Articles | Volume 13, issue 1
https://doi.org/10.5194/tc-13-125-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-125-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New insight from CryoSat-2 sea ice thickness for sea ice modelling
Centre for Polar Observation and Modelling, Department of
Meteorology, University of Reading, Reading, RG6 6BB, UK
Danny L. Feltham
Centre for Polar Observation and Modelling, Department of
Meteorology, University of Reading, Reading, RG6 6BB, UK
Michel Tsamados
Centre
for Polar Observation and Modelling, Department of Earth Sciences,
University College London, London, WC1E 6BT, UK
Andy Ridout
Centre
for Polar Observation and Modelling, Department of Earth Sciences,
University College London, London, WC1E 6BT, UK
Rachel Tilling
Centre for Polar Observation and Modelling, School of Earth and
Environment, University of Leeds, Leeds, LS2 9JT, UK
Related authors
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, Andrew Ridout, and Lars Nerger
The Cryosphere, 17, 2509–2532, https://doi.org/10.5194/tc-17-2509-2023, https://doi.org/10.5194/tc-17-2509-2023, 2023
Short summary
Short summary
Observations show that the Arctic sea ice cover has reduced over the last 40 years. This study uses ensemble-based data assimilation in a stand-alone sea ice model to investigate the impacts of assimilating three different kinds of sea ice observation, including the novel assimilation of sea ice thickness distribution. We show that assimilating ice thickness distribution has a positive impact on thickness and volume estimates within the ice pack, especially for very thick ice.
Rebecca Caitlin Frew, Daniel Feltham, David Schroeder, and Adam William Bateson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-91, https://doi.org/10.5194/tc-2023-91, 2023
Revised manuscript under review for TC
Short summary
Short summary
As summer Arctic sea ice extent has retreated, the marginal ice zone (MIZ) has been widening and making up an increasing percentage of the summer sea ice. The MIZ is projected to become a larger percentage of the summer ice cover, as the Arctic transitions to ice free summers. Using a sea ice model we find that the processes and timing of sea ice loss differ in the MIZ to the rest of the sea cover.
Maria Vittoria Guarino, Louise C. Sime, Rachel Diamond, Jeff Ridley, and David Schroeder
Clim. Past, 19, 865–881, https://doi.org/10.5194/cp-19-865-2023, https://doi.org/10.5194/cp-19-865-2023, 2023
Short summary
Short summary
We investigate the response of the atmosphere, ocean, and ice domains to the release of a large volume of glacial meltwaters thought to have occurred during the Last Interglacial period. We show that the signal that originated in the North Atlantic travels over great distances across the globe. It modifies the ocean gyre circulation in the Northern Hemisphere as well as the belt of westerly winds in the Southern Hemisphere, with consequences for Antarctic sea ice.
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Short summary
Numerical models are used to understand the mechanisms that drive the evolution of the Arctic sea ice cover. The sea ice cover is formed of pieces of ice called floes. Several recent studies have proposed variable floe size models to replace the standard model assumption of a fixed floe size. In this study we show the need to include floe fragmentation processes in these variable floe size models and demonstrate that model design can determine the impact of floe size on size ice evolution.
Rachel Diamond, Louise C. Sime, David Schroeder, and Maria-Vittoria Guarino
The Cryosphere, 15, 5099–5114, https://doi.org/10.5194/tc-15-5099-2021, https://doi.org/10.5194/tc-15-5099-2021, 2021
Short summary
Short summary
The Hadley Centre Global Environment Model version 3 (HadGEM3) is the first coupled climate model to simulate an ice-free summer Arctic during the Last Interglacial (LIG), 127 000 years ago, and yields accurate Arctic surface temperatures. We investigate the causes and impacts of this extreme simulated ice loss and, in particular, the role of melt ponds.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Rebecca J. Rolph, Daniel L. Feltham, and David Schröder
The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020, https://doi.org/10.5194/tc-14-1971-2020, 2020
Short summary
Short summary
It is well known that the Arctic sea ice extent is declining, and it is often assumed that the marginal ice zone (MIZ), the area of partial sea ice cover, is consequently increasing. However, we find no trend in the MIZ extent during the last 40 years from observations that is consistent with a widening of the MIZ as it moves northward. Differences of MIZ extent between different satellite retrievals are too large to provide a robust basis to verify model simulations of MIZ extent.
Adam W. Bateson, Daniel L. Feltham, David Schröder, Lucia Hosekova, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, https://doi.org/10.5194/tc-14-403-2020, 2020
Short summary
Short summary
The Arctic sea ice cover has been observed to be decreasing, particularly in summer. We use numerical models to gain insight into processes controlling its seasonal and decadal evolution. Sea ice is made of pieces of ice called floes. Previous models have set these floes to be the same size, which is not supported by observations. In this study we show that accounting for variable floe size reveals the importance of sea ice regions close to the open ocean in driving seasonal retreat of sea ice.
Maria-Vittoria Guarino, Louise C. Sime, David Schroeder, Grenville M. S. Lister, and Rosalyn Hatcher
Geosci. Model Dev., 13, 139–154, https://doi.org/10.5194/gmd-13-139-2020, https://doi.org/10.5194/gmd-13-139-2020, 2020
Short summary
Short summary
When the same weather or climate simulation is run on different high-performance computing (HPC) platforms, model outputs may not be identical for a given initial condition. Here, we investigate the behaviour of the Preindustrial simulation prepared by the UK Met Office for the forthcoming CMIP6 under different computing environments. Discrepancies between the means of key climate variables were analysed at different timescales, from decadal to centennial.
Julienne C. Stroeve, David Schroder, Michel Tsamados, and Daniel Feltham
The Cryosphere, 12, 1791–1809, https://doi.org/10.5194/tc-12-1791-2018, https://doi.org/10.5194/tc-12-1791-2018, 2018
Short summary
Short summary
This paper looks at the impact of the warm winter and anomalously low number of total freezing degree days during winter 2016/2017 on thermodynamic ice growth and overall thickness anomalies. The approach relies on evaluation of satellite data (CryoSat-2) and model output. While there is a negative feedback between rapid ice growth for thin ice, with thermodynamic ice growth increasing over time, since 2012 that relationship is changing, in part because the freeze-up is happening later.
Jeff K. Ridley, Edward W. Blockley, Ann B. Keen, Jamie G. L. Rae, Alex E. West, and David Schroeder
Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, https://doi.org/10.5194/gmd-11-713-2018, 2018
Short summary
Short summary
The sea ice component of the Met Office coupled climate model, HadGEM3-GC3.1, is presented and evaluated. We determine that the mean state of the sea ice is well reproduced for the Arctic; however, a warm sea surface temperature bias over the Southern Ocean results in a low Antarctic sea ice cover.
Daniela Flocco, Daniel L. Feltham, David Schroeder, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-118, https://doi.org/10.5194/tc-2016-118, 2016
Preprint withdrawn
Short summary
Short summary
Melt ponds form over the sea ice cover in the Arctic and impact the surface albedo inducing a positive feedback leading to further melting.
While they refreeze, ponds delay basal sea ice growth in Autumn impacting the internal sea ice temperature and therefore its basal growth rate. By using a numerical model we estimate an inhibited basal growth of up to 228 km3, which represents 25 % of the basal sea ice growth estimated by PIOMAS during the months of September and October.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Jack C. Landy, Claude de Rijke-Thomas, Carmen Nab, Isobel Lawrence, Isolde A. Glissenaar, Robbie D. C. Mallett, Renée M. Fredensborg Hansen, Alek Petty, Michel Tsamados, Amy R. Macfarlane, and Anne Braakmann-Folgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2904, https://doi.org/10.5194/egusphere-2024-2904, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
In this study we use three satellites to test the planned remote sensing approach of the upcoming mission CRISTAL over sea ice: that its dual radars will accurately measure the heights of the top and base of snow sitting atop floating sea ice floes. Our results suggest that CRISTAL's dual radars won’t necessarily measure the snow top and base under all conditions. We find that accurate height measurements depend much more on surface roughness than on snow properties, as is commonly assumed.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Alistair Duffey, Robbie Mallett, Peter J. Irvine, Michel Tsamados, and Julienne Stroeve
Earth Syst. Dynam., 14, 1165–1169, https://doi.org/10.5194/esd-14-1165-2023, https://doi.org/10.5194/esd-14-1165-2023, 2023
Short summary
Short summary
The Arctic is warming several times faster than the rest of the planet. Here, we use climate model projections to quantify for the first time how this faster warming in the Arctic impacts the timing of crossing the 1.5 °C and 2 °C thresholds defined in the Paris Agreement. We show that under plausible emissions scenarios that fail to meet the Paris 1.5 °C target, a hypothetical world without faster warming in the Arctic would breach that 1.5 °C target around 5 years later.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Nicholas Williams, Nicholas Byrne, Daniel Feltham, Peter Jan Van Leeuwen, Ross Bannister, David Schroeder, Andrew Ridout, and Lars Nerger
The Cryosphere, 17, 2509–2532, https://doi.org/10.5194/tc-17-2509-2023, https://doi.org/10.5194/tc-17-2509-2023, 2023
Short summary
Short summary
Observations show that the Arctic sea ice cover has reduced over the last 40 years. This study uses ensemble-based data assimilation in a stand-alone sea ice model to investigate the impacts of assimilating three different kinds of sea ice observation, including the novel assimilation of sea ice thickness distribution. We show that assimilating ice thickness distribution has a positive impact on thickness and volume estimates within the ice pack, especially for very thick ice.
Rebecca Caitlin Frew, Daniel Feltham, David Schroeder, and Adam William Bateson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-91, https://doi.org/10.5194/tc-2023-91, 2023
Revised manuscript under review for TC
Short summary
Short summary
As summer Arctic sea ice extent has retreated, the marginal ice zone (MIZ) has been widening and making up an increasing percentage of the summer sea ice. The MIZ is projected to become a larger percentage of the summer ice cover, as the Arctic transitions to ice free summers. Using a sea ice model we find that the processes and timing of sea ice loss differ in the MIZ to the rest of the sea cover.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Maria Vittoria Guarino, Louise C. Sime, Rachel Diamond, Jeff Ridley, and David Schroeder
Clim. Past, 19, 865–881, https://doi.org/10.5194/cp-19-865-2023, https://doi.org/10.5194/cp-19-865-2023, 2023
Short summary
Short summary
We investigate the response of the atmosphere, ocean, and ice domains to the release of a large volume of glacial meltwaters thought to have occurred during the Last Interglacial period. We show that the signal that originated in the North Atlantic travels over great distances across the globe. It modifies the ocean gyre circulation in the Northern Hemisphere as well as the belt of westerly winds in the Southern Hemisphere, with consequences for Antarctic sea ice.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Short summary
Numerical models are used to understand the mechanisms that drive the evolution of the Arctic sea ice cover. The sea ice cover is formed of pieces of ice called floes. Several recent studies have proposed variable floe size models to replace the standard model assumption of a fixed floe size. In this study we show the need to include floe fragmentation processes in these variable floe size models and demonstrate that model design can determine the impact of floe size on size ice evolution.
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673, https://doi.org/10.5194/tc-16-1653-2022, https://doi.org/10.5194/tc-16-1653-2022, 2022
Short summary
Short summary
This research was conducted to better understand how coupled climate models simulate one of the large-scale interactions between the atmosphere and Arctic sea ice that we see in observational data, the accurate representation of which is important for producing reliable forecasts of Arctic sea ice on seasonal to inter-annual timescales. With network theory, this work shows that models do not reflect this interaction well on average, which is likely due to regional biases in sea ice thickness.
Emma K. Fiedler, Matthew J. Martin, Ed Blockley, Davi Mignac, Nicolas Fournier, Andy Ridout, Andrew Shepherd, and Rachel Tilling
The Cryosphere, 16, 61–85, https://doi.org/10.5194/tc-16-61-2022, https://doi.org/10.5194/tc-16-61-2022, 2022
Short summary
Short summary
Sea ice thickness (SIT) observations derived from CryoSat-2 satellite measurements have been successfully used to initialise an ocean and sea ice forecasting model (FOAM). Other centres have previously used gridded and averaged SIT observations for this purpose, but we demonstrate here for the first time that SIT measurements along the satellite orbit track can be used. Validation of the resulting modelled SIT demonstrates improvements in the model performance compared to a control.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Rachel Diamond, Louise C. Sime, David Schroeder, and Maria-Vittoria Guarino
The Cryosphere, 15, 5099–5114, https://doi.org/10.5194/tc-15-5099-2021, https://doi.org/10.5194/tc-15-5099-2021, 2021
Short summary
Short summary
The Hadley Centre Global Environment Model version 3 (HadGEM3) is the first coupled climate model to simulate an ice-free summer Arctic during the Last Interglacial (LIG), 127 000 years ago, and yields accurate Arctic surface temperatures. We investigate the causes and impacts of this extreme simulated ice loss and, in particular, the role of melt ponds.
Anne Braakmann-Folgmann, Andrew Shepherd, and Andy Ridout
The Cryosphere, 15, 3861–3876, https://doi.org/10.5194/tc-15-3861-2021, https://doi.org/10.5194/tc-15-3861-2021, 2021
Short summary
Short summary
We investigate the disintegration of the B30 iceberg using satellite remote sensing and find that the iceberg lost 378 km3 of ice in 6.5 years, corresponding to 80 % of its initial volume. About two thirds are due to fragmentation at the sides, and one third is due to melting at the iceberg’s base. The release of fresh water and nutrients impacts ocean circulation, sea ice formation, and biological production. We show that adding a snow layer is important when deriving iceberg thickness.
William Gregory, Isobel R. Lawrence, and Michel Tsamados
The Cryosphere, 15, 2857–2871, https://doi.org/10.5194/tc-15-2857-2021, https://doi.org/10.5194/tc-15-2857-2021, 2021
Short summary
Short summary
Satellite measurements of radar freeboard allow us to compute the thickness of sea ice from space; however attaining measurements across the entire Arctic basin typically takes up to 30 d. Here we present a statistical method which allows us to combine observations from three separate satellites to generate daily estimates of radar freeboard across the Arctic Basin. This helps us understand how sea ice thickness is changing on shorter timescales and what may be causing these changes.
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Short summary
We re-estimate pan-Arctic sea ice thickness (SIT) values by combining data from the Envisat and CryoSat-2 missions with data from a new, reanalysis-driven snow model. Because a decreasing amount of ice is being hidden below the waterline by the weight of overlying snow, we argue that SIT may be declining faster than previously calculated in some regions. Because the snow product varies from year to year, our new SIT calculations also display much more year-to-year variability.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
Short summary
Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
Rebecca J. Rolph, Daniel L. Feltham, and David Schröder
The Cryosphere, 14, 1971–1984, https://doi.org/10.5194/tc-14-1971-2020, https://doi.org/10.5194/tc-14-1971-2020, 2020
Short summary
Short summary
It is well known that the Arctic sea ice extent is declining, and it is often assumed that the marginal ice zone (MIZ), the area of partial sea ice cover, is consequently increasing. However, we find no trend in the MIZ extent during the last 40 years from observations that is consistent with a widening of the MIZ as it moves northward. Differences of MIZ extent between different satellite retrievals are too large to provide a robust basis to verify model simulations of MIZ extent.
Adam W. Bateson, Daniel L. Feltham, David Schröder, Lucia Hosekova, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, https://doi.org/10.5194/tc-14-403-2020, 2020
Short summary
Short summary
The Arctic sea ice cover has been observed to be decreasing, particularly in summer. We use numerical models to gain insight into processes controlling its seasonal and decadal evolution. Sea ice is made of pieces of ice called floes. Previous models have set these floes to be the same size, which is not supported by observations. In this study we show that accounting for variable floe size reveals the importance of sea ice regions close to the open ocean in driving seasonal retreat of sea ice.
Robbie D. C. Mallett, Isobel R. Lawrence, Julienne C. Stroeve, Jack C. Landy, and Michel Tsamados
The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, https://doi.org/10.5194/tc-14-251-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes and how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall are dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when studying soil carbon storage in the Andes.
Maria-Vittoria Guarino, Louise C. Sime, David Schroeder, Grenville M. S. Lister, and Rosalyn Hatcher
Geosci. Model Dev., 13, 139–154, https://doi.org/10.5194/gmd-13-139-2020, https://doi.org/10.5194/gmd-13-139-2020, 2020
Short summary
Short summary
When the same weather or climate simulation is run on different high-performance computing (HPC) platforms, model outputs may not be identical for a given initial condition. Here, we investigate the behaviour of the Preindustrial simulation prepared by the UK Met Office for the forthcoming CMIP6 under different computing environments. Discrepancies between the means of key climate variables were analysed at different timescales, from decadal to centennial.
Christopher Horvat, Lettie A. Roach, Rachel Tilling, Cecilia M. Bitz, Baylor Fox-Kemper, Colin Guider, Kaitlin Hill, Andy Ridout, and Andrew Shepherd
The Cryosphere, 13, 2869–2885, https://doi.org/10.5194/tc-13-2869-2019, https://doi.org/10.5194/tc-13-2869-2019, 2019
Short summary
Short summary
Changes in the floe size distribution (FSD) are important for sea ice evolution but to date largely unobserved and unknown. Climate models, forecast centres, ship captains, and logistic specialists cannot currently obtain statistical information about sea ice floe size on demand. We develop a new method to observe the FSD at global scales and high temporal and spatial resolution. With refinement, this method can provide crucial information for polar ship routing and real-time forecasting.
Sammie Buzzard, Daniel Feltham, and Daniela Flocco
The Cryosphere, 12, 3565–3575, https://doi.org/10.5194/tc-12-3565-2018, https://doi.org/10.5194/tc-12-3565-2018, 2018
Short summary
Short summary
Surface lakes on ice shelves can not only change the amount of solar energy the ice shelf receives, but may also play a pivotal role in sudden ice shelf collapse such as that of the Larsen B Ice Shelf in 2002.
Here we simulate current and future melting on Larsen C, Antarctica’s most northern ice shelf and one on which lakes have been observed. We find that should future lakes occur closer to the ice shelf front, they may contain sufficient meltwater to contribute to ice shelf instability.
Isobel R. Lawrence, Michel C. Tsamados, Julienne C. Stroeve, Thomas W. K. Armitage, and Andy L. Ridout
The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, https://doi.org/10.5194/tc-12-3551-2018, 2018
Short summary
Short summary
In this paper we estimate the thickness of snow cover on Arctic sea ice from space. We use data from two radar altimeter satellites, AltiKa and CryoSat-2, that have been operating synchronously since 2013. We produce maps of monthly average snow depth for the four growth seasons (October to April): 2012–2013, 2013–2014, 2014–2015, and 2015–2016. Snow depth estimates are essential for the accurate retrieval of sea ice thickness from satellite altimetry.
Graham D. Quartly, Eero Rinne, Marcello Passaro, Ole B. Andersen, Salvatore Dinardo, Sara Fleury, Kevin Guerreiro, Amandine Guillot, Stefan Hendricks, Andrey A. Kurekin, Felix L. Müller, Robert Ricker, Henriette Skourup, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-148, https://doi.org/10.5194/tc-2018-148, 2018
Revised manuscript not accepted
Short summary
Short summary
Radar altimetry is a high-precision technique for measuring sea level and sea ice thickness from space, which are important for monitoring ocean circulation, sea level rise and changes in the Arctic ice cover. This paper reviews the processing techniques needed to best extract the information from complicated radar echoes, and considers the likely developments in the coming decade.
Julienne C. Stroeve, David Schroder, Michel Tsamados, and Daniel Feltham
The Cryosphere, 12, 1791–1809, https://doi.org/10.5194/tc-12-1791-2018, https://doi.org/10.5194/tc-12-1791-2018, 2018
Short summary
Short summary
This paper looks at the impact of the warm winter and anomalously low number of total freezing degree days during winter 2016/2017 on thermodynamic ice growth and overall thickness anomalies. The approach relies on evaluation of satellite data (CryoSat-2) and model output. While there is a negative feedback between rapid ice growth for thin ice, with thermodynamic ice growth increasing over time, since 2012 that relationship is changing, in part because the freeze-up is happening later.
Jeff K. Ridley, Edward W. Blockley, Ann B. Keen, Jamie G. L. Rae, Alex E. West, and David Schroeder
Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, https://doi.org/10.5194/gmd-11-713-2018, 2018
Short summary
Short summary
The sea ice component of the Met Office coupled climate model, HadGEM3-GC3.1, is presented and evaluated. We determine that the mean state of the sea ice is well reproduced for the Arctic; however, a warm sea surface temperature bias over the Southern Ocean results in a low Antarctic sea ice cover.
Thomas W. K. Armitage, Sheldon Bacon, Andy L. Ridout, Alek A. Petty, Steven Wolbach, and Michel Tsamados
The Cryosphere, 11, 1767–1780, https://doi.org/10.5194/tc-11-1767-2017, https://doi.org/10.5194/tc-11-1767-2017, 2017
Short summary
Short summary
We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean and characterise their seasonal to decadal variability. We also present seasonal climatologies of eddy kinetic energy, and examine the changing location of the Beaufort Gyre. Geostrophic current variability highlights the complex interplay between seasonally varying forcing and sea ice conditions, changing ice–ocean coupling and increasing ocean surface stress in the 2000s.
Rachel L. Tilling, Andy Ridout, and Andrew Shepherd
The Cryosphere, 10, 2003–2012, https://doi.org/10.5194/tc-10-2003-2016, https://doi.org/10.5194/tc-10-2003-2016, 2016
Short summary
Short summary
We use CryoSat-2 satellite data to provide the first near-real-time (NRT) measurements of absolute sea ice thickness across the entire Northern Hemisphere. We analyse our NRT sea-ice-thickness data for one sea ice growth season, from October 2014 to April 2015. Over that time period a NRT thickness measurement was delivered, on average, within 14, 7 and 6 km of each location in the Arctic every 2, 14 and 28 days respectively.
Alek A. Petty, Michel C. Tsamados, Nathan T. Kurtz, Sinead L. Farrell, Thomas Newman, Jeremy P. Harbeck, Daniel L. Feltham, and Jackie A. Richter-Menge
The Cryosphere, 10, 1161–1179, https://doi.org/10.5194/tc-10-1161-2016, https://doi.org/10.5194/tc-10-1161-2016, 2016
Short summary
Short summary
This study presents an analysis of Arctic sea ice topography using high-resolution, three-dimensional surface elevation data from the Airborne Topographic Mapper (ATM) laser altimeter, flown as part of NASA's Operation IceBridge mission. We describe and implement a newly developed sea ice surface feature-picking algorithm and derive novel information regarding the height, volume and geometry of surface features over the western Arctic sea ice cover.
Daniela Flocco, Daniel L. Feltham, David Schroeder, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-118, https://doi.org/10.5194/tc-2016-118, 2016
Preprint withdrawn
Short summary
Short summary
Melt ponds form over the sea ice cover in the Arctic and impact the surface albedo inducing a positive feedback leading to further melting.
While they refreeze, ponds delay basal sea ice growth in Autumn impacting the internal sea ice temperature and therefore its basal growth rate. By using a numerical model we estimate an inhibited basal growth of up to 228 km3, which represents 25 % of the basal sea ice growth estimated by PIOMAS during the months of September and October.
A. A. Petty, P. R. Holland, and D. L. Feltham
The Cryosphere, 8, 761–783, https://doi.org/10.5194/tc-8-761-2014, https://doi.org/10.5194/tc-8-761-2014, 2014
Related subject area
Discipline: Sea ice | Subject: Numerical Modelling
A hybrid ice-mélange model based on particle and continuum methods
How many parameters are needed to represent polar sea ice surface patterns and heterogeneity?
Exploring non-Gaussian sea ice characteristics via observing system simulation experiments
Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models
Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
Using Icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics
Understanding the influence of ocean waves on Arctic sea ice simulation: a modeling study with an atmosphere–ocean–wave–sea ice coupled model
Sea ice cover in the Copernicus Arctic Regional Reanalysis
Smoothed particle hydrodynamics implementation of the standard viscous–plastic sea-ice model and validation in simple idealized experiments
Phase-field models of floe fracture in sea ice
The effect of partial dissolution on sea-ice chemical transport: a combined model–observational study using poly- and perfluoroalkylated substances (PFASs)
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology
Impact of atmospheric forcing uncertainties on Arctic and Antarctic sea ice simulations in CMIP6 OMIP models
Arctic sea ice mass balance in a new coupled ice–ocean model using a brittle rheology framework
Wave-triggered breakup in the marginal ice zone generates lognormal floe size distributions: a simulation study
Exploring the capabilities of electrical resistivity tomography to study subsea permafrost
Sea ice floe size: its impact on pan-Arctic and local ice mass and required model complexity
A probabilistic seabed–ice keel interaction model
The effect of changing sea ice on wave climate trends along Alaska's central Beaufort Sea coast
Arctic sea ice anomalies during the MOSAiC winter 2019/20
Edge displacement scores
Toward a method for downscaling sea ice pressure for navigation purposes
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 1: How to obtain sea ice brightness temperatures at 6.9 GHz from climate model output
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation
Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations
Wave energy attenuation in fields of colliding ice floes – Part 1: Discrete-element modelling of dissipation due to ice–water drag
Validation of the sea ice surface albedo scheme of the regional climate model HIRHAM–NAOSIM using aircraft measurements during the ACLOUD/PASCAL campaigns
Simulating intersection angles between conjugate faults in sea ice with different viscous–plastic rheologies
IcePAC – a probabilistic tool to study sea ice spatio-temporal dynamics: application to the Hudson Bay area
Investigating future changes in the volume budget of the Arctic sea ice in a coupled climate model
Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice–ocean data assimilation system
Saskia Kahl, Carolin Mehlmann, and Dirk Notz
The Cryosphere, 19, 129–141, https://doi.org/10.5194/tc-19-129-2025, https://doi.org/10.5194/tc-19-129-2025, 2025
Short summary
Short summary
Ice mélange, a mixture of sea ice and icebergs, can impact sea-ice–ocean interactions. But climate models do not yet represent it due to computational limits. To address this shortcoming and include ice mélange into climate models, we suggest representing icebergs as particles. We integrate their feedback into mathematical equations used to model the sea-ice motion in climate models. The setup is computationally efficient due to the iceberg particle usage and enables a realistic representation.
Joseph Fogarty, Elie Bou-Zeid, Mitchell Bushuk, and Linette Boisvert
The Cryosphere, 18, 4335–4354, https://doi.org/10.5194/tc-18-4335-2024, https://doi.org/10.5194/tc-18-4335-2024, 2024
Short summary
Short summary
We hypothesize that using a broad set of surface characterization metrics for polar sea ice surfaces will lead to more accurate representations in general circulation models. However, the first step is to identify the minimum set of metrics required. We show via numerical simulations that sea ice surface patterns can play a crucial role in determining boundary layer structures. We then statistically analyze a set of high-resolution sea ice surface images to obtain this minimal set of parameters.
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024, https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary
Short summary
Accurate sea ice conditions are crucial for quality sea ice projections, which have been connected to rapid warming over the Arctic. Knowing which observations to assimilate into models will help produce more accurate sea ice conditions. We found that not assimilating sea ice concentration led to more accurate sea ice states. The methods typically used to assimilate observations in our models apply assumptions to variables that are not well suited for sea ice because they are bounded variables.
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024, https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Short summary
Climate models show differences in sea ice representation in comparison to observations. Increasing the model resolution is a recognized way to improve model realism and obtain more reliable future projections. We find no strong impact of resolution on sea ice representation; it rather depends on the analysed variable and the model used. By 2050, the marginal ice zone (MIZ) becomes a dominant feature of the Arctic ice cover, suggesting a shift to a new regime similar to that in Antarctica.
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024, https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Short summary
This paper focuses on predicting Arctic-wide sea-ice thickness using surrogate modeling with deep learning. The model has a predictive power of 12 h up to 6 months. For this forecast horizon, persistence and daily climatology are systematically outperformed, a result of learned thermodynamics and advection. Consequently, surrogate modeling with deep learning proves to be effective at capturing the complex behavior of sea ice.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024, https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary
Short summary
We use a sea ice model to reproduce ice growth observations from two buoys deployed on coastal sea ice and analyze the improvements brought by new physics that represent the presence of saline liquid water in the ice interior. We find that the new physics with default parameters degrade the model performance, with overly rapid ice growth and overly early snow flooding on top of the ice. The performance is largely improved by simple modifications to the ice growth and snow-flooding algorithms.
Chao-Yuan Yang, Jiping Liu, and Dake Chen
The Cryosphere, 18, 1215–1239, https://doi.org/10.5194/tc-18-1215-2024, https://doi.org/10.5194/tc-18-1215-2024, 2024
Short summary
Short summary
We present a new atmosphere–ocean–wave–sea ice coupled model to study the influences of ocean waves on Arctic sea ice simulation. Our results show (1) smaller ice-floe size with wave breaking increases ice melt, (2) the responses in the atmosphere and ocean to smaller floe size partially reduce the effect of the enhanced ice melt, (3) the limited oceanic energy is a strong constraint for ice melt enhancement, and (4) ocean waves can indirectly affect sea ice through the atmosphere and the ocean.
Yurii Batrak, Bin Cheng, and Viivi Kallio-Myers
The Cryosphere, 18, 1157–1183, https://doi.org/10.5194/tc-18-1157-2024, https://doi.org/10.5194/tc-18-1157-2024, 2024
Short summary
Short summary
Atmospheric reanalyses provide consistent series of atmospheric and surface parameters in a convenient gridded form. In this paper, we study the quality of sea ice in a recently released regional reanalysis and assess its added value compared to a global reanalysis. We show that the regional reanalysis, having a more complex sea ice model, gives an improved representation of sea ice, although there are limitations indicating potential benefits in using more advanced approaches in the future.
Oreste Marquis, Bruno Tremblay, Jean-François Lemieux, and Mohammed Islam
The Cryosphere, 18, 1013–1032, https://doi.org/10.5194/tc-18-1013-2024, https://doi.org/10.5194/tc-18-1013-2024, 2024
Short summary
Short summary
We developed a standard viscous–plastic sea-ice model based on the numerical framework called smoothed particle hydrodynamics. The model conforms to the theory within an error of 1 % in an idealized ridging experiment, and it is able to simulate stable ice arches. However, the method creates a dispersive plastic wave speed. The framework is efficient to simulate fractures and can take full advantage of parallelization, making it a good candidate to investigate sea-ice material properties.
Huy Dinh, Dimitrios Giannakis, Joanna Slawinska, and Georg Stadler
The Cryosphere, 17, 3883–3893, https://doi.org/10.5194/tc-17-3883-2023, https://doi.org/10.5194/tc-17-3883-2023, 2023
Short summary
Short summary
We develop a numerical method to simulate the fracture in kilometer-sized chunks of floating ice in the ocean. Our approach uses a mathematical model that balances deformation energy against the energy required for fracture. We study the strength of ice chunks that contain random impurities due to prior damage or refreezing and what types of fractures are likely to occur. Our model shows that crack direction critically depends on the orientation of impurities relative to surrounding forces.
Max Thomas, Briana Cate, Jack Garnett, Inga J. Smith, Martin Vancoppenolle, and Crispin Halsall
The Cryosphere, 17, 3193–3201, https://doi.org/10.5194/tc-17-3193-2023, https://doi.org/10.5194/tc-17-3193-2023, 2023
Short summary
Short summary
A recent study showed that pollutants can be enriched in growing sea ice beyond what we would expect from a perfectly dissolved chemical. We hypothesise that this effect is caused by the specific properties of the pollutants working in combination with fluid moving through the sea ice. To test our hypothesis, we replicate this behaviour in a sea-ice model and show that this type of modelling can be applied to predicting the transport of chemicals with complex behaviour in sea ice.
Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau
The Cryosphere, 17, 2965–2991, https://doi.org/10.5194/tc-17-2965-2023, https://doi.org/10.5194/tc-17-2965-2023, 2023
Short summary
Short summary
We combine deep learning with a regional sea-ice model to correct model errors in the sea-ice dynamics of low-resolution forecasts towards high-resolution simulations. The combined model improves the forecast by up to 75 % and thereby surpasses the performance of persistence. As the error connection can additionally be used to analyse the shortcomings of the forecasts, this study highlights the potential of combined modelling for short-term sea-ice forecasting.
Xia Lin, François Massonnet, Thierry Fichefet, and Martin Vancoppenolle
The Cryosphere, 17, 1935–1965, https://doi.org/10.5194/tc-17-1935-2023, https://doi.org/10.5194/tc-17-1935-2023, 2023
Short summary
Short summary
This study provides clues on how improved atmospheric reanalysis products influence sea ice simulations in ocean–sea ice models. The summer ice concentration simulation in both hemispheres can be improved with changed surface heat fluxes. The winter Antarctic ice concentration and the Arctic drift speed near the ice edge and the ice velocity direction simulations are improved with changed wind stress. The radiation fluxes and winds in atmospheric reanalyses are crucial for sea ice simulations.
Guillaume Boutin, Einar Ólason, Pierre Rampal, Heather Regan, Camille Lique, Claude Talandier, Laurent Brodeau, and Robert Ricker
The Cryosphere, 17, 617–638, https://doi.org/10.5194/tc-17-617-2023, https://doi.org/10.5194/tc-17-617-2023, 2023
Short summary
Short summary
Sea ice cover in the Arctic is full of cracks, which we call leads. We suspect that these leads play a role for atmosphere–ocean interactions in polar regions, but their importance remains challenging to estimate. We use a new ocean–sea ice model with an original way of representing sea ice dynamics to estimate their impact on winter sea ice production. This model successfully represents sea ice evolution from 2000 to 2018, and we find that about 30 % of ice production takes place in leads.
Nicolas Guillaume Alexandre Mokus and Fabien Montiel
The Cryosphere, 16, 4447–4472, https://doi.org/10.5194/tc-16-4447-2022, https://doi.org/10.5194/tc-16-4447-2022, 2022
Short summary
Short summary
On the fringes of polar oceans, sea ice is easily broken by waves. As small pieces of ice, or floes, are more easily melted by the warming waters than a continuous ice cover, it is important to incorporate these floe sizes in climate models. These models simulate climate evolution at the century scale and are built by combining specialised modules. We study the statistical distribution of floe sizes under the impact of waves to better understand how to connect sea ice modules to wave modules.
Mauricio Arboleda-Zapata, Michael Angelopoulos, Pier Paul Overduin, Guido Grosse, Benjamin M. Jones, and Jens Tronicke
The Cryosphere, 16, 4423–4445, https://doi.org/10.5194/tc-16-4423-2022, https://doi.org/10.5194/tc-16-4423-2022, 2022
Short summary
Short summary
We demonstrate how we can reliably estimate the thawed–frozen permafrost interface with its associated uncertainties in subsea permafrost environments using 2D electrical resistivity tomography (ERT) data. In addition, we show how further analyses considering 1D inversion and sensitivity assessments can help quantify and better understand 2D ERT inversion results. Our results illustrate the capabilities of the ERT method to get insights into the development of the subsea permafrost.
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Short summary
Numerical models are used to understand the mechanisms that drive the evolution of the Arctic sea ice cover. The sea ice cover is formed of pieces of ice called floes. Several recent studies have proposed variable floe size models to replace the standard model assumption of a fixed floe size. In this study we show the need to include floe fragmentation processes in these variable floe size models and demonstrate that model design can determine the impact of floe size on size ice evolution.
Frédéric Dupont, Dany Dumont, Jean-François Lemieux, Elie Dumas-Lefebvre, and Alain Caya
The Cryosphere, 16, 1963–1977, https://doi.org/10.5194/tc-16-1963-2022, https://doi.org/10.5194/tc-16-1963-2022, 2022
Short summary
Short summary
In some shallow seas, grounded ice ridges contribute to stabilizing and maintaining a landfast ice cover. A scheme has already proposed where the keel thickness varies linearly with the mean thickness. Here, we extend the approach by taking into account the ice thickness and bathymetry distributions. The probabilistic approach shows a reasonably good agreement with observations and previous grounding scheme while potentially offering more physical insights into the formation of landfast ice.
Kees Nederhoff, Li Erikson, Anita Engelstad, Peter Bieniek, and Jeremy Kasper
The Cryosphere, 16, 1609–1629, https://doi.org/10.5194/tc-16-1609-2022, https://doi.org/10.5194/tc-16-1609-2022, 2022
Short summary
Short summary
Diminishing sea ice is impacting waves across the Arctic region. Recent work shows the effect of the sea ice on offshore waves; however, effects within the nearshore are less known. This study characterizes the wave climate in the central Beaufort Sea coast of Alaska. We show that the reduction of sea ice correlates strongly with increases in the average and extreme waves. However, found trends deviate from offshore, since part of the increase in energy is dissipated before reaching the shore.
Klaus Dethloff, Wieslaw Maslowski, Stefan Hendricks, Younjoo J. Lee, Helge F. Goessling, Thomas Krumpen, Christian Haas, Dörthe Handorf, Robert Ricker, Vladimir Bessonov, John J. Cassano, Jaclyn Clement Kinney, Robert Osinski, Markus Rex, Annette Rinke, Julia Sokolova, and Anja Sommerfeld
The Cryosphere, 16, 981–1005, https://doi.org/10.5194/tc-16-981-2022, https://doi.org/10.5194/tc-16-981-2022, 2022
Short summary
Short summary
Sea ice thickness anomalies during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) winter in January, February and March 2020 were simulated with the coupled Regional Arctic climate System Model (RASM) and compared with CryoSat-2/SMOS satellite data. Hindcast and ensemble simulations indicate that the sea ice anomalies are driven by nonlinear interactions between ice growth processes and wind-driven sea-ice transports, with dynamics playing a dominant role.
Arne Melsom
The Cryosphere, 15, 3785–3796, https://doi.org/10.5194/tc-15-3785-2021, https://doi.org/10.5194/tc-15-3785-2021, 2021
Short summary
Short summary
This study presents new methods to assess how well observations of sea ice expansion are reproduced by results from models. The aim is to provide information about the quality of forecasts for changes in the sea ice extent to operators in or near ice-infested waters. A test using 2 years of model results demonstrates the practical applicability and usefulness of the methods that are presented.
Jean-François Lemieux, L. Bruno Tremblay, and Mathieu Plante
The Cryosphere, 14, 3465–3478, https://doi.org/10.5194/tc-14-3465-2020, https://doi.org/10.5194/tc-14-3465-2020, 2020
Short summary
Short summary
Sea ice pressure poses great risk for navigation; it can lead to ship besetting and damages. Sea ice forecasting systems can predict the evolution of pressure. However, these systems have low spatial resolution (a few km) compared to the dimensions of ships. We study the downscaling of pressure from the km-scale to scales relevant for navigation. We find that the pressure applied on a ship beset in heavy ice conditions can be markedly larger than the pressure predicted by the forecasting system.
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2369–2386, https://doi.org/10.5194/tc-14-2369-2020, https://doi.org/10.5194/tc-14-2369-2020, 2020
Short summary
Short summary
The high disagreement between observations of Arctic sea ice makes it difficult to evaluate climate models with observations. We investigate the possibility of translating the model state into what a satellite could observe. We find that we do not need complex information about the vertical distribution of temperature and salinity inside the ice but instead are able to assume simplified distributions to reasonably translate the simulated sea ice into satellite
language.
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2387–2407, https://doi.org/10.5194/tc-14-2387-2020, https://doi.org/10.5194/tc-14-2387-2020, 2020
Short summary
Short summary
The high disagreement between observations of Arctic sea ice inhibits the evaluation of climate models with observations. We develop a tool that translates the simulated Arctic Ocean state into what a satellite could observe from space in the form of brightness temperatures, a measure for the radiation emitted by the surface. We find that the simulated brightness temperatures compare well with the observed brightness temperatures. This tool brings a new perspective for climate model evaluation.
Nils Hutter and Martin Losch
The Cryosphere, 14, 93–113, https://doi.org/10.5194/tc-14-93-2020, https://doi.org/10.5194/tc-14-93-2020, 2020
Short summary
Short summary
Sea ice is composed of a multitude of floes that constantly deform due to wind and ocean currents and thereby form leads and pressure ridges. These features are visible in the ice as stripes of open-ocean or high-piled ice. High-resolution sea ice models start to resolve these deformation features. In this paper we present two simulations that agree with satellite data according to a new evaluation metric that detects deformation features and compares their spatial and temporal characteristics.
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2887–2900, https://doi.org/10.5194/tc-13-2887-2019, https://doi.org/10.5194/tc-13-2887-2019, 2019
Short summary
Short summary
Sea ice interactions with waves are extensively studied in recent years, but mechanisms leading to wave energy attenuation in sea ice remain poorly understood. Close to the ice edge, processes contributing to dissipation include collisions between ice floes and turbulence generated under the ice due to velocity differences between ice and water. This paper analyses details of those processes both theoretically and by means of a numerical model.
Evelyn Jäkel, Johannes Stapf, Manfred Wendisch, Marcel Nicolaus, Wolfgang Dorn, and Annette Rinke
The Cryosphere, 13, 1695–1708, https://doi.org/10.5194/tc-13-1695-2019, https://doi.org/10.5194/tc-13-1695-2019, 2019
Short summary
Short summary
The sea ice surface albedo parameterization of a coupled regional climate model was validated against aircraft measurements performed in May–June 2017 north of Svalbard. The albedo parameterization was run offline from the model using the measured parameters surface temperature and snow depth to calculate the surface albedo and the individual fractions of the ice surface subtypes. An adjustment of the variables and additionally accounting for cloud cover reduced the root-mean-squared error.
Damien Ringeisen, Martin Losch, L. Bruno Tremblay, and Nils Hutter
The Cryosphere, 13, 1167–1186, https://doi.org/10.5194/tc-13-1167-2019, https://doi.org/10.5194/tc-13-1167-2019, 2019
Short summary
Short summary
We study the creation of fracture in sea ice plastic models. To do this, we compress an ideal piece of ice of 8 km by 25 km. We use two different mathematical expressions defining the resistance of ice. We find that the most common one is unable to model the fracture correctly, while the other gives better results but brings instabilities. The results are often in opposition with ice granular nature (e.g., sand) and call for changes in ice modeling.
Charles Gignac, Monique Bernier, and Karem Chokmani
The Cryosphere, 13, 451–468, https://doi.org/10.5194/tc-13-451-2019, https://doi.org/10.5194/tc-13-451-2019, 2019
Short summary
Short summary
The IcePAC tool is made to estimate the probabilities of specific sea ice conditions based on historical sea ice concentration time series from the EUMETSAT OSI-409 product (12.5 km grid), modelled using the beta distribution and used to build event probability maps, which have been unavailable until now. Compared to the Canadian ice service atlas, IcePAC showed promising results in the Hudson Bay, paving the way for its usage in other regions of the cryosphere to inform stakeholders' decisions.
Ann Keen and Ed Blockley
The Cryosphere, 12, 2855–2868, https://doi.org/10.5194/tc-12-2855-2018, https://doi.org/10.5194/tc-12-2855-2018, 2018
Short summary
Short summary
As the climate warms during the 21st century, our model shows extra melting at the top and the base of the Arctic sea ice. The reducing ice cover affects the impact these processes have on the sea ice volume budget, where the largest individual change is a reduction in the amount of growth at the base of existing ice. Using different forcing scenarios we show that, for this model, changes in the volume budget depend on the evolving ice area but not on the speed at which the ice area declines.
Takuya Nakanowatari, Jun Inoue, Kazutoshi Sato, Laurent Bertino, Jiping Xie, Mio Matsueda, Akio Yamagami, Takeshi Sugimura, Hironori Yabuki, and Natsuhiko Otsuka
The Cryosphere, 12, 2005–2020, https://doi.org/10.5194/tc-12-2005-2018, https://doi.org/10.5194/tc-12-2005-2018, 2018
Short summary
Short summary
Medium-range predictability of early summer sea ice thickness in the East Siberian Sea was examined, based on TOPAZ4 forecast data. Statistical examination indicates that the estimate drops abruptly at 4 days, which is related to dynamical process controlled by synoptic-scale atmospheric fluctuations such as an Arctic cyclone. For longer lead times (> 4 days), the thermodynamic melting process takes over, which represents most of the remaining prediction.
Cited articles
Allard, R. A., Farrell, S. L., Hebert, D. A., Johnston, W. F., Li, L., Kurtz,
N. T., Phelps, M. W., Posey, P. G., Tilling, R., Ridout, A., and Wallcraft,
A. J.: Utilizing CryoSat-2 sea ice thickness to initialize a coupled
ice-ocean modeling system, Adv. Space Res., 62, 1265–1280,
https://doi.org/10.1016/j.asr.2017.12.030, 2018.
Bauer, M., Schröder, D., Heinemann, G., Willmes, S., and Ebner, L.:
Quantifying polynya ice production in the Laptev Sea with the COSMO model,
Polar Res., 32, 20922, https://doi.org/10.3402/polar.v32i0.20922, 2013.
Bitz, C. and Lipscomb, W.: An energy-conserving thermodynamic model of sea
ice, J. Geophys. Res., 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999.
Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of
Arctic sea ice using assimilation of CryoSat-2 thickness, The Cryosphere,
12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, 2018.
Briegleb, B. P. and Light, B.: A delta-Eddington multiple scattering
parameterization for solar radiation in the sea ice component of the Com-
munity Climate System Model, Tech. Note 472, Natl. Cent. for Atmos. Res.,
Boulder, CO, 2007.
Cavalieri, D., Parkinson, C., Gloersen, P., and Zwally, H. J.: Sea Ice
Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave
Data, Boulder, Colorado USA, NASA DAAC at the National Snow and Ice Data
Center, 1996 (updated 2017).
Chaudhuri, A. H., Ponte, R. M., and Nguyen, A. T.: A Comparison of
Atmospheric Reanalysis Products for the Arctic Ocean and Implications for
Uncertainties in Air-Sea Fluxes, J. Climate, 27, 5411–5421,
https://doi.org/10.1175/JCLI-D-13-00424.1, 2014.
Comiso, J.: Bootstrap Sea Ice Concentrations From NIMBUS-7 SMMR and DMSP
SSM/I, available at: http://nsidc.org/data/nsidc-0079.html (last
access: December 2017), Natl. Snow and Ice Data Cent., Boulder, CO, 1999
(updated 2017).
Dmitrenko, I. A., Kirillov, S. A., Tremblay L. B., Bauch, D., and Willmes, S.:
Sea-ice production over the Laptev Sea Shelf inferred from historical
summer-to-winter hydrographic observations of 1960s to 1990s, Geophys. Res.
Lett. 36, L13605, https://doi.org/10.1029/2009GL038775, 2009.
Ferry, N., Masina, S., Storto, A., Haines, K., Valdivieso, M., Barnier, B.,
and Molines, J.-M.: Product User Manual GLOBAL-REANALYSISPHYS-001-004-a and
b, MyOcean, 2011.
Flocco, D., Feltham, D. L., and Turner, A. K.: Incorporation of a physically
based melt pond scheme into the sea ice component of a climate model, J.
Geophys. Res., 115, C08012, https://doi.org/10.1029/2009JC005568, 2010.
Flocco, D., Schröder, D., Feltham, D. L., and Hunke, E. C.: Impact of
melt ponds on Arctic sea ice simulations from 1990 to 2007, J. Geophys. Res.,
117, C09032, https://doi.org/10.1029/2012JC008195, 2012.
Giles, K. A., Laxon, S. W., Wingham, D. J., Wallis, D. W., Krabill, W. B.,
Leuschen, C. J., McAdoo, D., Manizade, S. S., and Raney, R. K.: Combined
airborne laser and radar altimeter measurements over the Fram Strait in May
2002, Remote Sens. Environ., 111, 182–194, https://doi.org/10.1016/j.rse.2007.02.037,
2007.
Giles, K. A., Laxon, S. W., and Ridout, A. L.: Circumpolar thinning of
Arctic sea ice following the 2007 record ice extent minimum, Geophys. Res.
Lett., 35, L22502, https://doi.org/10.1029/2008GL035710, 2008.
Guerreiro, K., Fleury, S., Zakharova, E., Rémy, F., and Kouraev, A.:
Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and
SARAL/AltiKa missions, Remote Sens. Environ., 186, 339–349, 2016.
Haas, C., Beckers, J., King, J., Silis, A., Stroeve, J., Wilkinson, J.,
Notenboom, B., Schweiger, A., and Hendricks, S.: Ice and snow thickness
variability and change in the high Arctic Ocean observed by in situ
measurements, Geophys. Res. Lett., 44, 10462–10469, https://doi.org/10.1002/2017GL075434, 2017.
Hendricks, S., Ricker, R., and Helm, V.: User Guide – AWI CryoSat-2 Sea Ice
Thickness Data Product (v1.2), hdl:10013/epic.48201, 2016.
Heorton, H., Feltham, D. L., and Tsamados, M.: Stress and deformation
characteristics of sea ice in a high resolution, anisotropic sea ice model,
Phil. Trans A, 376, 2129, https://doi.org/10.1098/rsta.2017.0349, 2018.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.:
CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual
Version 5.1, 2015.
Istomina, L., Heygster, G., Huntemann, M., Schwarz, P., Birnbaum, G., Scharien, R., Polashenski, C.,
Perovich, D., Zege, E., Malinka, A., Prikhach, A., and Katsev, I.: Melt pond fraction
and spectral sea ice albedo retrieval from MERIS data – Part 1: Validation against in
situ, aerial, and ship cruise data, The Cryosphere, 9, 1551–1566, https://doi.org/10.5194/tc-9-1551-2015, 2015.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J.,
Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-II Reanalysis (R-2), B. Am.
Meteorol. Soc., 83, 1631–1643, 2017.
Kurtz, N. T. and Farrell, S. L.: Large-scale surveys of snow depth on Arctic
sea ice from Operation IceBridge, Geophys. Res. Lett., 38, L20505, https://doi.org/10.1029/2011GL049216, 2011.
Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R.,
Onana, V. D., Panzer, B., and Sonntag, J. G.: Sea ice thickness, freeboard, and snow
depth products from Operation IceBridge airborne data, The Cryosphere, 7, 1035–1056,
https://doi.org/10.5194/tc-7-1035-2013, 2013.
Kurtz, N. T., Galin, N., and Studinger, M.: An improved CryoSat-2 sea ice freeboard retrieval algorithm
through the use of waveform fitting, The Cryosphere, 8, 1217–1237, https://doi.org/10.5194/tc-8-1217-2014, 2014.
Kurtz, N. T. and Harbeck, J.: CryoSat-2 Level 4 Sea Ice Elevation, Freeboard,
and Thickness, Version 1, Boulder, Colorado USA, NASA National Snow and Ice
Data Center Distributed Active Archive Center, 2017.
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from
submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, L15501,
https://doi.org/10.1029/2009GL039035, 2009.
Kwok, R. and Cunningham, G. F.: ICESat over Arctic sea ice: Estimation of
snow depth and ice thickness, J. Geophys. Res.-Oceans, 113,
https://doi.org/10.1029/2008JC004753, 2008.
Lawrence, I. R., Tsamados, M. C., Stroeve, J. C., Armitage, T. W. K., and Ridout, A. L.:
Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards,
The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, 2018.
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R.,
Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S.,
Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates
of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732–737,
https://doi.org/10.1002/grl.50193, 2013.
Lecomte, O., Fichefet, T., Flocco, D., Schröder, D., and Vancoppenolle,
M.: Impacts of wind-blown snow redistribution on melt ponds in a coupled
ocean – sea ice model, Ocean Model, 87, 67–80,
https://doi.org/10.1016/j.ocemod.2014.12.003, 2014.
Lipscomb, W. H. and Hunke, E. C.: Modeling sea ice transport using
incremental remapping, Mon. Weather Rev., 132, 1341–1354, 2004.
Liston, G. E., Polashenski, C., Roesel, A., Itkin, P., King, J., Merkouriadi,
I., and Haapala, J.: A distributed snow-evolution model for sea-ice
applications (SnowModel), J. Geophys. Res.-Ocean, 123, 3786–3810,
https://doi.org/10.1002/2017JC013706, 2018.
Maaß, N., Kaleschke, L., Tian-Kunze, X., and Drusch, M.: Snow thickness retrieval
over thick Arctic sea ice using SMOS satellite data, The Cryosphere, 7, 1971–1989,
https://doi.org/10.5194/tc-7-1971-2013, 2013.
Massonnet, F., Fichefet, T., Goosse, H., Bitz, C. M., Philippon-Berthier, G.,
Holland, M. M., and Barriat, P.-Y.: Constraining projections of summer Arctic
sea ice, The Cryosphere, 6, 1383–1394, https://doi.org/10.5194/tc-6-1383-2012, 2012.
Maykut, G. A. and Untersteiner, N.: Some results from a time-dependent
thermodynamic model of sea ice, J. Geophys. Res., 76, 1550–1575,
https://doi.org/10.1029/JC076i006p01550, 1971.
Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S.,
King, J., Ricker, R., and Else, B.: Effect of Snow Salinity on CryoSat-2 Arc-
tic First-Year Sea Ice Freeboard Measurements, Geophys. Res. Lett., 44,
10419–10426, https://doi.org/10.1002/2017GL074506, 2017.
Notz, D.: Sea-ice extent and its trend provide limited metrics of model
performance, The Cryosphere, 8, 229–243, https://doi.org/10.5194/tc-8-229-2014, 2014.
Pringle, D. J., Eicken, H., Trodahl, H. J., and Backstrom, L. G. E.: Thermal
conductivity of landfast Antarctic and Arctic sea ice, J. Geophys. Res.,
112, C04017, https://doi.org/10.1029/2006JC003641, 2007.
Rae, J. G. L., Hewitt, H. T., Keen, A. B., Ridley, J. K., Edwards, J. M., and
Harris, C. M.: A sensitivity study of the sea ice simulation in HadGEM3,
Ocean Model, 74, 60–76, https://doi.org/10.1016/j.ocemod.2013.12.003, 2014.
Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2
Arctic sea-ice freeboard and thickness on radar-waveform interpretation,
The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, 2014.
Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C.:
A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite
data, The Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-1607-2017, 2017.
Ricker, R., Girard-Ardhuin, F., Krumpen, T., and Lique, C.: Satellite-derived sea ice export
and its impact on Arctic ice mass balance, The Cryosphere, 12, 3017–3032,
https://doi.org/10.5194/tc-12-3017-2018, 2018.
Ridley, J. K., Blockley, E. W., Keen, A. B., Rae, J. G. L., West, A. E., and Schroeder, D.:
The sea ice model component of HadGEM3-GC3.1, Geosci. Model Dev., 11, 713–723,
https://doi.org/10.5194/gmd-11-713-2018, 2018.
Rösel, A., Kaleschke, L., and Birnbaum, G.: Melt ponds on Arctic sea ice determined from
MODIS satellite data using an artificial neural network, The Cryosphere, 6, 431–446,
https://doi.org/10.5194/tc-6-431-2012, 2012.
Rothrock, D. A.: The energetics of the plastic deformation of pack ice by
ridging, J. Geophys. Res., 80, 4514–4519, https://doi.org/10.1029/JC080i033p04514,
1975.
Rothrock, D. A., Percival, D. B., and Wensnahan, M.: The decline in arctic
sea-ice thickness: Separating the spatial, annual, and interannual
variability in a quarter century of submarine data, J. Geophys. Res., 113,
C05003, https://doi.org/10.1029/2007JC004252, 2008.
Schröder, D., Feltham, D. L., Flocco, D., and Tsamados, M.: September
Arctic sea-ice minimum predicted by spring melt-pond fraction, Nat. Clim.
Change, 4, 353–357, https://doi.org/10.1038/NCLIMATE2203, 2014.
Schröder, D.: Simulations with the sea ice model CICE documenting the
impact of improved sea ice physics, University of Reading, available at:
http://dx.doi.org/10.17864/1947.187, 2018.
Shu, Q., Song, Z., and Qiao, F.: Assessment of sea ice simulations in the
CMIP5 models, The Cryosphere, 9, 399–409, https://doi.org/10.5194/tc-9-399-2015, 2015.
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland,
M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and
observations, Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676,
2012.
Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.:
Changes in Arctic melt season and implications for sea ice loss, Geophys.
Res. Lett., 41, 1216–1225, https://doi.org/10.1002/2013GL058951, 2014.
Stroeve, J. C., Schröder, D., Tsamados, M., and Feltham, D.: Warm winter,
thin ice?, The Cryosphere, 12, 1791–1809, https://doi.org/10.5194/tc-12-1791-2018, 2018.
Tilling, R. L., Ridout, A., Shepherd, A., and Wingham, D. J.: Increased
arctic sea ice volume after anomalously low melting in 2013, Nat. Geosci., 8,
643–646, 2015.
Tilling, R. L., Ridout, A., and Shepherd, A.: Near-real-time Arctic sea ice thickness and
volume from CryoSat-2, The Cryosphere, 10, 2003–2012, https://doi.org/10.5194/tc-10-2003-2016, 2016.
Tilling, R. L., Ridout, A., and Shepherd, A.: Estimating Arctic sea ice
thickness and volume using CryoSat-2 radar altimeter data, Adv. Space Res.,
62, 1203–1225, https://doi.org/10.1016/j.asr.2017.10.051, 2018.
Tsamados, M., Feltham, D. L., and Wilchinsky, A. V.: Impact of a new
anisotropic rheology on simulations of Arctic sea ice, J. Geophys. Res., 118,
91–107, https://doi.org/10.1029/2012JC007990, 2013.
Tsamados, M., Feltham, D. L., Schröder, D., Flocco, D., Farrell, S.,
Kurtz, N., Laxon, S., and Bacon, S.: Impact of variable atmospheric and
oceanic form drag on simulations of Arctic sea ice, J. Phys. Oceanogr., 44
1329–1353, https://doi.org/10.1175/JPO-D-13-0215.1, 2014.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet,
J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model
Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.
Wang, X., Key, J., Kwok, R., and Zhang, J.: Comparison of Arctic Sea Ice
Thickness from Satellites, Aircraft, and PIOMAS Data, Remote Sens., 8, 713,
https://doi.org/10.3390/rs8090713, 2016.
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N.
N., Aleksandrov, Y. I., and Barry, R.: Snow depth on Arctic sea ice, J.
Climate, 12, 1814–1829, 1999.
Webster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell, S. L.,
Perovich, D. K., and Sturm, M.: Interdecadal changes in snow depth on Arctic
sea ice, J. Geophys. Res.-Ocean, 119, 5395–5406, https://doi.org/10.1002/2014JC009985,
2014.
Wilchinsky, A. V. and Feltham, D. L.: Modelling the rheology of sea ice as a
collection of diamond-shaped floesAnisotropic model for granulated sea ice
dynamics, J. Non-Newton. Fluid, 138, 22–32,
https://doi.org/10.1016/j.jnnfm.2006.05.001, 2006.
Willatt, R., Laxon, S., Giles, K., Cullen, R., Haas, C., and Helm,
V.: Ku-band radar penetration into snow cover Arctic sea ice using airborne
data, Ann. Glaciol., 57, 197–205, 2011.
Wingham, D., Francis, C. R., Baker, S., Bouzinac, C., Cullen, R., de
Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos, C., Phalippou,
L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D.: CryoSat: a
mission to determine the fluctuations in earth's land and marine ice fields,
Adv. Space Res., 37, 841–871, 2006.
Zhang, J. L. and Rothrock, D. A.: Modeling global sea ice with a thickness
and enthalpy distribution model in generalized curvilinear coordinates, Mon.
Weather Rev., 131, 845–861, 2017.
Short summary
This paper uses sea ice thickness data (CryoSat-2) to identify and correct shortcomings in simulating winter ice growth in the widely used sea ice model CICE. Adding a model of snow drift and using a different scheme for calculating the ice conductivity improve model results. Sensitivity studies demonstrate that atmospheric winter conditions have little impact on winter ice growth, and the fate of Arctic summer sea ice is largely controlled by atmospheric conditions during the melting season.
This paper uses sea ice thickness data (CryoSat-2) to identify and correct shortcomings in...