Articles | Volume 15, issue 5
https://doi.org/10.5194/tc-15-2167-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2167-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Luisa von Albedyll
CORRESPONDING AUTHOR
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Christian Haas
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Institute of Environmental Physics, University of Bremen, 28359 Bremen, Germany
Wolfgang Dierking
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Center for Integrated Remote Sensing and Forecasting for Arctic Operations, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
Related authors
Yi Zhou, Xianwei Wang, Ruibo Lei, Arttu Jutila, Donald K. Perovich, Luisa von Albedyll, Dmitry V. Divine, Yu Zhang, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2024-2821, https://doi.org/10.5194/egusphere-2024-2821, 2024
Short summary
Short summary
This study examines how the bulk density of Arctic sea ice varies seasonally, a factor often overlooked in satellite measurements of sea ice thickness. From October to April, we found significant seasonal variations in sea ice bulk density at different spatial scales using direct observations as well as airborne and satellite data. New models were then developed to indirectly predict sea ice bulk density. This advance can improve our ability to monitor changes in Arctic sea ice.
Niels Fuchs, Luisa von Albedyll, Gerit Birnbaum, Felix Linhardt, Natascha Oppelt, and Christian Haas
The Cryosphere, 18, 2991–3015, https://doi.org/10.5194/tc-18-2991-2024, https://doi.org/10.5194/tc-18-2991-2024, 2024
Short summary
Short summary
Melt ponds are key components of the Arctic sea ice system, yet methods to derive comprehensive pond depth data are missing. We present a shallow-water bathymetry retrieval to derive this elementary pond property at high spatial resolution from aerial images. The retrieval method is presented in a user-friendly way to facilitate replication. Furthermore, we provide pond properties on the MOSAiC expedition floe, giving insights into the three-dimensional pond evolution before and after drainage.
Yi Zhou, Xianwei Wang, Ruibo Lei, Luisa von Albedyll, Donald K. Perovich, Yu Zhang, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1240, https://doi.org/10.5194/egusphere-2024-1240, 2024
Preprint archived
Short summary
Short summary
This study examines how the density of Arctic sea ice varies seasonally, a factor often overlooked in satellite measurements of sea ice thickness. From October to April, using direct observations and satellite data, we found that sea ice density decreases significantly until mid-January due to increased porosity as the ice ages, and then stabilizes until April. We then developed new models to estimate sea ice density. This advance can improve our ability to monitor changes in Arctic sea ice.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Pablo Saavedra Garfias, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen
Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023, https://doi.org/10.5194/acp-23-14521-2023, 2023
Short summary
Short summary
An important Arctic climate process is the release of heat fluxes from sea ice openings to the atmosphere that influence the clouds. The characterization of this process is the objective of this study. Using synergistic observations from the MOSAiC expedition, we found that single-layer cloud properties show significant differences when clouds are coupled or decoupled to the water vapour transport which is used as physical link between the upwind sea ice openings and the cloud under observation.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Damien Ringeisen, Nils Hutter, and Luisa von Albedyll
The Cryosphere, 17, 4047–4061, https://doi.org/10.5194/tc-17-4047-2023, https://doi.org/10.5194/tc-17-4047-2023, 2023
Short summary
Short summary
When sea ice is put into motion by wind and ocean currents, it deforms following narrow lines. Our two datasets at different locations and resolutions show that the intersection angle between these lines is often acute and rarely obtuse. We use the orientation of narrow lines to gain indications about the mechanical properties of sea ice and to constrain how to design sea-ice mechanical models for high-resolution simulation of the Arctic and improve regional predictions of sea-ice motion.
Erik Loebel, Luisa von Albedyll, Rey Mourot, and Lena Nicola
Polarforschung, 90, 29–32, https://doi.org/10.5194/polf-90-29-2022, https://doi.org/10.5194/polf-90-29-2022, 2022
Short summary
Short summary
On the occasion of Polar Week in March 2021 and with the motto
let’s talk fieldwork, APECS Germany hosted an online polar fieldwork panel discussion. Joined by a group of six early-career polar scientists and an audience of over 140 participants, the event provided an informal environment for debating experiences, issues and ideas. This contribution summarizes the event, sharing practical knowledge about polar fieldwork and fieldwork opportunities for early-career scientists.
Arttu Jutila, Stefan Hendricks, Robert Ricker, Luisa von Albedyll, Thomas Krumpen, and Christian Haas
The Cryosphere, 16, 259–275, https://doi.org/10.5194/tc-16-259-2022, https://doi.org/10.5194/tc-16-259-2022, 2022
Short summary
Short summary
Sea-ice thickness retrieval from satellite altimeters relies on assumed sea-ice density values because density cannot be measured from space. We derived bulk densities for different ice types using airborne laser, radar, and electromagnetic induction sounding measurements. Compared to previous studies, we found high bulk density values due to ice deformation and younger ice cover. Using sea-ice freeboard, we derived a sea-ice bulk density parameterisation that can be applied to satellite data.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021, https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary
Short summary
Summer sea ice thickness observations based on electromagnetic induction measurements north of Fram Strait show a 20 % reduction in mean and modal ice thickness from 2001–2020. The observed variability is caused by changes in drift speeds and consequential variations in sea ice age and number of freezing-degree days. Increased ocean heat fluxes measured upstream in the source regions of Arctic ice seem to precondition ice thickness, which is potentially still measurable more than a year later.
Luisa von Albedyll
Polarforschung, 89, 115–117, https://doi.org/10.5194/polf-89-115-2021, https://doi.org/10.5194/polf-89-115-2021, 2021
Short summary
Short summary
Submarines and satellites observed a halving of Arctic sea ice thickness in the last 60 years. Sea ice thinning alters the Arctic climate and ecosystem and the weather in our latitudes. Rising air and ocean temperatures and increased ice drift speeds cause the thinning. Thinner ice breaks up easier, and can pile up locally in thick ridges. Understanding the contribution of those processes to the ice thickness enables us to better predict the future of Arctic sea ice.
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
Yi Zhou, Xianwei Wang, Ruibo Lei, Arttu Jutila, Donald K. Perovich, Luisa von Albedyll, Dmitry V. Divine, Yu Zhang, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2024-2821, https://doi.org/10.5194/egusphere-2024-2821, 2024
Short summary
Short summary
This study examines how the bulk density of Arctic sea ice varies seasonally, a factor often overlooked in satellite measurements of sea ice thickness. From October to April, we found significant seasonal variations in sea ice bulk density at different spatial scales using direct observations as well as airborne and satellite data. New models were then developed to indirectly predict sea ice bulk density. This advance can improve our ability to monitor changes in Arctic sea ice.
Rui Xu, Chaofang Zhao, Stefanie Arndt, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2024-2054, https://doi.org/10.5194/egusphere-2024-2054, 2024
Short summary
Short summary
The onset of snowmelt on Antarctic sea ice is an important indicator of sea ice change. In this study, we used two radar scatterometers to detect the onset of snowmelt on the perennial Antarctic sea ice. It shows that since 2007, the snowmelt onset has demonstrated strong interannual and regional variabilities. We also found that the difference of snowmelt onsets between the two scatterometers is closely related to snow metamorphism.
Gemma M. Brett, Greg H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, Natalie J. Robinson, and Anne Irvin
The Cryosphere, 18, 3049–3066, https://doi.org/10.5194/tc-18-3049-2024, https://doi.org/10.5194/tc-18-3049-2024, 2024
Short summary
Short summary
Glacial meltwater with ice crystals flows from beneath ice shelves, causing thicker sea ice with sub-ice platelet layers (SIPLs) beneath. Thicker sea ice and SIPL reveal where and how much meltwater is outflowing. We collected continuous measurements of sea ice and SIPL. In winter, we observed rapid SIPL growth with strong winds. In spring, SIPLs grew when tides caused offshore circulation. Wind-driven and tidal circulation influence glacial meltwater outflow from ice shelf cavities.
Niels Fuchs, Luisa von Albedyll, Gerit Birnbaum, Felix Linhardt, Natascha Oppelt, and Christian Haas
The Cryosphere, 18, 2991–3015, https://doi.org/10.5194/tc-18-2991-2024, https://doi.org/10.5194/tc-18-2991-2024, 2024
Short summary
Short summary
Melt ponds are key components of the Arctic sea ice system, yet methods to derive comprehensive pond depth data are missing. We present a shallow-water bathymetry retrieval to derive this elementary pond property at high spatial resolution from aerial images. The retrieval method is presented in a user-friendly way to facilitate replication. Furthermore, we provide pond properties on the MOSAiC expedition floe, giving insights into the three-dimensional pond evolution before and after drainage.
Yi Zhou, Xianwei Wang, Ruibo Lei, Luisa von Albedyll, Donald K. Perovich, Yu Zhang, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1240, https://doi.org/10.5194/egusphere-2024-1240, 2024
Preprint archived
Short summary
Short summary
This study examines how the density of Arctic sea ice varies seasonally, a factor often overlooked in satellite measurements of sea ice thickness. From October to April, using direct observations and satellite data, we found that sea ice density decreases significantly until mid-January due to increased porosity as the ice ages, and then stabilizes until April. We then developed new models to estimate sea ice density. This advance can improve our ability to monitor changes in Arctic sea ice.
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
Short summary
A dataset of 20 radar satellite acquisitions and near-simultaneous helicopter-based surveys of the ice topography during the MOSAiC expedition is constructed and used to train a variety of deep learning algorithms. The results give realistic insights into the accuracy of retrieval of measured ice classes using modern deep learning models. The models able to learn from the spatial distribution of the measured sea ice classes are shown to have a clear advantage over those that cannot.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere, 17, 5335–5355, https://doi.org/10.5194/tc-17-5335-2023, https://doi.org/10.5194/tc-17-5335-2023, 2023
Short summary
Short summary
Icebergs in open water are a risk to maritime traffic. We have compared six different constant false alarm rate (CFAR) detectors on overlapping C- and L-band synthetic aperture radar (SAR) images for the detection of icebergs in open water, with a Sentinel-2 image used for validation. The results revealed that L-band gives a slight advantage over C-band, depending on which detector is used. Additionally, the accuracy of all detectors decreased rapidly as the iceberg size decreased.
Pablo Saavedra Garfias, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen
Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023, https://doi.org/10.5194/acp-23-14521-2023, 2023
Short summary
Short summary
An important Arctic climate process is the release of heat fluxes from sea ice openings to the atmosphere that influence the clouds. The characterization of this process is the objective of this study. Using synergistic observations from the MOSAiC expedition, we found that single-layer cloud properties show significant differences when clouds are coupled or decoupled to the water vapour transport which is used as physical link between the upwind sea ice openings and the cloud under observation.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Damien Ringeisen, Nils Hutter, and Luisa von Albedyll
The Cryosphere, 17, 4047–4061, https://doi.org/10.5194/tc-17-4047-2023, https://doi.org/10.5194/tc-17-4047-2023, 2023
Short summary
Short summary
When sea ice is put into motion by wind and ocean currents, it deforms following narrow lines. Our two datasets at different locations and resolutions show that the intersection angle between these lines is often acute and rarely obtuse. We use the orientation of narrow lines to gain indications about the mechanical properties of sea ice and to constrain how to design sea-ice mechanical models for high-resolution simulation of the Arctic and improve regional predictions of sea-ice motion.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Erik Loebel, Luisa von Albedyll, Rey Mourot, and Lena Nicola
Polarforschung, 90, 29–32, https://doi.org/10.5194/polf-90-29-2022, https://doi.org/10.5194/polf-90-29-2022, 2022
Short summary
Short summary
On the occasion of Polar Week in March 2021 and with the motto
let’s talk fieldwork, APECS Germany hosted an online polar fieldwork panel discussion. Joined by a group of six early-career polar scientists and an audience of over 140 participants, the event provided an informal environment for debating experiences, issues and ideas. This contribution summarizes the event, sharing practical knowledge about polar fieldwork and fieldwork opportunities for early-career scientists.
Klaus Dethloff, Wieslaw Maslowski, Stefan Hendricks, Younjoo J. Lee, Helge F. Goessling, Thomas Krumpen, Christian Haas, Dörthe Handorf, Robert Ricker, Vladimir Bessonov, John J. Cassano, Jaclyn Clement Kinney, Robert Osinski, Markus Rex, Annette Rinke, Julia Sokolova, and Anja Sommerfeld
The Cryosphere, 16, 981–1005, https://doi.org/10.5194/tc-16-981-2022, https://doi.org/10.5194/tc-16-981-2022, 2022
Short summary
Short summary
Sea ice thickness anomalies during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) winter in January, February and March 2020 were simulated with the coupled Regional Arctic climate System Model (RASM) and compared with CryoSat-2/SMOS satellite data. Hindcast and ensemble simulations indicate that the sea ice anomalies are driven by nonlinear interactions between ice growth processes and wind-driven sea-ice transports, with dynamics playing a dominant role.
Arttu Jutila, Stefan Hendricks, Robert Ricker, Luisa von Albedyll, Thomas Krumpen, and Christian Haas
The Cryosphere, 16, 259–275, https://doi.org/10.5194/tc-16-259-2022, https://doi.org/10.5194/tc-16-259-2022, 2022
Short summary
Short summary
Sea-ice thickness retrieval from satellite altimeters relies on assumed sea-ice density values because density cannot be measured from space. We derived bulk densities for different ice types using airborne laser, radar, and electromagnetic induction sounding measurements. Compared to previous studies, we found high bulk density values due to ice deformation and younger ice cover. Using sea-ice freeboard, we derived a sea-ice bulk density parameterisation that can be applied to satellite data.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021, https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
Short summary
We present here snow and ice core data from the northwestern Weddell Sea in late austral summer 2019, which allow insights into possible reasons for the recent low summer sea ice extent in the Weddell Sea. We suggest that the fraction of superimposed ice and snow ice can be used here as a sensitive indicator. However, snow and ice properties were not exceptional, suggesting that the summer surface energy balance and related seasonal transition of snow properties have changed little in the past.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021, https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary
Short summary
Summer sea ice thickness observations based on electromagnetic induction measurements north of Fram Strait show a 20 % reduction in mean and modal ice thickness from 2001–2020. The observed variability is caused by changes in drift speeds and consequential variations in sea ice age and number of freezing-degree days. Increased ocean heat fluxes measured upstream in the source regions of Arctic ice seem to precondition ice thickness, which is potentially still measurable more than a year later.
Luisa von Albedyll
Polarforschung, 89, 115–117, https://doi.org/10.5194/polf-89-115-2021, https://doi.org/10.5194/polf-89-115-2021, 2021
Short summary
Short summary
Submarines and satellites observed a halving of Arctic sea ice thickness in the last 60 years. Sea ice thinning alters the Arctic climate and ecosystem and the weather in our latitudes. Rising air and ocean temperatures and increased ice drift speeds cause the thinning. Thinner ice breaks up easier, and can pile up locally in thick ridges. Understanding the contribution of those processes to the ice thickness enables us to better predict the future of Arctic sea ice.
Gemma M. Brett, Gregory H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, and Anne Irvin
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-61, https://doi.org/10.5194/tc-2021-61, 2021
Manuscript not accepted for further review
Short summary
Short summary
Using a geophysical technique, we observe temporal variability in the influence of ice shelf meltwater on coastal sea ice which forms platelet ice crystals which contribute to the thickness of the sea ice and accumulate into a thick mass called a sub-ice platelet layer (SIPL). The variability observed in the SIPL indicated that circulation of ice shelf meltwater out from the cavity in McMurdo Sound is influenced by tides and strong offshore winds which affect surface ocean circulation.
Christian Haas, Patricia J. Langhorne, Wolfgang Rack, Greg H. Leonard, Gemma M. Brett, Daniel Price, Justin F. Beckers, and Alex J. Gough
The Cryosphere, 15, 247–264, https://doi.org/10.5194/tc-15-247-2021, https://doi.org/10.5194/tc-15-247-2021, 2021
Short summary
Short summary
We developed a method to remotely detect proxy signals of Antarctic ice shelf melt under adjacent sea ice. It is based on aircraft surveys with electromagnetic induction sounding. We found year-to-year variability of the ice shelf melt proxy in McMurdo Sound and spatial fine structure that support assumptions about the melt of the McMurdo Ice Shelf. With this method it will be possible to map and detect locations of intense ice shelf melt along the coast of Antarctica.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Wolfgang Dierking, Harry L. Stern, and Jennifer K. Hutchings
The Cryosphere, 14, 2999–3016, https://doi.org/10.5194/tc-14-2999-2020, https://doi.org/10.5194/tc-14-2999-2020, 2020
Short summary
Short summary
Monitoring deformation of sea ice is useful for studying effects of ice compression and divergent motion on the ice mass balance and ocean–ice–atmosphere interactions. In calculations of deformation parameters not only the measurement uncertainty of drift vectors has to be considered. The size of the area and the time interval used in the calculations have to be chosen within certain limits to make sure that the uncertainties of deformation parameters are smaller than their real magnitudes.
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020, https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Short summary
The validation of satellite sea ice thickness (SIT) climate data records with newly acquired moored sonar SIT data shows that satellite products provide modal rather than mean SIT in the Laptev Sea region. This tendency of satellite-based SIT products to underestimate mean SIT needs to be considered for investigations of sea ice volume transports. Validation of satellite SIT in the first-year-ice-dominated Laptev Sea will support algorithm development for more reliable SIT records in the Arctic.
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Valentin Ludwig, Gunnar Spreen, Christian Haas, Larysa Istomina, Frank Kauker, and Dmitrii Murashkin
The Cryosphere, 13, 2051–2073, https://doi.org/10.5194/tc-13-2051-2019, https://doi.org/10.5194/tc-13-2051-2019, 2019
Short summary
Short summary
Sea-ice concentration, the fraction of an area covered by sea ice, can be observed from satellites with different methods. We combine two methods to obtain a product which is better than either of the input measurements alone. The benefit of our product is demonstrated by observing the formation of an open water area which can now be observed with more detail. Additionally, we find that the open water area formed because the sea ice drifted in the opposite direction and faster than usual.
Stefanie Arndt and Christian Haas
The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019, https://doi.org/10.5194/tc-13-1943-2019, 2019
Iina Ronkainen, Jonni Lehtiranta, Mikko Lensu, Eero Rinne, Jari Haapala, and Christian Haas
The Cryosphere, 12, 3459–3476, https://doi.org/10.5194/tc-12-3459-2018, https://doi.org/10.5194/tc-12-3459-2018, 2018
Short summary
Short summary
We quantify the sea ice thickness variability in the Bay of Bothnia using various observational data sets. For the first time we use helicopter and shipborne electromagnetic soundings to study changes in drift ice of the Bay of Bothnia. Our results show that the interannual variability of ice thickness is larger in the drift ice zone than in the fast ice zone. Furthermore, the mean thickness of heavily ridged ice near the coast can be several times larger than that of fast ice.
Paul J. Kushner, Lawrence R. Mudryk, William Merryfield, Jaison T. Ambadan, Aaron Berg, Adéline Bichet, Ross Brown, Chris Derksen, Stephen J. Déry, Arlan Dirkson, Greg Flato, Christopher G. Fletcher, John C. Fyfe, Nathan Gillett, Christian Haas, Stephen Howell, Frédéric Laliberté, Kelly McCusker, Michael Sigmond, Reinel Sospedra-Alfonso, Neil F. Tandon, Chad Thackeray, Bruno Tremblay, and Francis W. Zwiers
The Cryosphere, 12, 1137–1156, https://doi.org/10.5194/tc-12-1137-2018, https://doi.org/10.5194/tc-12-1137-2018, 2018
Short summary
Short summary
Here, the Canadian research network CanSISE uses state-of-the-art observations of snow and sea ice to assess how Canada's climate model and climate prediction systems capture variability in snow, sea ice, and related climate parameters. We find that the system performs well, accounting for observational uncertainty (especially for snow), model uncertainty, and chaotic climate variability. Even for variables like sea ice, where improvement is needed, useful prediction tools can be developed.
Wolfgang Dierking, Oliver Lang, and Thomas Busche
The Cryosphere, 11, 1967–1985, https://doi.org/10.5194/tc-11-1967-2017, https://doi.org/10.5194/tc-11-1967-2017, 2017
Short summary
Short summary
Information on the sea ice surface topography is valuable in geophysical investigations such as studies on atmosphere–sea ice interactions or sea ice mechanics. We investigated whether space-borne radar systems can be used to measure sea ice elevation. The answer is yes, but disturbing effects have to be considered, in particular sea ice drift and certain technical constraints. With future satellite radar missions, a fast wide-coverage acquisition of sea ice topography may be possible.
Robert Ricker, Stefan Hendricks, Lars Kaleschke, Xiangshan Tian-Kunze, Jennifer King, and Christian Haas
The Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-1607-2017, https://doi.org/10.5194/tc-11-1607-2017, 2017
Short summary
Short summary
We developed the first merging of CryoSat-2 and SMOS sea-ice thickness retrievals. ESA’s Earth Explorer SMOS satellite can detect thin sea ice, whereas its companion CryoSat-2, designed to observe thicker perennial sea ice, lacks sensitivity. Using these satellite missions together completes the picture of the changing Arctic sea ice and provides a more accurate and comprehensive view on the actual state of Arctic sea-ice thickness.
Xi Zhang, Wolfgang Dierking, Jie Zhang, Junmin Meng, and Haitao Lang
The Cryosphere, 10, 1529–1545, https://doi.org/10.5194/tc-10-1529-2016, https://doi.org/10.5194/tc-10-1529-2016, 2016
Short summary
Short summary
In this work, we introduced a parameter ("CP ratio") for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric SAR images. Based on a validation using other compact polarimetric SAR images from the Labrador Sea, we found a root mean square error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval procedure when applying it to level ice between 0.1 m and 0.8 m thick.
T. Krumpen, R. Gerdes, C. Haas, S. Hendricks, A. Herber, V. Selyuzhenok, L. Smedsrud, and G. Spreen
The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, https://doi.org/10.5194/tc-10-523-2016, 2016
Short summary
Short summary
We present an extensive data set of ground-based and airborne electromagnetic ice thickness measurements covering Fram Strait in summer between 2001 and 2012. An investigation of back trajectories of surveyed sea ice using satellite-based sea ice motion data allows us to examine the connection between thickness variability, ice age and source area. In addition, we determine across and along strait gradients in ice thickness and associated volume fluxes.
D. Price, W. Rack, P. J. Langhorne, C. Haas, G. Leonard, and K. Barnsdale
The Cryosphere, 8, 1031–1039, https://doi.org/10.5194/tc-8-1031-2014, https://doi.org/10.5194/tc-8-1031-2014, 2014
S. Willmes, M. Nicolaus, and C. Haas
The Cryosphere, 8, 891–904, https://doi.org/10.5194/tc-8-891-2014, https://doi.org/10.5194/tc-8-891-2014, 2014
A. Behrendt, W. Dierking, E. Fahrbach, and H. Witte
Earth Syst. Sci. Data, 5, 209–226, https://doi.org/10.5194/essd-5-209-2013, https://doi.org/10.5194/essd-5-209-2013, 2013
L. Rabenstein, T. Krumpen, S. Hendricks, C. Koeberle, C. Haas, and J. A. Hoelemann
The Cryosphere, 7, 947–959, https://doi.org/10.5194/tc-7-947-2013, https://doi.org/10.5194/tc-7-947-2013, 2013
Related subject area
Discipline: Sea ice | Subject: Remote Sensing
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
The AutoICE Challenge
A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models
Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals
Sea ice transport and replenishment across and within the Canadian Arctic Archipelago, 2016–2022
SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition
MMSeaIce: a collection of techniques for improving sea ice mapping with a multi-task model
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Pan-Arctic Sea Ice Concentration from SAR and Passive Microwave
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Snow Depth Estimation on Lead-less Landfast ice using Cryo2Ice satellite observations
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
The Variability of CryoSat-2 derived Sea Ice Thickness introduced by modelled vs. empirical snow thickness, sea ice density and water density
Spaceborne thermal infrared observations of Arctic sea ice leads at 30 m resolution
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
First observations of sea ice flexural–gravity waves with ground-based radar interferometry in Utqiaġvik, Alaska
Feasibility of retrieving Arctic sea ice thickness from the Chinese HY-2B Ku-band radar altimeter
Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture
Aerial observations of sea ice breakup by ship waves
Monitoring Arctic thin ice: a comparison between CryoSat-2 SAR altimetry data and MODIS thermal-infrared imagery
The effects of surface roughness on the calculated, spectral, conical–conical reflectance factor as an alternative to the bidirectional reflectance distribution function of bare sea ice
Inter-comparison and evaluation of Arctic sea ice type products
A simple model for daily basin-wide thermodynamic sea ice thickness growth retrieval
Ice ridge density signatures in high-resolution SAR images
Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
Quantifying the effects of background concentrations of crude oil pollution on sea ice albedo
Characterizing the sea-ice floe size distribution in the Canada Basin from high-resolution optical satellite imagery
Generating large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission using the Environment and Climate Change Canada automated sea ice tracking system
Rotational drift in Antarctic sea ice: pronounced cyclonic features and differences between data products
Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data
Cross-platform classification of level and deformed sea ice considering per-class incident angle dependency of backscatter intensity
Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements
Antarctic snow-covered sea ice topography derivation from TanDEM-X using polarimetric SAR interferometry
Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness
A lead-width distribution for Antarctic sea ice: a case study for the Weddell Sea with high-resolution Sentinel-2 images
Satellite altimetry detection of ice-shelf-influenced fast ice
MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years
Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission
Spaceborne infrared imagery for early detection of Weddell Polynya opening
Estimating instantaneous sea-ice dynamics from space using the bi-static radar measurements of Earth Explorer 10 candidate Harmony
Estimating subpixel turbulent heat flux over leads from MODIS thermal infrared imagery with deep learning
An improved sea ice detection algorithm using MODIS: application as a new European sea ice extent indicator
Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover
Estimation of degree of sea ice ridging in the Bay of Bothnia based on geolocated photon heights from ICESat-2
Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice
Improved machine-learning-based open-water–sea-ice–cloud discrimination over wintertime Antarctic sea ice using MODIS thermal-infrared imagery
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024, https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
Short summary
Passive microwave observations from satellites are crucial for monitoring Arctic sea ice and atmosphere. To do this effectively, it is important to understand how sea ice emits microwaves. Through unique Arctic sea ice observations, we improved our understanding, identified four distinct emission types, and expanded current knowledge to include higher frequencies. These findings will enhance our ability to monitor the Arctic climate and provide valuable information for new satellite missions.
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024, https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary
Short summary
The AutoICE challenge encouraged the development of deep learning models to map multiple aspects of sea ice – the amount of sea ice in an area and the age and ice floe size – using multiple sources of satellite and weather data across the Canadian and Greenlandic Arctic. Professionally drawn operational sea ice charts were used as a reference. A total of 179 students and sea ice and AI specialists participated and produced maps in broad agreement with the sea ice charts.
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024, https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary
Short summary
Interferometric synthetic aperture radar can measure the total freeboard of sea ice but can be biased when radar signals penetrate snow and ice. We develop a new method to retrieve the total freeboard and analyze the regional variation of total freeboard and roughness in the Weddell and Ross seas. We also investigate the statistical behavior of the total freeboard for diverse ice types. The findings enhance the understanding of Antarctic sea ice topography and its dynamics in a changing climate.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024, https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary
Short summary
The total Arctic sea-ice area (SIA), which is an important climate indicator, is routinely monitored with the help of satellite measurements. Uncertainties in observations of sea-ice concentration (SIC) partly cancel out when summed up to the total SIA, but the degree to which this is happening has been unclear. Here we find that the uncertainty daily SIA estimates, based on uncertainties in SIC, are about 300 000 km2. The 2002 to 2017 September decline in SIA is approx. 105 000 ± 9000 km2 a−1.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024, https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
Short summary
The CAA serves as both a source and a sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay. It is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to Parry Channel, which spans the central region of the Northwest Passage.
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
Short summary
A dataset of 20 radar satellite acquisitions and near-simultaneous helicopter-based surveys of the ice topography during the MOSAiC expedition is constructed and used to train a variety of deep learning algorithms. The results give realistic insights into the accuracy of retrieval of measured ice classes using modern deep learning models. The models able to learn from the spatial distribution of the measured sea ice classes are shown to have a clear advantage over those that cannot.
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024, https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary
Short summary
This paper introduces an automated sea ice mapping pipeline utilizing a multi-task U-Net architecture. It attained the top score of 86.3 % in the AutoICE challenge. Ablation studies revealed that incorporating brightness temperature data and spatial–temporal information significantly enhanced model accuracy. Accurate sea ice mapping is vital for comprehending the Arctic environment and its global climate effects, underscoring the potential of deep learning.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
EGUsphere, https://doi.org/10.5194/egusphere-2024-178, https://doi.org/10.5194/egusphere-2024-178, 2024
Short summary
Short summary
Here, we present ASIP (Automated Sea Ice Products): a new and comprehensive deep learning-based methodology to retrieve high-resolution sea ice concentration with accompanying well-calibrated uncertainties from Sentinel-1 SAR and AMSR2 passive microwave observations at a pan-Arctic scale for all seasons. In a comparative study against pan-Arctic ice charts and passive microwave-based sea ice products, we show that ASIP generalizes well to the pan-Arctic region.
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537, https://doi.org/10.5194/tc-17-5519-2023, https://doi.org/10.5194/tc-17-5519-2023, 2023
Short summary
Short summary
To alleviate tedious manual image annotations for training deep learning (DL) models in floe instance segmentation, we employ a classical image processing technique to automatically label floes in images. We then apply a DL semantic method for fast and adaptive floe instance segmentation from high-resolution airborne and satellite images. A post-processing algorithm is also proposed to refine the segmentation and further to derive acceptable floe size distributions at local and global scales.
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
EGUsphere, https://doi.org/10.5194/egusphere-2023-2509, https://doi.org/10.5194/egusphere-2023-2509, 2023
Short summary
Short summary
Snow on sea ice is vital for near-shore sea ice geophysical and biological processes. Past studies have measured snow depths using satellite altimeters Cryosat-2 and ICESat-2 (Cryo2Ice) but estimating sea surface height from lead-less land-fast sea ice remains challenging. Snow depths from Cryo2Ice are compared to in-situ after adjusting for tides. Realistic snow depths are retrieved but difference in roughness, satellite footprints and snow geophysical properties are identified as challenges.
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-142, https://doi.org/10.5194/tc-2023-142, 2023
Revised manuscript accepted for TC
Short summary
Short summary
Melt water puddles, or melt ponds on top of the Arctic sea ice are a good measure of the Arctic climate state. In the context of the recent climate warming, the Arctic has warmed about 4 times faster than the rest of the world, and a long-term dataset of the melt pond fraction is needed to be able to model the future development of the Arctic climate. We present such a dataset, produce 2002–2023 trends and highlight a potential melt regime shift with drastic regional trends of +20 % per decade.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023, https://doi.org/10.5194/tc-17-3867-2023, 2023
Short summary
Short summary
During winter, storms entering the Arctic region can bring warm air into the cold environment. Strong increases in air temperature modify the characteristics of the Arctic snow and ice cover. The Arctic sea ice cover can be monitored by satellites observing the natural emission of the Earth's surface. In this study, we show that during warm air intrusions the change in the snow characteristics influences the satellite-derived sea ice cover, leading to a false reduction of the estimated ice area.
Ellen M. Buckley, Sinéad L. Farrell, Ute C. Herzfeld, Melinda A. Webster, Thomas Trantow, Oliwia N. Baney, Kyle A. Duncan, Huilin Han, and Matthew Lawson
The Cryosphere, 17, 3695–3719, https://doi.org/10.5194/tc-17-3695-2023, https://doi.org/10.5194/tc-17-3695-2023, 2023
Short summary
Short summary
In this study, we use satellite observations to investigate the evolution of melt ponds on the Arctic sea ice surface. We derive melt pond depth from ICESat-2 measurements of the pond surface and bathymetry and melt pond fraction (MPF) from the classification of Sentinel-2 imagery. MPF increases to a peak of 16 % in late June and then decreases, while depth increases steadily. This work demonstrates the ability to track evolving melt conditions in three dimensions throughout the summer.
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-122, https://doi.org/10.5194/tc-2023-122, 2023
Revised manuscript accepted for TC
Short summary
Short summary
To derive sea ice thickness (SIT) from satellite freeboard (FB) observations, assumptions about snow thickness, snow density, sea ice density and water density are needed. These parameters are impossible to observe alongside FB, so many existing products use empirical values. In this study, modeled values are used instead. The modeled values and otherwise commonly used empirical values are evaluated against in situ observations. In a further analysis, the influence on the SIT is quantified.
Yujia Qiu, Xiao-Ming Li, and Huadong Guo
The Cryosphere, 17, 2829–2849, https://doi.org/10.5194/tc-17-2829-2023, https://doi.org/10.5194/tc-17-2829-2023, 2023
Short summary
Short summary
Spaceborne thermal infrared sensors with kilometer-scale resolution cannot support adequate parameterization of Arctic leads. For the first time, we applied the 30 m resolution data from the Thermal Infrared Spectrometer (TIS) on the emerging SDGSAT-1 to detect Arctic leads. Validation with Sentinel-2 data shows high accuracy for the three TIS bands. Compared to MODIS, the TIS presents more narrow leads, demonstrating its great potential for observing previously unresolvable Arctic leads.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Dyre Oliver Dammann, Mark A. Johnson, Andrew R. Mahoney, and Emily R. Fedders
The Cryosphere, 17, 1609–1622, https://doi.org/10.5194/tc-17-1609-2023, https://doi.org/10.5194/tc-17-1609-2023, 2023
Short summary
Short summary
We investigate the GAMMA Portable Radar Interferometer (GPRI) as a tool for evaluating flexural–gravity waves in sea ice in near real time. With a GPRI mounted on grounded ice near Utqiaġvik, Alaska, we identify 20–50 s infragravity waves in landfast ice with ~1 mm amplitude during 23–24 April 2021. Observed wave speed and periods compare well with modeled wave propagation and on-ice accelerometers, confirming the ability to track propagation and properties of waves over hundreds of meters.
Zhaoqing Dong, Lijian Shi, Mingsen Lin, Yongjun Jia, Tao Zeng, and Suhui Wu
The Cryosphere, 17, 1389–1410, https://doi.org/10.5194/tc-17-1389-2023, https://doi.org/10.5194/tc-17-1389-2023, 2023
Short summary
Short summary
We try to explore the application of SGDR data in polar sea ice thickness. Through this study, we find that it seems difficult to obtain reasonable results by using conventional methods. So we use the 15 lowest points per 25 km to estimate SSHA to retrieve more reasonable Arctic radar freeboard and thickness. This study also provides reference for reprocessing L1 data. We will release products that are more reasonable and suitable for polar sea ice thickness retrieval to better evaluate HY-2B.
Wenkai Guo, Polona Itkin, Suman Singha, Anthony P. Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023, https://doi.org/10.5194/tc-17-1279-2023, 2023
Short summary
Short summary
Sea ice maps are produced to cover the MOSAiC Arctic expedition (2019–2020) and divide sea ice into scientifically meaningful classes. We use a high-resolution X-band synthetic aperture radar dataset and show how image brightness and texture systematically vary across the images. We use an algorithm that reliably corrects this effect and achieve good results, as evaluated by comparisons to ground observations and other studies. The sea ice maps are useful as a basis for future MOSAiC studies.
Elie Dumas-Lefebvre and Dany Dumont
The Cryosphere, 17, 827–842, https://doi.org/10.5194/tc-17-827-2023, https://doi.org/10.5194/tc-17-827-2023, 2023
Short summary
Short summary
By changing the shape of ice floes, wave-induced sea ice breakup dramatically affects the large-scale dynamics of sea ice. As this process is also the trigger of multiple others, it was deemed relevant to study how breakup itself affects the ice floe size distribution. To do so, a ship sailed close to ice floes, and the breakup that it generated was recorded with a drone. The obtained data shed light on the underlying physics of wave-induced sea ice breakup.
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023, https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary
Short summary
Thinning sea ice has significant impacts on the energy exchange between the atmosphere and the ocean. In this study we present visual and quantitative comparisons of thin-ice detections obtained from classified Cryosat-2 radar reflections and thin-ice-thickness estimates derived from MODIS thermal-infrared imagery. In addition to good comparability, the results of the study indicate the potential for a deeper understanding of sea ice in the polar seas and improved processing of altimeter data.
Maxim L. Lamare, John D. Hedley, and Martin D. King
The Cryosphere, 17, 737–751, https://doi.org/10.5194/tc-17-737-2023, https://doi.org/10.5194/tc-17-737-2023, 2023
Short summary
Short summary
The reflectivity of sea ice is crucial for modern climate change and for monitoring sea ice from satellites. The reflectivity depends on the angle at which the ice is viewed and the angle illuminated. The directional reflectivity is calculated as a function of viewing angle, illuminating angle, thickness, wavelength and surface roughness. Roughness cannot be considered independent of thickness, illumination angle and the wavelength. Remote sensors will use the data to image sea ice from space.
Yufang Ye, Yanbing Luo, Yan Sun, Mohammed Shokr, Signe Aaboe, Fanny Girard-Ardhuin, Fengming Hui, Xiao Cheng, and Zhuoqi Chen
The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023, https://doi.org/10.5194/tc-17-279-2023, 2023
Short summary
Short summary
Arctic sea ice type (SITY) variation is a sensitive indicator of climate change. This study gives a systematic inter-comparison and evaluation of eight SITY products. Main results include differences in SITY products being significant, with average Arctic multiyear ice extent up to 1.8×106 km2; Ku-band scatterometer SITY products generally performing better; and factors such as satellite inputs, classification methods, training datasets and post-processing highly impacting their performance.
James Anheuser, Yinghui Liu, and Jeffrey R. Key
The Cryosphere, 16, 4403–4421, https://doi.org/10.5194/tc-16-4403-2022, https://doi.org/10.5194/tc-16-4403-2022, 2022
Short summary
Short summary
A prominent part of the polar climate system is sea ice, a better understanding of which would lead to better understanding Earth's climate. Newly published methods for observing the temperature of sea ice have made possible a new method for estimating daily sea ice thickness growth from space using an energy balance. The method compares well with existing sea ice thickness observations.
Mikko Lensu and Markku Similä
The Cryosphere, 16, 4363–4377, https://doi.org/10.5194/tc-16-4363-2022, https://doi.org/10.5194/tc-16-4363-2022, 2022
Short summary
Short summary
Ice ridges form a compressing ice cover. From above they appear as walls of up to few metres in height and extend even kilometres across the ice. Below they may reach tens of metres under the sea surface. Ridges need to be observed for the purposes of ice forecasting and ice information production. This relies mostly on ridging signatures discernible in radar satellite (SAR) images. New methods to quantify ridging from SAR have been developed and are shown to agree with field observations.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Benjamin Heikki Redmond Roche and Martin D. King
The Cryosphere, 16, 3949–3970, https://doi.org/10.5194/tc-16-3949-2022, https://doi.org/10.5194/tc-16-3949-2022, 2022
Short summary
Short summary
Sea ice is bright, playing an important role in reflecting incoming solar radiation. The reflectivity of sea ice is affected by the presence of pollutants, such as crude oil, even at low concentrations. Modelling how the brightness of three types of sea ice is affected by increasing concentrations of crude oils shows that the type of oil, the type of ice, the thickness of the ice, and the size of the oil droplets are important factors. This shows that sea ice is vulnerable to oil pollution.
Alexis Anne Denton and Mary-Louise Timmermans
The Cryosphere, 16, 1563–1578, https://doi.org/10.5194/tc-16-1563-2022, https://doi.org/10.5194/tc-16-1563-2022, 2022
Short summary
Short summary
Arctic sea ice has a distribution of ice sizes that provides insight into the physics of the ice. We examine this distribution from satellite imagery from 1999 to 2014 in the Canada Basin. We find that it appears as a power law whose power becomes less negative with increasing ice concentrations and has a seasonality tied to that of ice concentration. Results suggest ice concentration be considered in models of this distribution and are important for understanding sea ice in a warming Arctic.
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022, https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Short summary
We describe, apply, and validate the Environment and Climate Change Canada automated sea ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using synthetic aperture radar (SAR) images. The ECCC-ASITS was applied to the incoming image streams of Sentinel-1AB and the RADARSAT Constellation Mission from March 2020 to October 2021 using a total of 135 471 SAR images and generated new SIM datasets (i.e., 7 d 25 km and 3 d 6.25 km).
Wayne de Jager and Marcello Vichi
The Cryosphere, 16, 925–940, https://doi.org/10.5194/tc-16-925-2022, https://doi.org/10.5194/tc-16-925-2022, 2022
Short summary
Short summary
Ice motion can be used to better understand how weather and climate change affect the ice. Antarctic sea ice extent has shown large variability over the observed period, and dynamical features may also have changed. Our method allows for the quantification of rotational motion caused by wind and how this may have changed with time. Cyclonic motion dominates the Atlantic sector, particularly from 2015 onwards, while anticyclonic motion has remained comparatively small and unchanged.
Stefan Kern, Thomas Lavergne, Leif Toudal Pedersen, Rasmus Tage Tonboe, Louisa Bell, Maybritt Meyer, and Luise Zeigermann
The Cryosphere, 16, 349–378, https://doi.org/10.5194/tc-16-349-2022, https://doi.org/10.5194/tc-16-349-2022, 2022
Short summary
Short summary
High-resolution clear-sky optical satellite imagery has rarely been used to evaluate satellite passive microwave sea-ice concentration products beyond case-study level. By comparing 10 such products with sea-ice concentration estimated from > 350 such optical images in both hemispheres, we expand results of earlier evaluation studies for these products. Results stress the need to look beyond precision and accuracy and to discuss the evaluation data’s quality and filters applied in the products.
Wenkai Guo, Polona Itkin, Johannes Lohse, Malin Johansson, and Anthony Paul Doulgeris
The Cryosphere, 16, 237–257, https://doi.org/10.5194/tc-16-237-2022, https://doi.org/10.5194/tc-16-237-2022, 2022
Short summary
Short summary
This study uses radar satellite data categorized into different sea ice types to detect ice deformation, which is significant for climate science and ship navigation. For this, we examine radar signal differences of sea ice between two similar satellite sensors and show an optimal way to apply categorization methods across sensors, so more data can be used for this purpose. This study provides a basis for future reliable and constant detection of ice deformation remotely through satellite data.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Lanqing Huang, Georg Fischer, and Irena Hajnsek
The Cryosphere, 15, 5323–5344, https://doi.org/10.5194/tc-15-5323-2021, https://doi.org/10.5194/tc-15-5323-2021, 2021
Short summary
Short summary
This study shows an elevation difference between the radar interferometric measurements and the optical measurements from a coordinated campaign over the snow-covered deformed sea ice in the western Weddell Sea, Antarctica. The objective is to correct the penetration bias of microwaves and to generate a precise sea ice topographic map, including the snow depth on top. Excellent performance for sea ice topographic retrieval is achieved with the proposed model and the developed retrieval scheme.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
Marek Muchow, Amelie U. Schmitt, and Lars Kaleschke
The Cryosphere, 15, 4527–4537, https://doi.org/10.5194/tc-15-4527-2021, https://doi.org/10.5194/tc-15-4527-2021, 2021
Short summary
Short summary
Linear-like openings in sea ice, also called leads, occur with widths from meters to kilometers. We use satellite images from Sentinel-2 with a resolution of 10 m to identify leads and measure their widths. With that we investigate the frequency of lead widths using two different statistical methods, since other studies have shown a dependency of heat exchange on the lead width. We are the first to address the sea-ice lead-width distribution in the Weddell Sea, Antarctica.
Gemma M. Brett, Daniel Price, Wolfgang Rack, and Patricia J. Langhorne
The Cryosphere, 15, 4099–4115, https://doi.org/10.5194/tc-15-4099-2021, https://doi.org/10.5194/tc-15-4099-2021, 2021
Short summary
Short summary
Ice shelf meltwater in the surface ocean affects sea ice formation, causing it to be thicker and, in particular conditions, to have a loose mass of platelet ice crystals called a sub‐ice platelet layer beneath. This causes the sea ice freeboard to stand higher above sea level. In this study, we demonstrate for the first time that the signature of ice shelf meltwater in the surface ocean manifesting as higher sea ice freeboard in McMurdo Sound is detectable from space using satellite technology.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon
The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, https://doi.org/10.5194/tc-15-3681-2021, 2021
Short summary
Short summary
Pushed by winds and ocean currents, polar sea ice is on the move. We use passive microwave satellites to observe this motion. The images from their orbits are often put together into daily images before motion is measured. In our study, we measure motion from the individual orbits directly and not from the daily images. We obtain many more motion vectors, and they are more accurate. This can be used for current and future satellites, e.g. the Copernicus Imaging Microwave Radiometer (CIMR).
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021, https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Short summary
For navigation or science planning, knowing when sea ice will open in advance is a prerequisite. Yet, to date, routine spaceborne microwave observations of sea ice are unable to do so. We present the first method based on spaceborne infrared that can forecast an opening several days ahead. We develop it specifically for the Weddell Polynya, a large hole in the Antarctic winter ice cover that unexpectedly re-opened for the first time in 40 years in 2016, and determine why the polynya opened.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Zhixiang Yin, Xiaodong Li, Yong Ge, Cheng Shang, Xinyan Li, Yun Du, and Feng Ling
The Cryosphere, 15, 2835–2856, https://doi.org/10.5194/tc-15-2835-2021, https://doi.org/10.5194/tc-15-2835-2021, 2021
Short summary
Short summary
MODIS thermal infrared (TIR) imagery provides promising data to study the rapid variations in the Arctic turbulent heat flux (THF). The accuracy of estimated THF, however, is low (especially for small leads) due to the coarse resolution of the MODIS TIR data. We train a deep neural network to enhance the spatial resolution of estimated THF over leads from MODIS TIR imagery. The method is found to be effective and can generate a result which is close to that derived from Landsat-8 TIR imagery.
Joan Antoni Parera-Portell, Raquel Ubach, and Charles Gignac
The Cryosphere, 15, 2803–2818, https://doi.org/10.5194/tc-15-2803-2021, https://doi.org/10.5194/tc-15-2803-2021, 2021
Short summary
Short summary
We describe a new method to map sea ice and water at 500 m resolution using data acquired by the MODIS sensors. The strength of this method is that it achieves high-accuracy results and is capable of attenuating unwanted resolution-breaking effects caused by cloud masking. Our resulting March and September monthly aggregates reflect the loss of sea ice in the European Arctic during the 2000–2019 period and show the algorithm's usefulness as a sea ice monitoring tool.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021, https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Short summary
Ice navigators rely on timely information about ice conditions to ensure safe passage through ice-covered waters, and one parameter, the degree of ice ridging (DIR), is particularly useful. We have investigated the possibility of estimating DIR from the geolocated photons of ICESat-2 (IS2) in the Bay of Bothnia, show that IS2 retrievals from different DIR areas differ significantly, and present some of the first steps in creating sea ice applications beyond e.g. thickness retrieval.
Rasmus T. Tonboe, Vishnu Nandan, John Yackel, Stefan Kern, Leif Toudal Pedersen, and Julienne Stroeve
The Cryosphere, 15, 1811–1822, https://doi.org/10.5194/tc-15-1811-2021, https://doi.org/10.5194/tc-15-1811-2021, 2021
Short summary
Short summary
A relationship between the Ku-band radar scattering horizon and snow depth is found using a radar scattering model. This relationship has implications for (1) the use of snow climatology in the conversion of satellite radar freeboard into sea ice thickness and (2) the impact of variability in measured snow depth on the derived ice thickness. For both 1 and 2, the impact of using a snow climatology versus the actual snow depth is relatively small.
Stephan Paul and Marcus Huntemann
The Cryosphere, 15, 1551–1565, https://doi.org/10.5194/tc-15-1551-2021, https://doi.org/10.5194/tc-15-1551-2021, 2021
Short summary
Short summary
Cloud cover in the polar regions is difficult to identify at night when using only thermal-infrared data. This is due to occurrences of warm clouds over cold sea ice and cold clouds over warm sea ice. Especially the standard MODIS cloud mask frequently tends towards classifying open water and/or thin ice as cloud cover. Using a neural network, we present an improved discrimination between sea-ice, open-water and/or thin-ice, and cloud pixels in nighttime MODIS thermal-infrared satellite data.
Cited articles
Amundrud, T. L., Melling, H., and Ingram, R. G.: Geometrical constraints on the
evolution of ridged sea ice, J. Geophys. Res., 109, C06005,
https://doi.org/10.1029/2003jc002251, 2004. a, b, c
Baumann, T. M., Polyakov, I. V., Padman, L., Danielson, S., Fer, I., Janout,
M., Williams, W., and Pnyushkov, A. V.: Arctic tidal current atlas,
Scientific Data, 7, 275, https://doi.org/10.1038/s41597-020-00578-z, 2020. a
CICE Consortium Icepack: Icepack version 1.1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.1213462, 2020. a, b
Dierking, W., Stern, H. L., and Hutchings, J. K.: Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays, The Cryosphere, 14, 2999–3016, https://doi.org/10.5194/tc-14-2999-2020, 2020. a
Duncan, K., Farrell, S. L., Hutchings, J., and Richter-Menge, J.: Late Winter
Observations of Sea Ice Pressure Ridge Sail Height, IEEE Geosci.
Remote S., 1–5, https://doi.org/10.1109/lgrs.2020.3004724, 2020. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic
Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2, 2002. a
Ervik, Å., Høyland, K. V., Shestov, A., and Nord, T. S.: On the decay of
first-year ice ridges: Measurements and evolution of rubble macroporosity,
ridge drilling resistance and consolidated layer strength, Cold Reg.
Sci. Technol., 151, 196–207,
https://doi.org/10.1016/j.coldregions.2018.03.024, 2018. a
ESA: Copernicus Open Access Hub, https://scihub.copernicus.eu/dhus/#/home, last access: 14 January 2020. a
EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF): Low resolution sea ice drift product, http://osisaf.met.no/p/ice/lr_ice_drift.html, last access: 11 May 2020. a
Flato, G. M. and Hibler, W. D.: Ridging and strength in modeling the thickness
distribution of Arctic sea ice, J. Geophys. Res., 100,
18611, https://doi.org/10.1029/95jc02091, 1995. a
Griebel, J. and Dierking, W.: Impact of Sea Ice Drift Retrieval Errors,
Discretization and Grid Type on Calculations of Ice Deformation, Remote
Sensing, 10, 393, https://doi.org/10.3390/rs10030393, 2018. a, b
Haas, C., Gerland, S., Eicken, H., and Miller, H.: Comparison of sea-ice
thickness measurements under summer and winter conditions in the Arctic using
a small electromagnetic induction device, Geophysics, 62, 749–757,
https://doi.org/10.1190/1.1444184, 1997. a
Haas, C., Hendricks, S., and Doble, M.: Comparison of the Sea-ice thickness
distribution in the Lincoln Sea and adjacent Arctic Ocean in 2004 and 2005,
Ann. Glaciol., 44, 247–252, https://doi.org/10.3189/172756406781811781, 2006. a
Haas, C., Pfaffling, A., Hendricks, S., Rabenstein, L., Etienne, J.-L., and
Rigor, I.: Reduced ice thickness in Arctic Transpolar Drift favors rapid ice
retreat, Geophys. Res. Lett., 35, L17501,
https://doi.org/10.1029/2008GL034457, 2008. a, b
Haas, C., Lobach, J., Hendricks, S., Rabenstein, L., and Pfaffling, A.:
Helicopter-borne measurements of sea ice thickness, using a small and
lightweight, digital EM system, J. Appl. Geophys., 67, 234–241,
https://doi.org/10.1016/j.jappgeo.2008.05.005, 2009. a, b, c, d
Heil, P. and Hibler, W. D.: Modeling the High-Frequency Component of Arctic Sea
Ice Drift and Deformation, J. Phys. Oceanogr., 32, 3039–3057,
https://doi.org/10.1175/1520-0485(2002)032<3039:mthfco>2.0.co;2, 2002. a
Hendricks, S.: Validierung von altimetrischen Meereisdickenmessungen mit einem
helikopter-basierten elektromagnetischen Induktionsverfahren, Ph.D. thesis,
Universität Bremen,
available at: https://epic.awi.de/id/eprint/20890/1/Hen2009b.pdf (last access: 8 May 2020), 2009. a
Hollands, T. and Dierking, W.: Performance of a multiscale correlation
algorithm for the estimation of sea-ice drift from SAR images: initial
results, Ann. Glaciol., 52, 311–317,
https://doi.org/10.3189/172756411795931462, 2011. a, b, c
Hollands, T., Linow, S., and Dierking, W.: Reliability Measures for Sea Ice
Motion Retrieval From Synthetic Aperture Radar Images, IEEE J.
Sel. Top. Appl., 8, 67–75,
https://doi.org/10.1109/jstars.2014.2340572, 2015. a
Hopkins, M. A.: Four stages of pressure ridging, J. Geophys.
Res.-Oceans, 103, 21883–21891, https://doi.org/10.1029/98jc01257, 1998. a, b
Hopkins, M. A., Hibler, W. D., and Flato, G. M.: On the numerical simulation of
the sea ice ridging process, J. Geophys. Res., 96, 4809,
https://doi.org/10.1029/90jc02375, 1991. a
Hopkins, M. A., Tuhkuri, J., and Lensu, M.: Rafting and ridging of thin ice
sheets, J. Geophys. Res.-Oceans, 104, 13605–13613,
https://doi.org/10.1029/1999jc900031, 1999. a, b
Høyland, K. V.: Morphology and small-scale strength of ridges in the
North-western Barents Sea, Cold Reg. Sci. Technol., 48, 169–187,
https://doi.org/10.1016/j.coldregions.2007.01.006, 2007. a
Hutchings, J. K. and Hibler, W. D.: Small-scale sea ice deformation in the
Beaufort Sea seasonal ice zone, J. Geophys. Res., 113, C08032,
https://doi.org/10.1029/2006JC003971, 2008. a
Itkin, P., Spreen, G., Hvidegaard, S. M., Skourup, H., Wilkinson, J., Gerland,
S., and Granskog, M. A.: Contribution of Deformation to Sea Ice Mass Balance:
A Case Study From an N-ICE2015 Storm, Geophys. Res. Lett., 45,
789–796, https://doi.org/10.1002/2017gl076056, 2018. a, b, c, d, e, f, g, h, i, j
Kharitonov, V. V.: Ice ridges in the Shokalsky Strait, the Severnaya Zemlya
Archipelago, Earth's Cryosphere, XXIII,
https://doi.org/10.21782/ec2541-9994-2019-3(43-50), 2019a. a
Kharitonov, V. V.: Ice ridges in landfast ice of Shokal'skogo
Strait, Geography, Environment, Sustainability, 12, 16–26,
https://doi.org/10.24057/2071-9388-2019-43, 2019b. a
Kharitonov, V. V. and Borodkin, V. A.: On the results of studying ice ridges in
the Shokal'skogo Strait, part I: Morphology and physical
parameters in-situ, Cold Reg. Sci. Technol., 174, 103041,
https://doi.org/10.1016/j.coldregions.2020.103041, 2020. a
King, J., Howell, S., Derksen, C., Rutter, N., Toose, P., Beckers, J. F., Haas,
C., Kurtz, N., and Richter-Menge, J.: Evaluation of Operation IceBridge
quick-look snow depth estimates on sea ice, Geophys. Res. Lett., 42,
9302–9310, https://doi.org/10.1002/2015gl066389, 2015. a
Kirillov, S., Dmitrenko, I., Rysgaard, S., Babb, D., Toudal Pedersen, L., Ehn, J., Bendtsen, J., and Barber, D.: Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland), Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, 2017. a
Kwok, R.: Seasonal ice area and volume production of the Arctic Ocean: November
1996 through April 1997, J. Geophys. Res., 107, 8038,
https://doi.org/10.1029/2000JC000469, 2002. a, b
Kwok, R.: Sea ice convergence along the Arctic coasts of Greenland and the
Canadian Arctic Archipelago: Variability and extremes (1992–2014),
Geophys. Res. Lett., 42, 7598–7605, https://doi.org/10.1002/2015gl065462,
2015. a, b
Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage: losses
and coupled variability (1958–2018), Enviro. Res.
Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018. a
Kwok, R., Cunningham, G. F., and Hibler, W. D.: Sub-daily sea ice motion and
deformation from RADARSAT observations, Geophys. Res. Lett., 30,
2218, https://doi.org/10.1029/2003gl018723, 2003. a, b
Kwok, R., Hunke, E. C., Maslowski, W., Menemenlis, D., and Zhang, J.:
Variability of sea ice simulations assessed with RGPS kinematics, J.
Geophys. Res., 113, C11012, https://doi.org/10.1029/2008jc004783, 2008. a
Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H., and Breivik, L.-A.: Sea
ice motion from low-resolution satellite sensors: An alternative method and
its validation in the Arctic, J. Geophys. Res., 115, C10032,
https://doi.org/10.1029/2009jc005958, 2010. a
Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations, The Cryosphere, 9, 269–283, https://doi.org/10.5194/tc-9-269-2015, 2015. a
Lindsay, R. W. and Stern, H. L.: The RADARSAT Geophysical Processor System: Quality of Sea Ice Trajectory and Deformation Estimates, J. Atmos.
Ocean. Tech., 20, 1333–1347,
https://doi.org/10.1175/1520-0426(2003)020<1333:TRGPSQ>2.0.CO;2, 2003. a
Losch, M., Menemenlis, D., Campin, J.-M., Heimbach, P., and Hill, C.: On the
formulation of sea-ice models. Part 1: Effects of different solver
implementations and parameterizations, Ocean Modelling, 33, 129–144,
https://doi.org/10.1016/j.ocemod.2009.12.008, 2010. a
Ludwig, V., Spreen, G., Haas, C., Istomina, L., Kauker, F., and Murashkin, D.: The 2018 North Greenland polynya observed by a newly introduced merged optical and passive microwave sea-ice concentration dataset, The Cryosphere, 13, 2051–2073, https://doi.org/10.5194/tc-13-2051-2019, 2019. a, b, c, d, e
Maykut, G. A.: The Surface Heat and Mass Balance, Springer US,
Boston, MA, 395–463, https://doi.org/10.1007/978-1-4899-5352-0_6, 1986. a, b
Menemenlis, D., Hill, C., Adcrocft, A., Campin, J.-M., Cheng, B., Ciotti, B.,
Fukumori, I., Heimbach, P., Henze, C., Köhl, A., Lee, T., Stammer, D., Taft,
J., and Zhang, J.: NASA supercomputer improves prospects for ocean climate
research, Eos, Transactions American Geophysical Union, 86, 89–96,
https://doi.org/10.1029/2005eo090002, 2005. a
Moore, G. W. K., Schweiger, A., Zhang, J., and Steele, M.: What Caused the
Remarkable February 2018 North Greenland Polynya?, Geophys. Res.
Lett., 45, 13342–13350, https://doi.org/10.1029/2018gl080902, 2018. a, b, c, d
Nghiem, S. V., Rigor, I. G., Perovich, D. K., Clemente-Colón, P.,
Weatherly, J. W., and Neumann, G.: Rapid reduction of Arctic perennial sea
ice, Geophys. Res. Lett., 34, L19504, https://doi.org/10.1029/2007gl031138, 2007. a
Operation Icebridge: IceBridge Sea Ice Freeboard, Snow Depth, and Thickness Quick Look, Version 1. [22 March 2018], https://doi.org/10.5067/GRIXZ91DE0L9 (last access: 20 November 2019), 2016, updated 2019.
Pfaffling, A., Haas, C., and Reid, J. E.: Direct helicopter EM –
Sea-ice thickness inversion assessed with synthetic and field data,
Geophysics, 72, F127–F137, https://doi.org/10.1190/1.2732551, 2007. a, b
Rabenstein, L., Hendricks, S., Martin, T., Pfaffhuber, A., and Haas, C.:
Thickness and surface-properties of different sea-ice regimes within the
Arctic Trans Polar Drift: Data from summers 2001, 2004 and 2007, J.
Geophys. Res., 115, C12059, https://doi.org/10.1029/2009jc005846, 2010. a, b, c, d
Rampal, P., Weiss, J., and Marsan, D.: Positive trend in the mean speed and
deformation rate of Arctic sea ice, 1979–2007, J.
Geophys. Res., 114, C05013, https://doi.org/10.1029/2008jc005066, 2009. a, b, c, d
Rohde, J., Herber, A., Hendricks, S., and Haas, C.: Snow and ice thickness from airborne electromagnetic (EM) induction sounding over polynya event and surrounding multi-year ice off the North Coast of Greenland in March 2018, 2018-03-30, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.927445, 2021a. a
Rohde, J., Herber, A., Hendricks, S., and Haas, C.: Snow and ice thickness from airborne electromagnetic (EM) induction sounding over polynya event and surrounding multi-year ice off the North Coast of Greenland in March 2018, 2018-03-31, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.927448, 2021b. a
Semtner, A. J.: A Model for the Thermodynamic Growth of Sea Ice in Numerical
Investigations of Climate, J. Phys. Oceanogr., 6, 379–389,
https://doi.org/10.1175/1520-0485(1976)006<0379:amfttg>2.0.co;2, 1976. a
SNAP: ESA Sentinel Application Platform v8.0, http://step.esa.int, last access: 19 September 2020. a
Spreen, G., Kwok, R., and Menemenlis, D.: Trends in Arctic sea ice drift and
role of wind forcing: 1992–2009, Geophys. Res. Lett., 38, L19501,
https://doi.org/10.1029/2011gl048970, 2011. a
Stern, H. L., Rothrock, D. A., and Kwok, R.: Open water production in Arctic
sea ice: Satellite measurements and model parameterizations, J.
Geophys. Res., 100, 20601, https://doi.org/10.1029/95jc02306, 1995. a
Strub-Klein, L. and Sudom, D.: A comprehensive analysis of the morphology of
first-year sea ice ridges, Cold Reg. Sci. Technol., 82, 94–109,
https://doi.org/10.1016/j.coldregions.2012.05.014, 2012. a, b
Thomas, M., Geiger, C., and Kambhamettu, C.: High resolution (400 m) motion
characterization of sea ice using ERS-1 SAR imagery, Cold Reg. Sci.
Technol., 52, 207–223, https://doi.org/10.1016/j.coldregions.2007.06.006, 2008. a
Thomas, M., Kambhamettu, C., and Geiger, C. A.: Motion Tracking of
Discontinuous Sea Ice, IEEE T. Geosci. Remote S.,
49, 5064–5079, https://doi.org/10.1109/tgrs.2011.2158005, 2011. a
Thorndike, A. S.: Estimates of sea ice thickness distribution using
observations and theory, J. Geophys. Res., 97, 12601,
https://doi.org/10.1029/92jc01199, 1992. a, b, c
Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanik, J.: Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4.1. Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/INAWUWO7QH7B (last access: 30 July 2020), 2019.
Ungermann, M. and Losch, M.: An Observationally Based Evaluation of Subgrid
Scale Ice Thickness Distributions Simulated in a Large-Scale Sea Ice-Ocean
Model of the Arctic Ocean, J. Geophys. Res.-Oceans, 123,
8052–8067, https://doi.org/10.1029/2018jc014022, 2018.
a, b
von Albedyll, L., Haas, C., and Dierking, W.: High resolution sea ice drift and deformation off the North Coast of Greenland in March 2018, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.927451, 2021. a
Vihma, T.: Effects of Arctic Sea Ice Decline on Weather and Climate: A Review,
Surv. Geophys., 35, 1175–1214, https://doi.org/10.1007/s10712-014-9284-0, 2014. a
Vinje, T., Nordlund, N., and Kvambekk, Å.: Monitoring ice thickness in Fram
Strait, J. Geophys. Res.-Oceans, 103, 10437–10449,
https://doi.org/10.1029/97jc03360, 1998. a
Wadhams, P.: Sea Ice Thickness Changes and Their Relation to Climate, in: The
Polar Oceans and Their Role in Shaping the Global Environment,
American Geophysical Union, 337–361, https://doi.org/10.1029/GM085p0337, 1994. a, b
Wadhams, P. and Horne, R. J.: An Analysis Of Ice Profiles Obtained By Submarine
Sonar In The Beaufort Sea, J. Glaciol., 25, 401–424,
https://doi.org/10.3189/s0022143000015264, 1980. a
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin,
N. N., Aleksandrov, Y. I., and Colony, R.: Snow Depth on Arctic Sea Ice,
J. Climate, 12, 1814–1829,
https://doi.org/10.1175/1520-0442(1999)012<1814:sdoasi>2.0.co;2, 1999. a
Short summary
Convergent sea ice motion produces a thick ice cover through ridging. We studied sea ice deformation derived from high-resolution satellite imagery and related it to the corresponding thickness change. We found that deformation explains the observed dynamic thickness change. We show that deformation can be used to model realistic ice thickness distributions. Our results revealed new relationships between thickness redistribution and deformation that could improve sea ice models.
Convergent sea ice motion produces a thick ice cover through ridging. We studied sea ice...