Articles | Volume 12, issue 9
The Cryosphere, 12, 2955–2967, 2018
https://doi.org/10.5194/tc-12-2955-2018
The Cryosphere, 12, 2955–2967, 2018
https://doi.org/10.5194/tc-12-2955-2018
Research article
 | Highlight paper
20 Sep 2018
Research article  | Highlight paper | 20 Sep 2018

Stopping the flood: could we use targeted geoengineering to mitigate sea level rise?

Michael J. Wolovick and John C. Moore

Related authors

Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022,https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
On the evolution of an ice shelf melt channel at the base of Filchner Ice Shelf, from observations and viscoelastic modeling
Angelika Humbert, Julia Christmann, Hugh F. J. Corr, Veit Helm, Lea-Sophie Höyns, Coen Hofstede, Ralf Müller, Niklas Neckel, Keith W. Nicholls, Timm Schultz, Daniel Steinhage, Michael Wolovick, and Ole Zeising
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-350,https://doi.org/10.5194/tc-2021-350, 2021
Revised manuscript under review for TC
Short summary
Evaluation of six geothermal heat flux maps for the Antarctic Lambert-Amery glacial system
Haoran Kang, Liyun Zhao, Michael Wolovick, and John C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-357,https://doi.org/10.5194/tc-2021-357, 2021
Preprint under review for TC
Short summary
Insensitivity of mass loss of Icelandic Vatnajökull ice cap to solar geoengineering
Chao Yue, Louise Steffensen Schmidt, Liyun Zhao, Michael Wolovick, and John C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-318,https://doi.org/10.5194/tc-2021-318, 2021
Preprint under review for TC
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Effective coefficient of diffusion and permeability of firn at Dome C and Lock In, Antarctica, and of various snow types – estimates over the 100–850 kg m−3 density range
Neige Calonne, Alexis Burr, Armelle Philip, Frédéric Flin, and Christian Geindreau
The Cryosphere, 16, 967–980, https://doi.org/10.5194/tc-16-967-2022,https://doi.org/10.5194/tc-16-967-2022, 2022
Short summary
The instantaneous impact of calving and thinning on the Larsen C Ice Shelf
Tom Mitcham, G. Hilmar Gudmundsson, and Jonathan L. Bamber
The Cryosphere, 16, 883–901, https://doi.org/10.5194/tc-16-883-2022,https://doi.org/10.5194/tc-16-883-2022, 2022
Short summary
Derivation of bedrock topography measurement requirements for the reduction of uncertainty in ice-sheet model projections of Thwaites Glacier
Blake A. Castleman, Nicole-Jeanne Schlegel, Lambert Caron, Eric Larour, and Ala Khazendar
The Cryosphere, 16, 761–778, https://doi.org/10.5194/tc-16-761-2022,https://doi.org/10.5194/tc-16-761-2022, 2022
Short summary
A comparison of the stability and performance of depth-integrated ice-dynamics solvers
Alexander Robinson, Daniel Goldberg, and William H. Lipscomb
The Cryosphere, 16, 689–709, https://doi.org/10.5194/tc-16-689-2022,https://doi.org/10.5194/tc-16-689-2022, 2022
Short summary
Impact of runoff temporal distribution on ice dynamics
Basile de Fleurian, Richard Davy, and Petra M. Langebroek
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-6,https://doi.org/10.5194/tc-2022-6, 2022
Revised manuscript accepted for TC
Short summary

Cited articles

Alley, R. B., Horgan, H. J., Joughin, I., Cuffey, K. M., Dupont, T. K., Parizek, B. R., Anandakrishnan, S., and Bassis, J.: A Simple Law for Ice-Shelf Calving, Science, 322, 1344, https://doi.org/10.1126/science.1162543, 2008. a
AP: “Deepfreeze 1961” Plans Atom Plant, The New York Times, p. 5, 29 August 1960. a
Archer, D.: Fate of fossil fuel CO2 in geologic time, J. Geophys. Res.-Oceans, 110, C09S05, https://doi.org/10.1029/2004JC002625, 2005. a
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res.-Atmos., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006. a
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future sea level rise from the ice sheets, Nat. Clim. Change, 3, 424–427, https://doi.org/10.1038/nclimate1778, 2013. a
Download
Short summary
In this paper, we explore the possibility of using locally targeted geoengineering to slow the rate of an ice sheet collapse. We find that an intervention as big as existing large civil engineering projects could have a 30 % probability of stopping an ice sheet collapse, while larger interventions have better odds of success. With more research to improve upon the simple designs we considered, it may be possible to perfect a design that was both achievable and had good odds of success.