be generalized to all forest conditions. In
addition, our data are best suited to fine-scale interactions
between individual trees, or clusters of trees, and under the
canopy or surrounding snow depths. Data gaps may exist
from occlusion within dense canopies. We minimized the
effect of occlusion by performing our analysis on individ-
ual trees. Notably, the directional analysis is not affected by

occlusion, as we used tree height in the analysis and trees
having at least 50 % snow cover. Occlusion with TLS can be
eliminated using UAS and/or airborne lidar as their nadir/off-
nadir scan positions can cover the canopies at different an-
gles. However, mapping dense canopies and mapping snow
depth under dense canopies may still be a challenge. Ulti-
mately, TLS provides data for investigating fine-scale con-
trols and is highly complementary to UAS and airborne lidar,
which can help test larger-scale features, such as gap area
across space.

6 Conclusions

Our study indicates that even with fine-scale individual tree
observations from TLS, vegetation structural metrics are not
enough to describe snow depth during the accumulation sea-
son. Local-scale topography and wind should also be consid-
ered. While our sites were not designed solely for intercom-
parison, we found notable trends in our site comparisons.
The vertical arrangement of foliage (e.g., FHD) of individ-
ual trees influences under-canopy snow depths, and in some
cases, quite strongly, whereas cumulative percentage of re-
turns and crown volume were less powerful explanatory vari-
ables. Further studies should be designed to test this within
and between species. For example, our sites were primarily
Engelmann spruce, subalpine fir, and lodgepole pine, all of
which have different canopy structural shapes. Further stud-
ies targeting samples of each of these with different foliar
arrangements and heights should be undertaken to fully un-
derstand the implications of FHD and tree heights on snow
depths at local scales.

We also found that topography had greater control than
vegetation at sites where slopes favored wind conditions for
increasing snow depths, or where vegetation presence was
minimal. While the latter may be obvious, increased obser-
vations with varying vegetation cover, wind, and topography
should be considered with TLS.

This study highlights the complementary nature of TLS
observations to UAS and airborne lidar, where TLS can pro-
vide fine-scale observations within the canopy and relation-
ships with under-the-canopy snow depth. Data from TLS can
also be used to validate airborne lidar (e.g., Currier et al.,
2019), and further studies should investigate how vegetation
metrics such as FHD compare between TLS, UAS, and air-
borne lidar in these snow-dominated forest ecosystems. Fur-
ther, along with UAS and airborne lidar, TLS provides a com-
plementary dataset for upscaling to similar types of vegeta-
tion structure and topography observed from satellites such
as the NASA Ice, Cloud and land Elevation Satellite (ICESat-
2) or missions such as Global Ecosystem Dynamics Investi-
gation (GEDI).
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Appendix A

Table A1. Vegetation metrics derived for individual trees at each of the sites with equations and references.

Vegetation metrics Equation

Cumulative percentage of return in the xth layer (zpcum*) zpcumx=
x∑
i=1

#veg returns(i)
total veg returns × 100,

where i is the ith layer of the tree
(R 3.5.3 (R Core Team, 2019), lidR
(v3.1.1; Roussel et al., 2020) package)

FHD FHD=−
∑
Pi ln(Pi),

where Pi is the proportion of the num-
ber of lidar returns in the ith layer to the
sum of lidar points of all the layers (us-
ing all points) (BCAL Lidar Tools doc-
umentation)
(BCAL Lidar Tools, Boise State Uni-
versity, Department of Geosciences;
https://github.com/bcal-lidar/tools, last
access: 10 February 2020)

Crown volume (crwnvlm) (R 3.5.3 (R Core Team, 2019), rLiDAR
(v0.1.1; Silva et al., 2020) package)

Table A2. Average nearest-neighbor results for each site. The null hypothesis here is that trees are randomly distributed. The nearest-neighbor
ratio is the mean of observed mean distance over the expected mean distance between neighbors assuming a random distribution. The ratio
equal or close to 1 is considered random. Only site N has a random distribution pattern of trees. As site A contains a dense canopy and several
trees far from it, the method takes it as dispersed.

Site p value z score Nearest-neighbor ratio Tree pattern

A 0.00 6.92 1.28 Dispersed
F 0.00 −3.72 0.91 Clustered
K 0.00 −7.60 0.85 Clustered
M 0.00 −8.18 0.79 Clustered
N 0.28 −1.09 0.97 Random
O 0.00 −12.66 0.55 Clustered

Table A3. Relationship between tree height and snow depth (within a 10 m transition zone) based on cardinal direction. The columns are
site, adjusted R2, tree height range, and number of trees. Ranges of tree heights vary within sites because not all trees had adequate snow
samples to test in all cardinal directions.

Site North Tree height No. of West Tree height No. of South Tree height No. of East Tree height No. of
range (m) trees range (m) trees range (m) trees range (m) trees

A 0.56 2.05–25.52 95 0.61 2.05–28.05 91 0.76 2.05–28.05 94 0.32 2.05–28.05 101
K 0.16 1.51–29.34 486 0.11 1.51–29.34 485 0.15 1.51–29.97 474 0.17 1.51–29.97 483
O 0.29 5.46–33.42 122 0.51 5.09–33.42 127 0.44 5.09–33.42 133 0.4 5.46–32.46 131
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Table A4. Wilcoxon signed-rank test results for comparing snow depth on the north and south sides (and east and west) for individual trees
at each site. Note only trees that have snow depth data on both north and south or east and west are considered. Statistically significant values
are bolded.

Site p value Number of p value Number of
(north–south) samples (east–west) samples

A 0.000 59 0.350 60
F 0.807 138 0.704 130
K 0.035 390 0.780 397
M 0.650 170 0.780 163
N 0.720 202 0.495 195
O 0.024 90 0.430 94
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Appendix B

Figure B1. M3C2 method for computing snow depth. Vector N shows the normal on the reference surface (ground) and d is the projection
scale. Surface roughness is the standard deviation of the point clouds within the cylinder (σ ). Misorientation on rough surfaces (N ′) is seen
by high standard deviation (σ2) and is resolved by choosing the proper normal scale. Snow depth is the vertical distance between the average
positions of ground and snow point clouds within the cylinder (distance between i1 and i2). Redrawn from Lague et al. (2013).

Figure B2. As an example, segmentation results for one of the las tiles at site F.
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Figure B3. FHD distribution for each site.

Figure B4. Snow depth change within a 10 m buffer from the edge of a tree at site A. Red color indicates snow depth increases moving from
the tree edge toward the open areas, and blue indicates snow depth decreases. Increasing and decreasing patterns are shown for individual
trees at each site with adequate snow coverage.

Figure B5. Snow depth change within a 10 m buffer from the edge of a tree at site F. Red color indicates snow depth increases moving from
the tree edge toward the open areas, and blue indicates snow depth decreases. Increasing and decreasing patterns are shown for individual
trees at each site with adequate snow coverage.
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Figure B6. Snow depth change within a 10 m buffer from the edge of a tree at site K. Red color indicates snow depth increases moving from
the tree edge toward the open areas, and blue indicates snow depth decreases. Increasing and decreasing patterns are shown for individual
trees at each site with adequate snow coverage.

Figure B7. Snow depth change within a 10 m buffer from the edge of a tree at site M. Red color indicates snow depth increases moving from
the tree edge toward the open areas, and blue indicates snow depth decreases. Increasing and decreasing patterns are shown for individual
trees at each site with adequate snow coverage.

Figure B8. Snow depth change within a 10 m buffer from the edge of a tree at site N. Red color indicates snow depth increases moving from
the tree edge toward the open areas, and blue indicates snow depth decreases. Increasing and decreasing patterns are shown for individual
trees at each site with adequate snow coverage.
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Figure B9. Snow depth change within a 10 m buffer from the edge of a tree at site O. Red color indicates snow depth increases moving from
the tree edge toward the open areas, and blue indicates snow depth decreases. Increasing and decreasing patterns are shown for individual
trees at each site with adequate snow coverage.
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