Articles | Volume 12, issue 5
https://doi.org/10.5194/tc-12-1745-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-1745-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Archival processes of the water stable isotope signal in East Antarctic ice cores
Laboratoire des Sciences du Climat et de l'Environnement – IPSL, UMR 8212, CEA-CNRS-UVSQ-UPS, Gif-sur-Yvette, France
Université Grenoble Alpes/CNRS, LIPHY, 38000 Grenoble, France
now at: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany
Amaelle Landais
Laboratoire des Sciences du Climat et de l'Environnement – IPSL, UMR 8212, CEA-CNRS-UVSQ-UPS, Gif-sur-Yvette, France
Ghislain Picard
Université Grenoble Alpes/CNRS, LGGE, 38400 Grenoble, France
Thomas Münch
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research,
Telegrafenberg A43, 14473 Potsdam, Germany
Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Thomas Laepple
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research,
Telegrafenberg A43, 14473 Potsdam, Germany
Barbara Stenni
DAIS, Ca'Foscari University of Venice, Venice, Italy
Giuliano Dreossi
DAIS, Ca'Foscari University of Venice, Venice, Italy
Alexey Ekaykin
Arctic and Antarctic Research Institute, St. Petersburg, Russia
Institute of Earth Sciences, St. Petersburg State University, Russia
Laurent Arnaud
Université Grenoble Alpes/CNRS, LGGE, 38400 Grenoble, France
Christophe Genthon
Université Grenoble Alpes/CNRS, LGGE, 38400 Grenoble, France
Alexandra Touzeau
Laboratoire des Sciences du Climat et de l'Environnement – IPSL, UMR 8212, CEA-CNRS-UVSQ-UPS, Gif-sur-Yvette, France
Valerie Masson-Delmotte
Laboratoire des Sciences du Climat et de l'Environnement – IPSL, UMR 8212, CEA-CNRS-UVSQ-UPS, Gif-sur-Yvette, France
Jean Jouzel
Laboratoire des Sciences du Climat et de l'Environnement – IPSL, UMR 8212, CEA-CNRS-UVSQ-UPS, Gif-sur-Yvette, France
Related authors
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024, https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
Short summary
Oxygen and hydrogen stable isotopes have been extensively used to reconstruct past temperatures, with precipitation representing the input signal of the isotopic records in ice cores. We present a 10-year record of stable isotopes in daily precipitation at Concordia Station: this is the longest record for inland Antarctica and represents a benchmark for quantifying post-depositional processes and improving the paleoclimate interpretation of ice cores.
Thomas Lauwers, Elise Fourré, Olivier Jossoud, Daniele Romanini, Frédéric Prié, Giordano Nitti, Mathieu Casado, Kévin Jaulin, Markus Miltner, Morgane Farradèche, Valérie Masson-Delmotte, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-2149, https://doi.org/10.5194/egusphere-2024-2149, 2024
Short summary
Short summary
Water vapour isotopes are important tools to better understand processes governing the atmospheric hydrological cycle. In polar regions, their measurement helps to improve the interpretation of water isotopic records in ice cores. However, in situ water vapour isotopic monitoring is an important challenge, especially in dry places of East Antarctica. We present here an alternative laser spectroscopy technique adapted for such measurements, with a limit of detection down to 10 ppm humidity.
Mathieu Casado, Amaelle Landais, Tim Stoltmann, Justin Chaillot, Mathieu Daëron, Fréderic Prié, Baptiste Bordet, and Samir Kassi
Atmos. Meas. Tech., 17, 4599–4612, https://doi.org/10.5194/amt-17-4599-2024, https://doi.org/10.5194/amt-17-4599-2024, 2024
Short summary
Short summary
Measuring water isotopic composition in Antarctica is difficult because of the extremely cold temperature in winter. Here, we designed a new infrared spectrometer able to measure the vapour isotopic composition during more than 95 % of the year in the coldest locations of Antarctica, whereas current commercial instruments are only able to measure during the warm summer months in the interior.
Amaelle Landais, Cécile Agosta, Françoise Vimeux, Olivier Magand, Cyrielle Solis, Alexandre Cauquoin, Niels Dutrievoz, Camille Risi, Christophe Leroy-Dos Santos, Elise Fourré, Olivier Cattani, Olivier Jossoud, Bénédicte Minster, Frédéric Prié, Mathieu Casado, Aurélien Dommergue, Yann Bertrand, and Martin Werner
Atmos. Chem. Phys., 24, 4611–4634, https://doi.org/10.5194/acp-24-4611-2024, https://doi.org/10.5194/acp-24-4611-2024, 2024
Short summary
Short summary
We have monitored water vapor isotopes since January 2020 on Amsterdam Island in the Indian Ocean. We show 11 periods associated with abrupt negative excursions of water vapor δ18Ο. Six of these events show a decrease in gaseous elemental mercury, suggesting subsidence of air from a higher altitude. Accurately representing the water isotopic signal during these cold fronts is a real challenge for the atmospheric components of Earth system models equipped with water isotopes.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frédéric Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
The Cryosphere, 17, 5241–5254, https://doi.org/10.5194/tc-17-5241-2023, https://doi.org/10.5194/tc-17-5241-2023, 2023
Short summary
Short summary
In the face of global warming, understanding the changing water cycle and temperatures in polar regions is crucial. These factors directly impact the balance of ice sheets in the Arctic and Antarctic. By studying the composition of water vapor, we gain insights into climate variations. Our 2-year study at Dumont d’Urville station, Adélie Land, offers valuable data to refine models. Additionally, we demonstrate how modeling aids in interpreting signals from ice core samples in the region.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Christophe Leroy-Dos Santos, Mathieu Casado, Frédéric Prié, Olivier Jossoud, Erik Kerstel, Morgane Farradèche, Samir Kassi, Elise Fourré, and Amaëlle Landais
Atmos. Meas. Tech., 14, 2907–2918, https://doi.org/10.5194/amt-14-2907-2021, https://doi.org/10.5194/amt-14-2907-2021, 2021
Short summary
Short summary
We developed an instrument that can generate water vapor at low humidity at a very stable level. This instrument was conceived to calibrate water vapor isotopic records obtained in very dry places such as central Antarctica. Here, we provide details on the instrument as well as results obtained for correcting water isotopic records for diurnal variability during a long field season at the Concordia station in East Antarctica.
Mathieu Casado, Thomas Münch, and Thomas Laepple
Clim. Past, 16, 1581–1598, https://doi.org/10.5194/cp-16-1581-2020, https://doi.org/10.5194/cp-16-1581-2020, 2020
Short summary
Short summary
The isotopic composition in ice cores from Antarctica is usually interpreted as a temperature proxy. Using a forward model, we show how different the signal in ice cores and the actual climatic signal are. Precipitation intermittency and diffusion do indeed affect the archived signal, leading to the reshuffling of the signal which limits the ability to reconstruct high-resolution climatic variations with ice cores.
Mathieu Casado, Gwenaëlle Gremion, Paul Rosenbaum, Jilda Alicia Caccavo, Kelsey Aho, Nicolas Champollion, Sarah L. Connors, Adrian Dahood, Alfonso Fernandez, Martine Lizotte, Katja Mintenbeck, Elvira Poloczanska, and Gerlis Fugmann
Geosci. Commun., 3, 89–97, https://doi.org/10.5194/gc-3-89-2020, https://doi.org/10.5194/gc-3-89-2020, 2020
Short summary
Short summary
Early-career scientists (ECSs) are rarely invited to act as peer reviewers. Participating in a group peer review of the IPCC Special Report on Ocean and Cryosphere in a Changing Climate, PhD students spent more time reviewing than more established scientists and provided a similar proportion of substantive comments. By soliciting and including ECSs in peer review, the scientific community would reduce the burden on more established scientists and may improve the quality of that process.
Pascal Bohleber, Mathieu Casado, Kirsti Ashworth, Chelsey A. Baker, Anna Belcher, Jilda Alicia Caccavo, Holly E. Jenkins, Erin Satterthwaite, Andrea Spolaor, and V. Holly L. Winton
Adv. Geosci., 53, 1–14, https://doi.org/10.5194/adgeo-53-1-2020, https://doi.org/10.5194/adgeo-53-1-2020, 2020
Short summary
Short summary
International Early Career Networks (ECN) are global voluntary communities of Early Career Scientists (ECS) aiming to advance the careers of ECS and to improve their inclusion into the international scientific community. We use member surveys alongside with case studies from well-established and long-term networks to elucidate the attributes that make a successful, sustainable ECN, and propose best practices for developing ECN successfully.
Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hoerhold, Amaelle Landais, and Sepp Kipfstuhl
The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, https://doi.org/10.5194/tc-12-169-2018, 2018
Short summary
Short summary
We explain why snow pits across different sites in East Antarctica show visually similar isotopic variations. We argue that the similarity and the apparent cycles of around 20 cm in the δD and δ18O variations are the result of a seasonal cycle in isotopes, noise, for example from precipitation intermittency, and diffusion. The near constancy of the diffusion length across many ice-coring sites explains why the structure and cycle length is largely independent of the accumulation conditions.
Christophe Genthon, Luc Piard, Etienne Vignon, Jean-Baptiste Madeleine, Mathieu Casado, and Hubert Gallée
Atmos. Chem. Phys., 17, 691–704, https://doi.org/10.5194/acp-17-691-2017, https://doi.org/10.5194/acp-17-691-2017, 2017
Short summary
Short summary
Natural atmospheric supersaturation is a norm rather than an exception at the surface of Dome C on the Antarctic Plateau. This is reported by hygrometers adapted to perform in extreme cold environments and avoid release of excess moisture before it is measured. One year of observation shows that atmospheric models with cold microphysics parameterizations designed for high altitude cirrus reproduce frequently but fail with the detailed statistics of supersaturation at the surface of Dome C.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263, https://doi.org/10.5194/tc-2016-263, 2016
Revised manuscript not accepted
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Alexandra Touzeau, Amaëlle Landais, Barbara Stenni, Ryu Uemura, Kotaro Fukui, Shuji Fujita, Sarah Guilbaud, Alexey Ekaykin, Mathieu Casado, Eugeni Barkan, Boaz Luz, Olivier Magand, Grégory Teste, Emmanuel Le Meur, Mélanie Baroni, Joël Savarino, Ilann Bourgeois, and Camille Risi
The Cryosphere, 10, 837–852, https://doi.org/10.5194/tc-10-837-2016, https://doi.org/10.5194/tc-10-837-2016, 2016
Short summary
Short summary
The relationship between water isotope ratios and temperature is investigated in precipitation snow at Vostok and Dome C, as well as in surface snow along traverses. The temporal slope of the linear regression for the precipitation is smaller than the geographical slope. Thus, using the latter could lead to an underestimation of past temperature changes. The processes active at remote sites (best glacial analogs) are explored through a combination of water isotopes in short snow pits.
M. Casado, P. Ortega, V. Masson-Delmotte, C. Risi, D. Swingedouw, V. Daux, D. Genty, F. Maignan, O. Solomina, B. Vinther, N. Viovy, and P. Yiou
Clim. Past, 9, 871–886, https://doi.org/10.5194/cp-9-871-2013, https://doi.org/10.5194/cp-9-871-2013, 2013
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024, https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow and could unlock these data to improve forecasts.
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024, https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
Short summary
Oxygen and hydrogen stable isotopes have been extensively used to reconstruct past temperatures, with precipitation representing the input signal of the isotopic records in ice cores. We present a 10-year record of stable isotopes in daily precipitation at Concordia Station: this is the longest record for inland Antarctica and represents a benchmark for quantifying post-depositional processes and improving the paleoclimate interpretation of ice cores.
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024, https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Short summary
High-accuracy precision maps of the surface temperature of snow were acquired with an uncooled thermal-infrared camera during winter 2021–2022 and spring 2023. The accuracy – i.e., mean absolute error – improved from 1.28 K to 0.67 K between the seasons thanks to an improved camera setup and temperature stabilization. The dataset represents a major advance in the validation of satellite measurements and physical snow models over a complex topography.
Romilly Harris Stuart, Amaëlle Landais, Laurent Arnaud, Christo Buizert, Emilie Capron, Marie Dumont, Quentin Libois, Robert Mulvaney, Anaïs Orsi, Ghislain Picard, Frédéric Prié, Jeffrey Severinghaus, Barbara Stenni, and Patricia Martinerie
The Cryosphere, 18, 3741–3763, https://doi.org/10.5194/tc-18-3741-2024, https://doi.org/10.5194/tc-18-3741-2024, 2024
Short summary
Short summary
Ice core δO2/N2 records are useful dating tools due to their local insolation pacing. A precise understanding of the physical mechanism driving this relationship, however, remain ambiguous. By compiling data from 15 polar sites, we find a strong dependence of mean δO2/N2 on accumulation rate and temperature in addition to the well-documented insolation dependence. Snowpack modelling is used to investigate which physical properties drive the mechanistic dependence on these local parameters.
Fyntan Shaw, Andrew M. Dolman, Torben Kunz, Vasileios Gkinis, and Thomas Laepple
The Cryosphere, 18, 3685–3698, https://doi.org/10.5194/tc-18-3685-2024, https://doi.org/10.5194/tc-18-3685-2024, 2024
Short summary
Short summary
Fast variability of water isotopes in ice cores is attenuated by diffusion but can be restored if the diffusion length is accurately estimated. Current estimation methods are inadequate for deep ice, mischaracterising millennial-scale climate variability. We address this using variability estimates from shallower ice. The estimated diffusion length of 31 cm for the bottom of the Dome C ice core is 20 cm less than the old method, enabling signal recovery on timescales previously considered lost.
Serena Lagorio, Barbara Delmonte, Dieter Tetzner, Elisa Malinverno, Giovanni Baccolo, Barbara Stenni, Massimo Frezzotti, Valter Maggi, and Nancy Bertler
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-56, https://doi.org/10.5194/cp-2024-56, 2024
Preprint under review for CP
Short summary
Short summary
Aeolian diatoms and dust in the RICE ice core (Antarctica) allow reconstructing climate variability in the Eastern Ross Sea over the last 2 ka. Long-term changes are related to environmental parameters as sea ice extent and extension of the Ross Sea Polynya. A climatic reorganization occurred around 1470 CE in response to the development of the Roosevelt Island Polynya. El Niño promoted the establishment of the Ross Sea dipole while La Niña favored the eastward expansion of the polynya.
Thomas Lauwers, Elise Fourré, Olivier Jossoud, Daniele Romanini, Frédéric Prié, Giordano Nitti, Mathieu Casado, Kévin Jaulin, Markus Miltner, Morgane Farradèche, Valérie Masson-Delmotte, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-2149, https://doi.org/10.5194/egusphere-2024-2149, 2024
Short summary
Short summary
Water vapour isotopes are important tools to better understand processes governing the atmospheric hydrological cycle. In polar regions, their measurement helps to improve the interpretation of water isotopic records in ice cores. However, in situ water vapour isotopic monitoring is an important challenge, especially in dry places of East Antarctica. We present here an alternative laser spectroscopy technique adapted for such measurements, with a limit of detection down to 10 ppm humidity.
Mathieu Casado, Amaelle Landais, Tim Stoltmann, Justin Chaillot, Mathieu Daëron, Fréderic Prié, Baptiste Bordet, and Samir Kassi
Atmos. Meas. Tech., 17, 4599–4612, https://doi.org/10.5194/amt-17-4599-2024, https://doi.org/10.5194/amt-17-4599-2024, 2024
Short summary
Short summary
Measuring water isotopic composition in Antarctica is difficult because of the extremely cold temperature in winter. Here, we designed a new infrared spectrometer able to measure the vapour isotopic composition during more than 95 % of the year in the coldest locations of Antarctica, whereas current commercial instruments are only able to measure during the warm summer months in the interior.
Rémi Dallmayr, Hannah Meyer, Vasileios Gkinis, Thomas Laepple, Melanie Behrens, Frank Wilhelms, and Maria Hörhold
EGUsphere, https://doi.org/10.5194/egusphere-2024-1807, https://doi.org/10.5194/egusphere-2024-1807, 2024
Short summary
Short summary
Statistical studies via extended arrays of vertical profiles have demonstrated improving the understanding of the formation, storage, and propagation of climatic signals in the snowpack. In order to cope with the large amount of analyzes needed, in this study we modify an analytical system (CFA) and analyze the resulting performances.
Darrell Kaufman and Valérie Masson-Delmotte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1845, https://doi.org/10.5194/egusphere-2024-1845, 2024
Short summary
Short summary
Rather than reverting to a dedicated paleoclimate chapter, knowledge about pre-industrial climate should be further integrated with other lines of evidence throughout the 7th assessment reports by the Intergovernmental Panel on Climate Change.
Ghislain Picard and Quentin Libois
EGUsphere, https://doi.org/10.5194/egusphere-2024-1176, https://doi.org/10.5194/egusphere-2024-1176, 2024
Short summary
Short summary
TARTES is a radiative transfer model to compute the reflectivity in the solar domain (albedo), and the profiles of solar light and energy absorption in a multi-layered snowpack whose physical properties are prescribed by the user. It uniquely considers snow grain shape in a flexible way, allowing us to apply the most recent advances showing that snow does not behave as a collection of ice spheres, but instead as a random medium. TARTES is also simple but compares well with other complex models.
Florent Domine, Mireille Quémener, Ludovick Bégin, Benjamin Bouchard, Valérie Dionne, Sébastien Jerczynski, Raphaël Larouche, Félix Lévesque-Desrosiers, Simon-Olivier Philibert, Marc-André Vigneault, Ghislain Picard, and Daniel C. Côté
EGUsphere, https://doi.org/10.5194/egusphere-2024-1582, https://doi.org/10.5194/egusphere-2024-1582, 2024
Short summary
Short summary
Shrubs buried in snow absorb solar radiation and reduce irradiance in the snowpack. This decreases photochemical reactions rates and emissions to the atmosphere. By monitoring irradiance in snowpacks with and without shrubs, we conclude that shrubs absorb solar radiation as much as 140 ppb of soot and reduce irradiance by a factor of two. Shrub expansion in the Arctic may therefore affect tropospheric composition during the snow season, with climatic effects.
Clémence Paul, Clément Piel, Joana Sauze, Olivier Jossoud, Arnaud Dapoigny, Daniele Romanini, Frédérique Prié, Sébastien Devidal, Roxanne Jacob, Alexandru Milcu, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-1755, https://doi.org/10.5194/egusphere-2024-1755, 2024
Short summary
Short summary
Our study investigated the influence of plant processes on oxygen dynamics, crucial for paleoclimatology. By examining maize respiration and photosynthesis using advanced techniques, we enhanced our understanding of past climates through ice core analysis.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Amaelle Landais, Cécile Agosta, Françoise Vimeux, Olivier Magand, Cyrielle Solis, Alexandre Cauquoin, Niels Dutrievoz, Camille Risi, Christophe Leroy-Dos Santos, Elise Fourré, Olivier Cattani, Olivier Jossoud, Bénédicte Minster, Frédéric Prié, Mathieu Casado, Aurélien Dommergue, Yann Bertrand, and Martin Werner
Atmos. Chem. Phys., 24, 4611–4634, https://doi.org/10.5194/acp-24-4611-2024, https://doi.org/10.5194/acp-24-4611-2024, 2024
Short summary
Short summary
We have monitored water vapor isotopes since January 2020 on Amsterdam Island in the Indian Ocean. We show 11 periods associated with abrupt negative excursions of water vapor δ18Ο. Six of these events show a decrease in gaseous elemental mercury, suggesting subsidence of air from a higher altitude. Accurately representing the water isotopic signal during these cold fronts is a real challenge for the atmospheric components of Earth system models equipped with water isotopes.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Laura Schild, Peter Ewald, Chenzhi Li, Raphaël Hébert, Thomas Laepple, and Ulrike Herzschuh
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-486, https://doi.org/10.5194/essd-2023-486, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study reconstructed past vegetation and forest cover from a global data set of pollen counts from sediment and peat cores. A model was applied to correct for differences in pollen production between different plants and modern remote-sensing forest cover was used to adjust the necessary correction factors and improve the reconstruction even further. Accurate data on past vegetation is invaluable for the investigation of vegetation-climate dynamics and the validation of vegetation models.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Clément Piel, Daniele Romanini, Morgane Farradèche, Justin Chaillot, Clémence Paul, Nicolas Bienville, Thomas Lauwers, Joana Sauze, Kévin Jaulin, Frédéric Prié, and Amaëlle Landais
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-14, https://doi.org/10.5194/amt-2024-14, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This paper introduces a new optical gas analyzer based on the Optical-Feedback Cavity-Enhanced Absorption Spectroscopy technique (OF-CEAS) enabling high temporal resolution and high precision measurement of δ18O and concentration of atmospheric O2. The results underscore the good agreement with dual inlet IRMS measurements and the ability of the instrument to monitor biological processes.
Claudio Stefanini, Giovanni Macelloni, Marion Leduc-Leballeur, Vincent Favier, Benjamin Pohl, and Ghislain Picard
The Cryosphere, 18, 593–608, https://doi.org/10.5194/tc-18-593-2024, https://doi.org/10.5194/tc-18-593-2024, 2024
Short summary
Short summary
Local and large-scale meteorological conditions have been considered in order to explain some peculiar changes of snow grains on the East Antarctic Plateau from 2000 to 2022, by using remote sensing observations and reanalysis. We identified some extreme grain size events on the highest ice divide, resulting from a combination of conditions of low wind speed and low temperature. Moreover, the beginning of seasonal grain growth has been linked to the occurrence of atmospheric rivers.
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Rasmussen
EGUsphere, https://doi.org/10.5194/egusphere-2023-2911, https://doi.org/10.5194/egusphere-2023-2911, 2024
Short summary
Short summary
The Paleochrono1 probablistic dating model allows to derive a common and optimized chronology for several paleoclimatic sites from various archives (ice cores, speleothems, marine cores, lake cores, etc.). It combines prior sedimentation scenarios with chronological information such as dated horizons, dated intervals, stratigraphic links and (for ice cores) Delta-depth observations. Paleochrono1 is available under the MIT open-source license.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frédéric Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
The Cryosphere, 17, 5241–5254, https://doi.org/10.5194/tc-17-5241-2023, https://doi.org/10.5194/tc-17-5241-2023, 2023
Short summary
Short summary
In the face of global warming, understanding the changing water cycle and temperatures in polar regions is crucial. These factors directly impact the balance of ice sheets in the Arctic and Antarctic. By studying the composition of water vapor, we gain insights into climate variations. Our 2-year study at Dumont d’Urville station, Adélie Land, offers valuable data to refine models. Additionally, we demonstrate how modeling aids in interpreting signals from ice core samples in the region.
Jean Emmanuel Sicart, Victor Ramseyer, Ghislain Picard, Laurent Arnaud, Catherine Coulaud, Guilhem Freche, Damien Soubeyrand, Yves Lejeune, Marie Dumont, Isabelle Gouttevin, Erwan Le Gac, Frédéric Berger, Jean-Matthieu Monnet, Laurent Borgniet, Éric Mermin, Nick Rutter, Clare Webster, and Richard Essery
Earth Syst. Sci. Data, 15, 5121–5133, https://doi.org/10.5194/essd-15-5121-2023, https://doi.org/10.5194/essd-15-5121-2023, 2023
Short summary
Short summary
Forests strongly modify the accumulation, metamorphism and melting of snow in midlatitude and high-latitude regions. Two field campaigns during the winters 2016–17 and 2017–18 were conducted in a coniferous forest in the French Alps to study interactions between snow and vegetation. This paper presents the field site, instrumentation and collection methods. The observations include forest characteristics, meteorology, snow cover and snow interception by the canopy during precipitation events.
Marie Bouchet, Amaëlle Landais, Antoine Grisart, Frédéric Parrenin, Frédéric Prié, Roxanne Jacob, Elise Fourré, Emilie Capron, Dominique Raynaud, Vladimir Ya Lipenkov, Marie-France Loutre, Thomas Extier, Anders Svensson, Etienne Legrain, Patricia Martinerie, Markus Leuenberger, Wei Jiang, Florian Ritterbusch, Zheng-Tian Lu, and Guo-Min Yang
Clim. Past, 19, 2257–2286, https://doi.org/10.5194/cp-19-2257-2023, https://doi.org/10.5194/cp-19-2257-2023, 2023
Short summary
Short summary
A new federative chronology for five deep polar ice cores retrieves 800 000 years of past climate variations with improved accuracy. Precise ice core timescales are key to studying the mechanisms linking changes in the Earth’s orbit to the diverse climatic responses (temperature and atmospheric greenhouse gas concentrations). To construct the chronology, new measurements from the oldest continuous ice core as well as glaciological modeling estimates were combined in a statistical model.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Nora Hirsch, Alexandra Zuhr, Thomas Münch, Maria Hörhold, Johannes Freitag, Remi Dallmayr, and Thomas Laepple
The Cryosphere, 17, 4207–4221, https://doi.org/10.5194/tc-17-4207-2023, https://doi.org/10.5194/tc-17-4207-2023, 2023
Short summary
Short summary
Stable water isotopes from firn cores provide valuable information on past climates, yet their utility is hampered by stratigraphic noise, i.e. the irregular deposition and wind-driven redistribution of snow. We found stratigraphic noise on the Antarctic Plateau to be related to the local accumulation rate, snow surface roughness and slope inclination, which can guide future decisions on sampling locations and thus increase the resolution of climate reconstructions from low-accumulation areas.
Yaowen Zheng, Nicholas R. Golledge, Alexandra Gossart, Ghislain Picard, and Marion Leduc-Leballeur
The Cryosphere, 17, 3667–3694, https://doi.org/10.5194/tc-17-3667-2023, https://doi.org/10.5194/tc-17-3667-2023, 2023
Short summary
Short summary
Positive degree-day (PDD) schemes are widely used in many Antarctic numerical ice sheet models. However, the PDD approach has not been systematically explored for its application in Antarctica. We have constructed a novel grid-cell-level spatially distributed PDD (dist-PDD) model and assessed its accuracy. We suggest that an appropriately parameterized dist-PDD model can be a valuable tool for exploring Antarctic surface melt beyond the satellite era.
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Short summary
Data assimilation techniques are a promising approach to improve snowpack simulations in remote areas that are difficult to monitor. This paper studies the ability of satellite-observed land surface temperature to improve snowpack simulations through data assimilation. We show that it is possible to improve snowpack simulations, but the temporal resolution of the observations and the algorithm used are critical to obtain satisfactory results.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Sara Arioli, Ghislain Picard, Laurent Arnaud, and Vincent Favier
The Cryosphere, 17, 2323–2342, https://doi.org/10.5194/tc-17-2323-2023, https://doi.org/10.5194/tc-17-2323-2023, 2023
Short summary
Short summary
To assess the drivers of the snow grain size evolution during snow drift, we exploit a 5-year time series of the snow grain size retrieved from spectral-albedo observations made with a new, autonomous, multi-band radiometer and compare it to observations of snow drift, snowfall and snowmelt at a windy location of coastal Antarctica. Our results highlight the complexity of the grain size evolution in the presence of snow drift and show an overall tendency of snow drift to limit its variations.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Aymeric P. M. Servettaz, Anaïs J. Orsi, Mark A. J. Curran, Andrew D. Moy, Amaelle Landais, Joseph R. McConnell, Trevor J. Popp, Emmanuel Le Meur, Xavier Faïn, and Jérôme Chappellaz
Clim. Past, 19, 1125–1152, https://doi.org/10.5194/cp-19-1125-2023, https://doi.org/10.5194/cp-19-1125-2023, 2023
Short summary
Short summary
The temperature of the past 2000 years is still poorly known in vast parts of the East Antarctic plateau. In this study, we present temperature reconstructions based on water and gas stable isotopes from the Aurora Basin North ice core. Spatial and temporal significance of each proxy differs, and we can identify some cold periods in the snow temperature up to 2°C cooler in the 1000–1400 CE period, which could not be determined with water isotopes only.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
Clémence Paul, Clément Piel, Joana Sauze, Nicolas Pasquier, Frédéric Prié, Sébastien Devidal, Roxanne Jacob, Arnaud Dapoigny, Olivier Jossoud, Alexandru Milcu, and Amaëlle Landais
Biogeosciences, 20, 1047–1062, https://doi.org/10.5194/bg-20-1047-2023, https://doi.org/10.5194/bg-20-1047-2023, 2023
Short summary
Short summary
To improve the interpretation of the δ18Oatm and Δ17O of O2 in air bubbles in ice cores, we need to better quantify the oxygen fractionation coefficients associated with biological processes. We performed a simplified analogue of the terrestrial biosphere in a closed chamber. We found a respiration fractionation in agreement with the previous estimates at the microorganism scale, and a terrestrial photosynthetic fractionation was found. This has an impact on the estimation of the Dole effect.
Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, and Giovanni Macelloni
The Cryosphere, 16, 5061–5083, https://doi.org/10.5194/tc-16-5061-2022, https://doi.org/10.5194/tc-16-5061-2022, 2022
Short summary
Short summary
Using a snowpack radiative transfer model, we investigate in which conditions meltwater can be detected from passive microwave satellite observations from 1.4 to 37 GHz. In particular, we determine the minimum detectable liquid water content, the maximum depth of detection of a buried wet snow layer and the risk of false alarm due to supraglacial lakes. These results provide information for the developers of new, more advanced satellite melt products and for the users of the existing products.
Jiajia Wang, Hongxi Pang, Shuangye Wu, Spruce W. Schoenemann, Ryu Uemura, Alexey Ekaykin, Martin Werner, Alexandre Cauquoin, Sentia Goursaud Oger, Summer Rupper, and Shugui Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-384, https://doi.org/10.5194/essd-2022-384, 2022
Revised manuscript not accepted
Short summary
Short summary
Stable water isotopic observations in surface snow over Antarctica provide a basis for validating isotopic models and interpreting Antarctic ice core records. This study presents a new compilation of Antarctic surface snow isotopic dataset based on published and unpublished sources. The database has a wide range of potential applications in studying spatial distribution of water isotopes, model validation, and reconstruction and interpretation of Antarctic ice core records.
Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard
The Cryosphere, 16, 4553–4569, https://doi.org/10.5194/tc-16-4553-2022, https://doi.org/10.5194/tc-16-4553-2022, 2022
Short summary
Short summary
We investigate the variability in surface melt on the Shackleton Ice Shelf in East Antarctica over the last 2 decades (2003–2021). Using daily satellite observations and the machine learning approach of a self-organising map, we identify nine distinct spatial patterns of melt. These patterns allow comparisons of melt within and across melt seasons and highlight the importance of both air temperatures and local controls such as topography, katabatic winds, and albedo in driving surface melt.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Ghislain Picard, Henning Löwe, and Christian Mätzler
The Cryosphere, 16, 3861–3866, https://doi.org/10.5194/tc-16-3861-2022, https://doi.org/10.5194/tc-16-3861-2022, 2022
Short summary
Short summary
Microwave satellite observations used to monitor the cryosphere require radiative transfer models for their interpretation. These models represent how microwaves are scattered by snow and ice. However no existing theory is suitable for all types of snow and ice found on Earth. We adapted a recently published generic scattering theory to snow and show how it may improve the representation of snows with intermediate densities (~500 kg/m3) and/or with coarse grains at high microwave frequencies.
Gauthier Vérin, Florent Domine, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere, 16, 3431–3449, https://doi.org/10.5194/tc-16-3431-2022, https://doi.org/10.5194/tc-16-3431-2022, 2022
Short summary
Short summary
Snow physical properties on Arctic sea ice are monitored during the melt season. As snow grains grow, and the snowpack thickness is reduced, the surface albedo decreases. The extra absorbed energy accelerates melting. Radiative transfer modeling shows that more radiation is then transmitted to the snow–sea-ice interface. A sharp increase in transmitted radiation takes place when the snowpack thins significantly, and this coincides with the initiation of the phytoplankton bloom in the seawater.
Christophe Genthon, Dana E. Veron, Etienne Vignon, Jean-Baptiste Madeleine, and Luc Piard
Earth Syst. Sci. Data, 14, 1571–1580, https://doi.org/10.5194/essd-14-1571-2022, https://doi.org/10.5194/essd-14-1571-2022, 2022
Short summary
Short summary
The surface atmosphere of the high Antarctic Plateau is very cold and clean. Such conditions favor water vapor supersaturation. A 3-year quasi-continuous series of atmospheric moisture in a ~40 m atmospheric layer at Dome C is reported that documents time variability, vertical profiles and occurrences of supersaturation. Supersaturation with respect to ice is frequently observed throughout the column, with relative humidities occasionally reaching values near liquid water saturation.
Paolo Gabrielli, Theo Manuel Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-20, https://doi.org/10.5194/cp-2022-20, 2022
Revised manuscript not accepted
Short summary
Short summary
We present a methodology that reduces the chronological uncertainty of an Alpine ice core record from the glacier Alto dell’Ortles, Italy. This chronology will allow the constraint of the Holocene climatic and environmental histories emerging from this archive of Central Europe. This method will allow to obtain accurate chronologies also from other ice cores from-low latitude/high-altitude glaciers that typically suffer from larger dating uncertainties compared with well dated polar records.
Alvaro Robledano, Ghislain Picard, Laurent Arnaud, Fanny Larue, and Inès Ollivier
The Cryosphere, 16, 559–579, https://doi.org/10.5194/tc-16-559-2022, https://doi.org/10.5194/tc-16-559-2022, 2022
Short summary
Short summary
Topography controls the surface temperature of snow-covered, mountainous areas. We developed a modelling chain that uses ray-tracing methods to quantify the impact of a few topographic effects on snow surface temperature at high spatial resolution. Its large spatial and temporal variations are correctly simulated over a 50 km2 area in the French Alps, and our results show that excluding a single topographic effect results in cooling (or warming) effects on the order of 1 °C.
Christophe Genthon, Dana Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data, 13, 5731–5746, https://doi.org/10.5194/essd-13-5731-2021, https://doi.org/10.5194/essd-13-5731-2021, 2021
Short summary
Short summary
A 10-year dataset of observation in the atmospheric boundary layer at Dome C on the high Antarctic plateau is presented. This is obtained with sensors at six levels along a tower higher than 40 m. The temperature inversion can reach more than 25 °C along the tower in winter, while full mixing by convection can occur in summer. Different amplitudes of variability for wind and temperature at the different levels reflect different signatures of solar vs. synoptic forcing of the boundary layer.
Maria Belke-Brea, Florent Domine, Ghislain Picard, Mathieu Barrere, and Laurent Arnaud
Biogeosciences, 18, 5851–5869, https://doi.org/10.5194/bg-18-5851-2021, https://doi.org/10.5194/bg-18-5851-2021, 2021
Short summary
Short summary
Expanding shrubs in the Arctic change snowpacks into a mix of snow, impurities and buried branches. Snow is a translucent medium into which light penetrates and gets partly absorbed by branches or impurities. Measurements of light attenuation in snow in Northern Quebec, Canada, showed (1) black-carbon-dominated light attenuation in snowpacks without shrubs and (2) buried branches influence radiation attenuation in snow locally, leading to melting and pockets of large crystals close to branches.
Alexandra M. Zuhr, Thomas Münch, Hans Christian Steen-Larsen, Maria Hörhold, and Thomas Laepple
The Cryosphere, 15, 4873–4900, https://doi.org/10.5194/tc-15-4873-2021, https://doi.org/10.5194/tc-15-4873-2021, 2021
Short summary
Short summary
Firn and ice cores are used to infer past temperatures. However, the imprint of the climatic signal in stable water isotopes is influenced by depositional modifications. We present and use a photogrammetry structure-from-motion approach and find variability in the amount, the timing, and the location of snowfall. Depositional modifications of the surface are observed, leading to mixing of snow from different snowfall events and spatial locations and thus creating noise in the proxy record.
Raffaello Nardin, Mirko Severi, Alessandra Amore, Silvia Becagli, Francois Burgay, Laura Caiazzo, Virginia Ciardini, Giuliano Dreossi, Massimo Frezzotti, Sang-Bum Hong, Ishaq Khan, Bianca Maria Narcisi, Marco Proposito, Claudio Scarchilli, Enricomaria Selmo, Andrea Spolaor, Barbara Stenni, and Rita Traversi
Clim. Past, 17, 2073–2089, https://doi.org/10.5194/cp-17-2073-2021, https://doi.org/10.5194/cp-17-2073-2021, 2021
Short summary
Short summary
The first step to exploit all the potential information buried in ice cores is to produce a reliable age scale. Based on chemical and isotopic records from the 197 m Antarctic GV7(B) ice core, accurate dating was achieved and showed that the archive spans roughly the last 830 years. The relatively high accumulation rate allowed us to use the non-sea-salt sulfate seasonal pattern to count annual layers. The accumulation rate reconstruction exhibited a slight increase since the 18th century.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Thomas Münch, Martin Werner, and Thomas Laepple
Clim. Past, 17, 1587–1605, https://doi.org/10.5194/cp-17-1587-2021, https://doi.org/10.5194/cp-17-1587-2021, 2021
Short summary
Short summary
We analyse Holocene climate model simulation data to find the locations of Antarctic ice cores which are best suited to reconstruct local- to regional-scale temperatures. We find that the spatial decorrelation scales of the temperature variations and of the noise from precipitation intermittency set an effective sampling length scale. Following this, a single core should be located at the
target site for the temperature reconstruction, and a second one optimally lies more than 500 km away.
Pascal Bohleber, Marco Roman, Martin Šala, Barbara Delmonte, Barbara Stenni, and Carlo Barbante
The Cryosphere, 15, 3523–3538, https://doi.org/10.5194/tc-15-3523-2021, https://doi.org/10.5194/tc-15-3523-2021, 2021
Short summary
Short summary
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers micro-destructive, micrometer-scale impurity analysis of ice cores. For improved understanding of the LA-ICP-MS signals, novel 2D impurity imaging is applied to selected glacial and interglacial samples of Antarctic deep ice cores. This allows evaluating the 2D impurity distribution in relation to ice crystal features and assessing implications for investigating highly thinned climate proxy signals in deep polar ice.
Raphaël Hébert, Kira Rehfeld, and Thomas Laepple
Nonlin. Processes Geophys., 28, 311–328, https://doi.org/10.5194/npg-28-311-2021, https://doi.org/10.5194/npg-28-311-2021, 2021
Short summary
Short summary
Paleoclimate proxy data are essential for broadening our understanding of climate variability. There remain, however, challenges for traditional methods of variability analysis to be applied to such data, which are usually irregular. We perform a comparative analysis of different methods of scaling analysis, which provide variability estimates as a function of timescales, applied to irregular paleoclimate proxy data.
Christophe Leroy-Dos Santos, Mathieu Casado, Frédéric Prié, Olivier Jossoud, Erik Kerstel, Morgane Farradèche, Samir Kassi, Elise Fourré, and Amaëlle Landais
Atmos. Meas. Tech., 14, 2907–2918, https://doi.org/10.5194/amt-14-2907-2021, https://doi.org/10.5194/amt-14-2907-2021, 2021
Short summary
Short summary
We developed an instrument that can generate water vapor at low humidity at a very stable level. This instrument was conceived to calibrate water vapor isotopic records obtained in very dry places such as central Antarctica. Here, we provide details on the instrument as well as results obtained for correcting water isotopic records for diurnal variability during a long field season at the Concordia station in East Antarctica.
Andrew M. Dolman, Torben Kunz, Jeroen Groeneveld, and Thomas Laepple
Clim. Past, 17, 825–841, https://doi.org/10.5194/cp-17-825-2021, https://doi.org/10.5194/cp-17-825-2021, 2021
Short summary
Short summary
Uncertainties in climate proxy records are temporally autocorrelated. By deriving expressions for the power spectra of errors in proxy records, we can estimate appropriate uncertainties for any timescale, for example, for temporally smoothed records or for time slices. Here we outline and demonstrate this approach for climate proxies recovered from marine sediment cores.
Alison F. Banwell, Rajashree Tri Datta, Rebecca L. Dell, Mahsa Moussavi, Ludovic Brucker, Ghislain Picard, Christopher A. Shuman, and Laura A. Stevens
The Cryosphere, 15, 909–925, https://doi.org/10.5194/tc-15-909-2021, https://doi.org/10.5194/tc-15-909-2021, 2021
Short summary
Short summary
Ice shelves are thick floating layers of glacier ice extending from the glaciers on land that buttress much of the Antarctic Ice Sheet and help to protect it from losing ice to the ocean. However, the stability of ice shelves is vulnerable to meltwater lakes that form on their surfaces during the summer. This study focuses on the northern George VI Ice Shelf on the western side of the AP, which had an exceptionally long and extensive melt season in 2019/2020 compared to the previous 31 seasons.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Jinhwa Shin, Christoph Nehrbass-Ahles, Roberto Grilli, Jai Chowdhry Beeman, Frédéric Parrenin, Grégory Teste, Amaelle Landais, Loïc Schmidely, Lucas Silva, Jochen Schmitt, Bernhard Bereiter, Thomas F. Stocker, Hubertus Fischer, and Jérôme Chappellaz
Clim. Past, 16, 2203–2219, https://doi.org/10.5194/cp-16-2203-2020, https://doi.org/10.5194/cp-16-2203-2020, 2020
Short summary
Short summary
We reconstruct atmospheric CO2 from the EPICA Dome C ice core during Marine Isotope Stage 6 (185–135 ka) to understand carbon mechanisms under the different boundary conditions of the climate system. The amplitude of CO2 is highly determined by the Northern Hemisphere stadial duration. Carbon dioxide maxima show different lags with respect to the corresponding abrupt CH4 jumps, the latter reflecting rapid warming in the Northern Hemisphere.
Maxim Lamare, Marie Dumont, Ghislain Picard, Fanny Larue, François Tuzet, Clément Delcourt, and Laurent Arnaud
The Cryosphere, 14, 3995–4020, https://doi.org/10.5194/tc-14-3995-2020, https://doi.org/10.5194/tc-14-3995-2020, 2020
Short summary
Short summary
Terrain features found in mountainous regions introduce large errors into the calculation of the physical properties of snow using optical satellite images. We present a new model performing rapid calculations of solar radiation over snow-covered rugged terrain that we tested over a site in the French Alps. The results of the study show that all the interactions between sunlight and the terrain should be accounted for over snow-covered surfaces to correctly estimate snow properties from space.
Marie-Laure Roussel, Florentin Lemonnier, Christophe Genthon, and Gerhard Krinner
The Cryosphere, 14, 2715–2727, https://doi.org/10.5194/tc-14-2715-2020, https://doi.org/10.5194/tc-14-2715-2020, 2020
Short summary
Short summary
The Antarctic precipitation is evaluated against space radar data in the most recent climate model intercomparison CMIP6 and reanalysis ERA5. The seasonal cycle is mostly well reproduced, but relative errors are higher in areas of complex topography, particularly in the higher-resolution models. At continental and regional scales all results are biased high, with no significant progress in the more recent models. Predicting Antarctic contribution to sea level still requires model improvements.
Florentin Lemonnier, Alizée Chemison, Hubert Gallée, Gerhard Krinner, Jean-Baptiste Madeleine, Chantal Claud, and Christophe Genthon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-167, https://doi.org/10.5194/tc-2020-167, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study presents the first evaluation from snowfall observations in Antarctica of the general circulation model LMDz (global), the atmospheric component of the coupled IPSL Climate Model that is part of CMIP6 (IPCC). We also present an evaluation of the new version of the MAR model (regional), considered as a reference in terms of polar climate modelling. Both models show satisfying results for the modelling of precipitation in Antarctica.
Mathieu Casado, Thomas Münch, and Thomas Laepple
Clim. Past, 16, 1581–1598, https://doi.org/10.5194/cp-16-1581-2020, https://doi.org/10.5194/cp-16-1581-2020, 2020
Short summary
Short summary
The isotopic composition in ice cores from Antarctica is usually interpreted as a temperature proxy. Using a forward model, we show how different the signal in ice cores and the actual climatic signal are. Precipitation intermittency and diffusion do indeed affect the archived signal, leading to the reshuffling of the signal which limits the ability to reconstruct high-resolution climatic variations with ice cores.
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Torben Kunz, Andrew M. Dolman, and Thomas Laepple
Clim. Past, 16, 1469–1492, https://doi.org/10.5194/cp-16-1469-2020, https://doi.org/10.5194/cp-16-1469-2020, 2020
Short summary
Short summary
This paper introduces a method to estimate the uncertainty of climate reconstructions from single sediment proxy records. The method can compute uncertainties as a function of averaging timescale, thereby accounting for the fact that some components of the uncertainty are autocorrelated in time. This is achieved by treating the problem in the spectral domain. Fully analytic expressions are derived. A companion paper (Part 2) complements this with application-oriented examples of the method.
Yongbiao Weng, Alexandra Touzeau, and Harald Sodemann
Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020, https://doi.org/10.5194/amt-13-3167-2020, 2020
Short summary
Short summary
We find that the known mixing ratio dependence of laser spectrometers for water vapour isotope measurements varies with isotope composition. We have developed a scheme to correct for this isotope-composition-dependent bias. The correction is most substantial at low mixing ratios. Stability tests indicate that the first-order dependency is a constant instrument characteristic. Water vapour isotope measurements at low mixing ratios can now be corrected by following our proposed procedure.
Fanny Larue, Ghislain Picard, Laurent Arnaud, Inès Ollivier, Clément Delcourt, Maxim Lamare, François Tuzet, Jesus Revuelto, and Marie Dumont
The Cryosphere, 14, 1651–1672, https://doi.org/10.5194/tc-14-1651-2020, https://doi.org/10.5194/tc-14-1651-2020, 2020
Short summary
Short summary
The effect of surface roughness on snow albedo is often overlooked,
although a small change in albedo may strongly affect the surface energy
budget. By carving artificial roughness in an initially smooth snowpack,
we highlight albedo reductions of 0.03–0.04 at 700 nm and 0.06–0.10 at 1000 nm. A model using photon transport is developed to compute albedo considering roughness and applied to understand the impact of roughness as a function of snow properties and illumination conditions.
Ghislain Picard, Marie Dumont, Maxim Lamare, François Tuzet, Fanny Larue, Roberta Pirazzini, and Laurent Arnaud
The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020, https://doi.org/10.5194/tc-14-1497-2020, 2020
Short summary
Short summary
Surface albedo is an essential variable of snow-covered areas. The measurement of this variable over a tilted terrain with levelled sensors is affected by artefacts that need to be corrected. Here we develop a theory of spectral albedo measurement over slopes from which we derive four correction algorithms. The comparison to in situ measurements taken in the Alps shows the adequacy of the theory, and the application of the algorithms shows systematic improvements.
Mathieu Casado, Gwenaëlle Gremion, Paul Rosenbaum, Jilda Alicia Caccavo, Kelsey Aho, Nicolas Champollion, Sarah L. Connors, Adrian Dahood, Alfonso Fernandez, Martine Lizotte, Katja Mintenbeck, Elvira Poloczanska, and Gerlis Fugmann
Geosci. Commun., 3, 89–97, https://doi.org/10.5194/gc-3-89-2020, https://doi.org/10.5194/gc-3-89-2020, 2020
Short summary
Short summary
Early-career scientists (ECSs) are rarely invited to act as peer reviewers. Participating in a group peer review of the IPCC Special Report on Ocean and Cryosphere in a Changing Climate, PhD students spent more time reviewing than more established scientists and provided a similar proportion of substantive comments. By soliciting and including ECSs in peer review, the scientific community would reduce the burden on more established scientists and may improve the quality of that process.
Pascal Bohleber, Mathieu Casado, Kirsti Ashworth, Chelsey A. Baker, Anna Belcher, Jilda Alicia Caccavo, Holly E. Jenkins, Erin Satterthwaite, Andrea Spolaor, and V. Holly L. Winton
Adv. Geosci., 53, 1–14, https://doi.org/10.5194/adgeo-53-1-2020, https://doi.org/10.5194/adgeo-53-1-2020, 2020
Short summary
Short summary
International Early Career Networks (ECN) are global voluntary communities of Early Career Scientists (ECS) aiming to advance the careers of ECS and to improve their inclusion into the international scientific community. We use member surveys alongside with case studies from well-established and long-term networks to elucidate the attributes that make a successful, sustainable ECN, and propose best practices for developing ECN successfully.
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Alexey A. Ekaykin, Jérôme Chappellaz, and Vladimir Lipenkov
Clim. Past, 16, 503–522, https://doi.org/10.5194/cp-16-503-2020, https://doi.org/10.5194/cp-16-503-2020, 2020
Short summary
Short summary
We quantify how the greenhouse gas records of East Antarctic ice cores (which are the oldest ice cores) might differ from the actual atmosphere history. It is required to properly interpret ice core data. For this, we measured the methane of five new East Antarctic ice core sections using a high-resolution technique. We found that in these very old ice cores, one can retrieve concentration variations occurring in only a few centuries, allowing climatologists to study climate's fast dynamics.
Marion Leduc-Leballeur, Ghislain Picard, Giovanni Macelloni, Arnaud Mialon, and Yann H. Kerr
The Cryosphere, 14, 539–548, https://doi.org/10.5194/tc-14-539-2020, https://doi.org/10.5194/tc-14-539-2020, 2020
Short summary
Short summary
To study the coast and ice shelves affected by melt in Antarctica during the austral summer, we exploited the 1.4 GHz radiometric satellite observations. We showed that this frequency provides additional information on melt occurrence and on the location of the water in the snowpack compared to the 19 GHz observations. This opens an avenue for improving the melting season monitoring with a combination of both frequencies and exploring the possibility of deep-water detection in the snowpack.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Christiaan T. van Dalum, Willem Jan van de Berg, Quentin Libois, Ghislain Picard, and Michiel R. van den Broeke
Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, https://doi.org/10.5194/gmd-12-5157-2019, 2019
Short summary
Short summary
Climate models are often limited to relatively simple snow albedo schemes. Therefore, we have developed the SNOWBAL module to couple a climate model with a physically based wavelength dependent snow albedo model. Using SNOWBAL v1.2 to couple the snow albedo model TARTES with the regional climate model RACMO2 indicates a potential performance gain for the Greenland ice sheet.
Anne Alexandre, Elizabeth Webb, Amaelle Landais, Clément Piel, Sébastien Devidal, Corinne Sonzogni, Martine Couapel, Jean-Charles Mazur, Monique Pierre, Frédéric Prié, Christine Vallet-Coulomb, Clément Outrequin, and Jacques Roy
Biogeosciences, 16, 4613–4625, https://doi.org/10.5194/bg-16-4613-2019, https://doi.org/10.5194/bg-16-4613-2019, 2019
Short summary
Short summary
This calibration study shows that despite isotope heterogeneity along grass leaves, the triple oxygen isotope composition of bulk leaf phytoliths can be estimated from the Craig and Gordon model, a mixing equation and a mean leaf water–phytolith fractionation exponent (lambda) of 0.521. The results strengthen the reliability of the 17O–excess of phytoliths to be used as a proxy of atmospheric relative humidity and open tracks for its use as an imprint of leaf water 17O–excess.
Ekaterina P. Rets, Viktor V. Popovnin, Pavel A. Toropov, Andrew M. Smirnov, Igor V. Tokarev, Julia N. Chizhova, Nadine A. Budantseva, Yurij K. Vasil'chuk, Maria B. Kireeva, Alexey A. Ekaykin, Arina N. Veres, Alexander A. Aleynikov, Natalia L. Frolova, Anatoly S. Tsyplenkov, Aleksei A. Poliukhov, Sergey R. Chalov, Maria A. Aleshina, and Ekaterina D. Kornilova
Earth Syst. Sci. Data, 11, 1463–1481, https://doi.org/10.5194/essd-11-1463-2019, https://doi.org/10.5194/essd-11-1463-2019, 2019
Short summary
Short summary
As climate change completely restructures hydrological processes and ecosystems in alpine areas, monitoring is fundamental to adaptation. Here we present a database on more than 10 years of hydrometeorological monitoring at the Djankuat station in the North Caucasus, which is one of 30 unique world reference sites with annual mass balance series longer than 50 years. We hope it will be useful for scientists studying various aspects of hydrological processes in mountain areas.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Francois Tuzet, Marie Dumont, Laurent Arnaud, Didier Voisin, Maxim Lamare, Fanny Larue, Jesus Revuelto, and Ghislain Picard
The Cryosphere, 13, 2169–2187, https://doi.org/10.5194/tc-13-2169-2019, https://doi.org/10.5194/tc-13-2169-2019, 2019
Short summary
Short summary
Here we present a novel method to estimate the impurity content (e.g. black carbon or mineral dust) in Alpine snow based on measurements of light extinction profiles. This method is proposed as an alternative to chemical measurements, allowing rapid retrievals of vertical concentrations of impurities in the snowpack. In addition, the results provide a better understanding of the impact of impurities on visible light extinction in snow.
Gauthier Verin, Florent Dominé, Marcel Babin, Ghislain Picard, and Laurent Arnaud
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-113, https://doi.org/10.5194/tc-2019-113, 2019
Publication in TC not foreseen
Short summary
Short summary
The results of two sampling campaigns conducted on landfast sea ice in Baffin Bay show that the melt season can be divided into four main phases during which surface albedo and snow properties show distinct signatures. A radiative transfer model was used to successfully reconstruct the albedo from snow properties. This modeling work highlights that only little changes on the very surface of the snowpack are able to dramatically change the albedo, a key element for the energy budget of sea ice.
Ghislain Picard, Laurent Arnaud, Romain Caneill, Eric Lefebvre, and Maxim Lamare
The Cryosphere, 13, 1983–1999, https://doi.org/10.5194/tc-13-1983-2019, https://doi.org/10.5194/tc-13-1983-2019, 2019
Short summary
Short summary
To study how snow accumulates in Antarctica, we analyze daily surface elevation recorded by an automatic laser scanner. We show that new snow often accumulates in thick patches covering a small fraction of the surface. Most patches are removed by erosion within weeks, implying that only a few contribute to the snowpack. This explains the heterogeneity on the surface and in the snowpack. These findings are important for surface mass and energy balance, photochemistry, and ice core interpretation.
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Suzanne Preunkert, Michel Legrand, Bénédicte Minster, and Martin Werner
The Cryosphere, 13, 1297–1324, https://doi.org/10.5194/tc-13-1297-2019, https://doi.org/10.5194/tc-13-1297-2019, 2019
Short summary
Short summary
We report new water stable isotope records from the first highly resolved firn core drilled in Adélie Land and covering 1998–2014. Using an updated database, we show that mean values are in line with the range of coastal values. Statistical analyses show no relationship between our record and local surface air temperature. Atmospheric back trajectories and isotopic simulations suggest that water stable isotopes in Adélie provide a fingerprint of the variability of atmospheric dynamics.
Nicolas Champollion, Ghislain Picard, Laurent Arnaud, Éric Lefebvre, Giovanni Macelloni, Frédérique Rémy, and Michel Fily
The Cryosphere, 13, 1215–1232, https://doi.org/10.5194/tc-13-1215-2019, https://doi.org/10.5194/tc-13-1215-2019, 2019
Short summary
Short summary
The snow density close to the surface has been retrieved from satellite observations at Dome C on the Antarctic Ice Sheet. It shows a marked decrease between 2002 and 2011 of about 10 kg m-3 yr-1. This trend has been confirmed by in situ measurements and other satellite observations though no long-term meteorological evolution has been found. These results have implications for surface mass balance and energy budget.
François Klein, Nerilie J. Abram, Mark A. J. Curran, Hugues Goosse, Sentia Goursaud, Valérie Masson-Delmotte, Andrew Moy, Raphael Neukom, Anaïs Orsi, Jesper Sjolte, Nathan Steiger, Barbara Stenni, and Martin Werner
Clim. Past, 15, 661–684, https://doi.org/10.5194/cp-15-661-2019, https://doi.org/10.5194/cp-15-661-2019, 2019
Short summary
Short summary
Antarctic temperature changes over the past millennia have been reconstructed from isotope records in ice cores in several studies. However, the link between both variables is complex. Here, we investigate the extent to which this affects the robustness of temperature reconstructions using pseudoproxy and data assimilation experiments. We show that the reconstruction skill is limited, especially at the regional scale, due to a weak and nonstationary covariance between δ18O and temperature.
Maria Reschke, Kira Rehfeld, and Thomas Laepple
Clim. Past, 15, 521–537, https://doi.org/10.5194/cp-15-521-2019, https://doi.org/10.5194/cp-15-521-2019, 2019
Short summary
Short summary
We empirically estimate signal-to-noise ratios of temperature proxy records used in global compilations of the middle to late Holocene by comparing the spatial correlation structure of proxy records and climate model simulations accounting for noise and time uncertainty. We find that low signal contents of the proxy records or, alternatively, more localised climate variations recorded by proxies than suggested by current model simulations suggest caution when interpreting multi-proxy datasets.
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019, https://doi.org/10.5194/tc-13-247-2019, 2019
Short summary
Short summary
Precipitation is the main input in the surface mass balance of the Antarctic ice sheet, but it is still poorly understood due to a lack of observations in this region. We analyzed the vertical structure of the precipitation using multiyear observation of vertically pointing micro rain radars (MRRs) at two stations located in East Antarctica. The use of MRRs showed the potential to study the effect of climatology and hydrometeor microphysics on the vertical structure of Antarctic precipitation.
Thomas Münch and Thomas Laepple
Clim. Past, 14, 2053–2070, https://doi.org/10.5194/cp-14-2053-2018, https://doi.org/10.5194/cp-14-2053-2018, 2018
Short summary
Short summary
Proxy data on climate variations contain noise from many sources and, for reliable estimates, we need to determine those temporal scales at which the climate signal in the proxy record dominates the noise. We developed a method to derive timescale-dependent estimates of temperature proxy signal-to-noise ratios, which we apply and discuss in the context of Antarctic ice-core records but which in general are applicable to a large set of palaeoclimate records.
Andrew M. Dolman and Thomas Laepple
Clim. Past, 14, 1851–1868, https://doi.org/10.5194/cp-14-1851-2018, https://doi.org/10.5194/cp-14-1851-2018, 2018
Short summary
Short summary
Climate proxies from marine sediments provide an important record of past temperatures, but contain noise from many sources. These include mixing by burrowing organisms, seasonal and habitat biases, measurement error, and small sample size effects. We have created a forward model that simulates the creation of proxy records and provides it as a user-friendly R package. It allows multiple sources of uncertainty to be considered together when interpreting proxy climate records.
Amaëlle Landais, Emilie Capron, Valérie Masson-Delmotte, Samuel Toucanne, Rachael Rhodes, Trevor Popp, Bo Vinther, Bénédicte Minster, and Frédéric Prié
Clim. Past, 14, 1405–1415, https://doi.org/10.5194/cp-14-1405-2018, https://doi.org/10.5194/cp-14-1405-2018, 2018
Short summary
Short summary
During the last glacial–interglacial climate transition (120 000 to 10 000 years before present), Greenland climate and midlatitude North Atlantic climate and water cycle vary in phase over the succession of millennial events. We identify here one notable exception to this behavior with a decoupling unambiguously identified through a combination of water isotopic tracers measured in a Greenland ice core. The midlatitude moisture source becomes warmer and wetter at 16 200 years before present.
Christophe Genthon, Alexis Berne, Jacopo Grazioli, Claudio Durán Alarcón, Christophe Praz, and Brice Boudevillain
Earth Syst. Sci. Data, 10, 1605–1612, https://doi.org/10.5194/essd-10-1605-2018, https://doi.org/10.5194/essd-10-1605-2018, 2018
Short summary
Short summary
Antarctica suffers from a severe shortage of in situ observations of precipitation. The APRES3 program contributes to improving observation from both the surface and from space. A field campaign with various instruments was deployed at the coast of Adélie Land, with an intensive observing period in austral summer 2015–16, then continuous radar monitoring through 2016 and beyond. This paper provides a compact presentation of the APRES3 dataset, which is now made open to the scientific community.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Alexander Kokhanovsky, Maxim Lamare, Biagio Di Mauro, Ghislain Picard, Laurent Arnaud, Marie Dumont, François Tuzet, Carsten Brockmann, and Jason E. Box
The Cryosphere, 12, 2371–2382, https://doi.org/10.5194/tc-12-2371-2018, https://doi.org/10.5194/tc-12-2371-2018, 2018
Short summary
Short summary
This work presents a new technique with which to derive the snow microphysical and optical properties from snow spectral reflectance measurements. The technique is robust and easy to use, and it does not require the extraction of snow samples from a given snowpack. It can be used in processing satellite imagery over extended fresh dry, wet and polluted snowfields.
Ghislain Picard, Melody Sandells, and Henning Löwe
Geosci. Model Dev., 11, 2763–2788, https://doi.org/10.5194/gmd-11-2763-2018, https://doi.org/10.5194/gmd-11-2763-2018, 2018
Short summary
Short summary
The Snow Microwave Radiative Transfer (SMRT) is a novel model developed to calculate how microwaves are scattered and emitted by snow. The model is built from separate, interconnecting modules to make it easy to compare different aspects of the theory. SMRT is the first model to allow a choice of how to represent the microstructure of the snow, which is extremely important, and has been used to unite multiple previous studies. This model will ultimately be used to observe snow from space.
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Anaïs Orsi, and Martin Werner
Clim. Past, 14, 923–946, https://doi.org/10.5194/cp-14-923-2018, https://doi.org/10.5194/cp-14-923-2018, 2018
Short summary
Short summary
Atmospheric general circulation models equipped with water stable isotopes are key tools to explore the links between climate variables and precipitation isotopic composition and thus to quantify past temperature changes using ice core records. Here, we evaluate the skills of ECHAM5-wiso to simulate the spatio-temporal characteristics of Antarctic climate and precipitation isotopic composition at the regional scale, thanks to a database of precipitation and ice core records.
Alexandra Touzeau, Amaëlle Landais, Samuel Morin, Laurent Arnaud, and Ghislain Picard
Geosci. Model Dev., 11, 2393–2418, https://doi.org/10.5194/gmd-11-2393-2018, https://doi.org/10.5194/gmd-11-2393-2018, 2018
Short summary
Short summary
We introduced a new module of water vapor diffusion into the snowpack model Crocus. Vapor transport locally modifies the density of snow layers, possibly influencing compaction. It also affects the original isotopic signature of snow layers. We also introduced water isotopes (𝛿18O) in the model. Over 10 years, the modeled attenuation of isotopic variations due to vapor diffusion is 7–18 % lower than the observations. Thus, other processes are required to explain the total attenuation.
Anne Alexandre, Amarelle Landais, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Sandrine Pauchet, Corinne Sonzogni, Martine Couapel, Marine Pasturel, Pauline Cornuault, Jingming Xin, Jean-Charles Mazur, Frédéric Prié, Ilhem Bentaleb, Elizabeth Webb, Françoise Chalié, and Jacques Roy
Biogeosciences, 15, 3223–3241, https://doi.org/10.5194/bg-15-3223-2018, https://doi.org/10.5194/bg-15-3223-2018, 2018
Short summary
Short summary
There is a lack of proxies suitable for reconstructing, in a quantitative way, past changes in continental atmospheric humidity, which is a key climate parameter. Here, we demonstrate through climate chamber and climate transect calibrations that the triple oxygen isotope composition of phytoliths offers a potential for reconstructing changes in relative humidity.
Fifi Ibrahime Adodo, Frédérique Remy, and Ghislain Picard
The Cryosphere, 12, 1767–1778, https://doi.org/10.5194/tc-12-1767-2018, https://doi.org/10.5194/tc-12-1767-2018, 2018
Short summary
Short summary
In Antarctica, the seasonal cycle of the backscatter behaves differently at high and low frequencies, peaking in winter and in summer, respectively. At the intermediate frequency, some areas behave analogously to low frequency in terms of the seasonal cycle, but other areas behave analogously to high frequency. This calls into question the empirical relationships often used to correct elevation changes from radar penetration into the snowpack using backscatter.
Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hoerhold, Amaelle Landais, and Sepp Kipfstuhl
The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, https://doi.org/10.5194/tc-12-169-2018, 2018
Short summary
Short summary
We explain why snow pits across different sites in East Antarctica show visually similar isotopic variations. We argue that the similarity and the apparent cycles of around 20 cm in the δD and δ18O variations are the result of a seasonal cycle in isotopes, noise, for example from precipitation intermittency, and diffusion. The near constancy of the diffusion length across many ice-coring sites explains why the structure and cycle length is largely independent of the accumulation conditions.
Kévin Fourteau, Xavier Faïn, Patricia Martinerie, Amaëlle Landais, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, and Jérôme Chappellaz
Clim. Past, 13, 1815–1830, https://doi.org/10.5194/cp-13-1815-2017, https://doi.org/10.5194/cp-13-1815-2017, 2017
Short summary
Short summary
We measured methane concentrations from a polar ice core to quantify the differences between the ice record and the past true atmospheric conditions. Two effects were investigated by combining data analysis and modeling: the stratification of polar snow before gas enclosure driving chronological hiatuses in the record and the gradual formation of bubbles in the ice attenuating fast atmospheric variations. This study will contribute to improving future climatic interpretations from ice archives.
Francois Tuzet, Marie Dumont, Matthieu Lafaysse, Ghislain Picard, Laurent Arnaud, Didier Voisin, Yves Lejeune, Luc Charrois, Pierre Nabat, and Samuel Morin
The Cryosphere, 11, 2633–2653, https://doi.org/10.5194/tc-11-2633-2017, https://doi.org/10.5194/tc-11-2633-2017, 2017
Short summary
Short summary
Light-absorbing impurities deposited on snow, such as soot or dust, strongly modify its evolution. We implemented impurity deposition and evolution in a detailed snowpack model, thereby expanding the reach of such models into addressing the subtle interplays between snow physics and impurities' optical properties. Model results were evaluated based on innovative field observations at an Alpine site. This allows future investigations in the fields of climate, hydrology and avalanche prediction.
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elizabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Martin Werner, and Massimo Frezzotti
Clim. Past, 13, 1609–1634, https://doi.org/10.5194/cp-13-1609-2017, https://doi.org/10.5194/cp-13-1609-2017, 2017
Short summary
Short summary
Within PAGES Antarctica2k, we build an enlarged database of ice core water stable isotope records. We produce isotopic composites and temperature reconstructions since 0 CE for seven distinct Antarctic regions. We find a significant cooling trend from 0 to 1900 CE across all regions. Since 1900 CE, significant warming trends are identified for three regions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of last-2000-year natural variability.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Frédéric Parrenin, Marie G. P. Cavitte, Donald D. Blankenship, Jérôme Chappellaz, Hubertus Fischer, Olivier Gagliardini, Valérie Masson-Delmotte, Olivier Passalacqua, Catherine Ritz, Jason Roberts, Martin J. Siegert, and Duncan A. Young
The Cryosphere, 11, 2427–2437, https://doi.org/10.5194/tc-11-2427-2017, https://doi.org/10.5194/tc-11-2427-2017, 2017
Short summary
Short summary
The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC), reaching ~ 800 000 years. Obtaining an older palaeoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we estimate the age of basal ice in the Dome C area. We find that old ice (> 1.5 Myr) likely exists in two regions a few tens of kilometres away from EDC:
Little Dome C Patchand
North Patch.
Elisabeth Schlosser, Anna Dittmann, Barbara Stenni, Jordan G. Powers, Kevin W. Manning, Valérie Masson-Delmotte, Mauro Valt, Anselmo Cagnati, Paolo Grigioni, and Claudio Scarchilli
The Cryosphere, 11, 2345–2361, https://doi.org/10.5194/tc-11-2345-2017, https://doi.org/10.5194/tc-11-2345-2017, 2017
Short summary
Short summary
To derive paleotemperatures from ice cores we must know all processes involved in ice formation. At the Antarctic base Dome C, a unique precipitation data set plus stable water isotope data enabled us to study atmospheric processes influencing isotope ratios of precipitation in detail. Meteorological data from both automatic weather station and an atmospheric model were used to investigate how different atmospheric flow patterns determine the precipitation parameters used in paleoclimatology.
Thomas Münch, Sepp Kipfstuhl, Johannes Freitag, Hanno Meyer, and Thomas Laepple
The Cryosphere, 11, 2175–2188, https://doi.org/10.5194/tc-11-2175-2017, https://doi.org/10.5194/tc-11-2175-2017, 2017
Short summary
Short summary
The importance of post-depositional changes for the temperature interpretation of water isotopes is poorly constrained by observations. Here, for the first time, temporal isotope changes in the open-porous firn are directly analysed using a large array of shallow isotope profiles. By this, we can reject the possibility of post-depositional change beyond diffusion and densification as the cause of the discrepancy between isotope and local temperature variations at Kohnen Station, East Antarctica.
Jacopo Grazioli, Christophe Genthon, Brice Boudevillain, Claudio Duran-Alarcon, Massimo Del Guasta, Jean-Baptiste Madeleine, and Alexis Berne
The Cryosphere, 11, 1797–1811, https://doi.org/10.5194/tc-11-1797-2017, https://doi.org/10.5194/tc-11-1797-2017, 2017
Short summary
Short summary
We present medium and long-term measurements of precipitation in a coastal region of Antarctica. These measurements are among the first of their kind on the Antarctic continent and combine remote sensing with in situ observations. The benefits of this synergy are demonstrated and the lessons learned from this measurements, which are still ongoing, are very important for the creation of similar observatories elsewhere on the continent.
Pirmin Philipp Ebner, Hans Christian Steen-Larsen, Barbara Stenni, Martin Schneebeli, and Aldo Steinfeld
The Cryosphere, 11, 1733–1743, https://doi.org/10.5194/tc-11-1733-2017, https://doi.org/10.5194/tc-11-1733-2017, 2017
Short summary
Short summary
Stable water isotopes (δ18O) obtained from snow and ice samples from polar regions are used to reconstruct past climate variability. We present an experimental study on the effect on the snow isotopic composition by airflow through a snowpack in controlled laboratory conditions. The disequilibrium between snow and vapor isotopes changed the isotopic content of the snow. These measurements suggest that metamorphism and its history affect the snow isotopic composition.
James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy
Earth Syst. Dynam., 8, 577–616, https://doi.org/10.5194/esd-8-577-2017, https://doi.org/10.5194/esd-8-577-2017, 2017
Short summary
Short summary
Global temperature now exceeds +1.25 °C relative to 1880–1920, similar to warmth of the Eemian period. Keeping warming less than 1.5 °C or CO2 below 350 ppm now requires extraction of CO2 from the air. If rapid phaseout of fossil fuel emissions begins soon, most extraction can be via improved agricultural and forestry practices. In contrast, continued high emissions places a burden on young people of massive technological CO2 extraction with large risks, high costs and uncertain feasibility.
Camille Bréant, Patricia Martinerie, Anaïs Orsi, Laurent Arnaud, and Amaëlle Landais
Clim. Past, 13, 833–853, https://doi.org/10.5194/cp-13-833-2017, https://doi.org/10.5194/cp-13-833-2017, 2017
Short summary
Short summary
All firn densification models applied to deglaciations show a large disagreement with δ15N measurements at sites in East Antarctica, predicting larger firn thickness during the Last Glacial Maximum, whereas δ15N suggests a reduced firn thickness compared to the Holocene. Here we present modifications, which significantly reduce the model–data mismatch for the gas trapping depth evolution over the last deglaciation at the coldest sites in East Antarctica, to the LGGE firn densification model.
Mélanie Wary, Frédérique Eynaud, Didier Swingedouw, Valérie Masson-Delmotte, Jens Matthiessen, Catherine Kissel, Jena Zumaque, Linda Rossignol, and Jean Jouzel
Clim. Past, 13, 729–739, https://doi.org/10.5194/cp-13-729-2017, https://doi.org/10.5194/cp-13-729-2017, 2017
Short summary
Short summary
The last glacial period was punctuated by abrupt climatic variations, whose cold atmospheric phases have been commonly associated with cold sea-surface temperatures and expansion of sea ice in the North Atlantic and adjacent seas. Here we provide direct evidence of a regional paradoxical see-saw pattern: cold Greenland and North Atlantic phases coincide with warmer sea-surface conditions and shorter seasonal sea-ice cover durations in the Norwegian Sea as compared to warm phases.
Anna Kozachek, Vladimir Mikhalenko, Valérie Masson-Delmotte, Alexey Ekaykin, Patrick Ginot, Stanislav Kutuzov, Michel Legrand, Vladimir Lipenkov, and Susanne Preunkert
Clim. Past, 13, 473–489, https://doi.org/10.5194/cp-13-473-2017, https://doi.org/10.5194/cp-13-473-2017, 2017
Marie Dumont, Laurent Arnaud, Ghislain Picard, Quentin Libois, Yves Lejeune, Pierre Nabat, Didier Voisin, and Samuel Morin
The Cryosphere, 11, 1091–1110, https://doi.org/10.5194/tc-11-1091-2017, https://doi.org/10.5194/tc-11-1091-2017, 2017
Short summary
Short summary
Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77°E; 1325 m a.s.l.). This study highlights that the variations of spectral albedo can be successfully explained by variations of the following snow surface variables: snow-specific surface area, effective light-absorbing impurities content, presence of liquid water and slope.
Grant M. Raisbeck, Alexandre Cauquoin, Jean Jouzel, Amaelle Landais, Jean-Robert Petit, Vladimir Y. Lipenkov, Juerg Beer, Hans-Arno Synal, Hans Oerter, Sigfus J. Johnsen, Jorgen P. Steffensen, Anders Svensson, and Françoise Yiou
Clim. Past, 13, 217–229, https://doi.org/10.5194/cp-13-217-2017, https://doi.org/10.5194/cp-13-217-2017, 2017
Short summary
Short summary
Using records of a long-lived radioactive nuclide (10Be) that is formed globally in the atmosphere and deposited within a few years to the earth’s surface, we have synchronized three Antarctic ice cores to one from Greenland. This permits the climate and other environmental parameters registered in these ice cores to be put on a common timescale with a precision of a few decades, thus allowing different models and mechanisms associated with these parameters to be tested with the same precision.
Sentia Goursaud, Valérie Masson-Delmotte, Vincent Favier, Susanne Preunkert, Michel Fily, Hubert Gallée, Bruno Jourdain, Michel Legrand, Olivier Magand, Bénédicte Minster, and Martin Werner
The Cryosphere, 11, 343–362, https://doi.org/10.5194/tc-11-343-2017, https://doi.org/10.5194/tc-11-343-2017, 2017
Short summary
Short summary
Uncertainty of sea level changes is a challenge. As Antarctica is the biggest water reservoir, it is necessary to know how it will contribute. To be able to simulate it, an understanding of past climate is to be achieved, for instance, by studying the ice cores. As climate change is different in different regions, observations are needed all over the continent. Studying an ice core in Adélie Land, we can conclude that there are no changes there at decadal scale over the period 1947–2007.
Alexey A. Ekaykin, Diana O. Vladimirova, Vladimir Y. Lipenkov, and Valérie Masson-Delmotte
Clim. Past, 13, 61–71, https://doi.org/10.5194/cp-13-61-2017, https://doi.org/10.5194/cp-13-61-2017, 2017
Short summary
Short summary
Understanding the Antarctic climate system is crucial in the context of the present-day global environmental changes, but key gaps arise from limited observations. We present a new reconstructed stacked climate record for Princess Elizabeth Land, East Antarctica. Records show 1 °C warming over the last 350 years, with a particularly cold period from the mid-18th to mid-19th century. Temperature variability with a period > 27 years is mainly related to the anomalies of the Indian Ocean Dipole mode.
Christophe Genthon, Luc Piard, Etienne Vignon, Jean-Baptiste Madeleine, Mathieu Casado, and Hubert Gallée
Atmos. Chem. Phys., 17, 691–704, https://doi.org/10.5194/acp-17-691-2017, https://doi.org/10.5194/acp-17-691-2017, 2017
Short summary
Short summary
Natural atmospheric supersaturation is a norm rather than an exception at the surface of Dome C on the Antarctic Plateau. This is reported by hygrometers adapted to perform in extreme cold environments and avoid release of excess moisture before it is measured. One year of observation shows that atmospheric models with cold microphysics parameterizations designed for high altitude cirrus reproduce frequently but fail with the detailed statistics of supersaturation at the surface of Dome C.
Kira Rehfeld, Mathias Trachsel, Richard J. Telford, and Thomas Laepple
Clim. Past, 12, 2255–2270, https://doi.org/10.5194/cp-12-2255-2016, https://doi.org/10.5194/cp-12-2255-2016, 2016
Short summary
Short summary
Indirect evidence on past climate comes from the former composition of ecological communities such as plants, preserved as pollen grains in sediments of lakes. Transfer functions convert relative counts of species to a climatologically meaningful scale (e.g. annual mean temperature in degrees C). We show that the fundamental assumptions in the algorithms impact the reconstruction results in he idealized model world, in particular if the reconstructed variables were not ecologically relevant.
Paolo Gabrielli, Carlo Barbante, Giuliano Bertagna, Michele Bertó, Daniel Binder, Alberto Carton, Luca Carturan, Federico Cazorzi, Giulio Cozzi, Giancarlo Dalla Fontana, Mary Davis, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Giuliano Dreossi, Daniela Festi, Massimo Frezzotti, Jacopo Gabrieli, Stephan P. Galos, Patrick Ginot, Petra Heidenwolf, Theo M. Jenk, Natalie Kehrwald, Donald Kenny, Olivier Magand, Volkmar Mair, Vladimir Mikhalenko, Ping Nan Lin, Klaus Oeggl, Gianni Piffer, Mirko Rinaldi, Ulrich Schotterer, Margit Schwikowski, Roberto Seppi, Andrea Spolaor, Barbara Stenni, David Tonidandel, Chiara Uglietti, Victor Zagorodnov, Thomas Zanoner, and Piero Zennaro
The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, https://doi.org/10.5194/tc-10-2779-2016, 2016
Short summary
Short summary
New ice cores were extracted from Alto dell'Ortles, the highest glacier of South Tyrol in the Italian Alps, to check whether prehistoric ice, which is coeval to the famous 5300-yr-old Tyrolean Iceman, is still preserved in this region. Dating of the ice cores confirms the hypothesis and indicates the drilling site has been glaciated since the end of the Northern Hemisphere Climatic Optimum (7000 yrs BP). We also infer that an unprecedented acceleration of the glacier flow has recently begun.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263, https://doi.org/10.5194/tc-2016-263, 2016
Revised manuscript not accepted
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Ghislain Picard, Quentin Libois, and Laurent Arnaud
The Cryosphere, 10, 2655–2672, https://doi.org/10.5194/tc-10-2655-2016, https://doi.org/10.5194/tc-10-2655-2016, 2016
Short summary
Short summary
The absorption of visible light in ice is very weak but its precise value is unknown. By measuring the profile of light intensity in snow, Warren and Brand (2006) deduced that light is attenuated by a factor 2 per kilometer in pure ice at a wavelength of 400 nm. We replicated their experiment on a large number of samples and found that ice absorption is at least 10 times stronger. The paper explores various potential physical and statistical biases that could impact the experiment.
Barbara Stenni, Claudio Scarchilli, Valerie Masson-Delmotte, Elisabeth Schlosser, Virginia Ciardini, Giuliano Dreossi, Paolo Grigioni, Mattia Bonazza, Anselmo Cagnati, Daniele Karlicek, Camille Risi, Roberto Udisti, and Mauro Valt
The Cryosphere, 10, 2415–2428, https://doi.org/10.5194/tc-10-2415-2016, https://doi.org/10.5194/tc-10-2415-2016, 2016
Short summary
Short summary
Here, we focus on the Concordia Station, central East Antarctic plateau, providing a multi-year record (2008–2010) of daily precipitation types identified from crystal morphologies, precipitation amounts and isotopic composition. Relationships between local meteorological data and precipitation oxygen isotope composition are investigated. Our dataset is available for in-depth model evaluation at the synoptic scale.
Josué Bock, Joël Savarino, and Ghislain Picard
Atmos. Chem. Phys., 16, 12531–12550, https://doi.org/10.5194/acp-16-12531-2016, https://doi.org/10.5194/acp-16-12531-2016, 2016
Short summary
Short summary
We develop a physically based parameterisation of the co-condensation process. Our model includes solid-state diffusion within a snow grain. It reproduces with good agreement the nitrate measurement in surface snow. Winter and summer concentrations are driven respectively by thermodynamic equilibrium and co-condensation. Adsorbed nitrate likely accounts for a minor part. This work shows that co-condensation is required to explain the chemical composition of snow undergoing temperature gradient.
Amaelle Landais, Valérie Masson-Delmotte, Emilie Capron, Petra M. Langebroek, Pepijn Bakker, Emma J. Stone, Niklaus Merz, Christoph C. Raible, Hubertus Fischer, Anaïs Orsi, Frédéric Prié, Bo Vinther, and Dorthe Dahl-Jensen
Clim. Past, 12, 1933–1948, https://doi.org/10.5194/cp-12-1933-2016, https://doi.org/10.5194/cp-12-1933-2016, 2016
Short summary
Short summary
The last lnterglacial (LIG; 116 000 to 129 000 years before present) surface temperature at the upstream Greenland NEEM deposition site is estimated to be warmer by +7 to +11 °C compared to the preindustrial period. We show that under such warm temperatures, melting of snow probably led to a significant surface melting. There is a paradox between the extent of the Greenland ice sheet during the LIG and the strong warming during this period that models cannot solve.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
François Ritter, Hans Christian Steen-Larsen, Martin Werner, Valérie Masson-Delmotte, Anais Orsi, Melanie Behrens, Gerit Birnbaum, Johannes Freitag, Camille Risi, and Sepp Kipfstuhl
The Cryosphere, 10, 1647–1663, https://doi.org/10.5194/tc-10-1647-2016, https://doi.org/10.5194/tc-10-1647-2016, 2016
Short summary
Short summary
We present successful continuous measurements of water vapor isotopes performed in Antarctica in January 2013. The interest is to understand the impact of the water vapor isotopic composition on the near-surface snow isotopes. Our study reveals a diurnal cycle in the snow isotopic composition in phase with the vapor. This finding suggests fractionation during the sublimation of the ice, which has an important consequence on the interpretation of water isotope variations in ice cores.
Thomas Münch, Sepp Kipfstuhl, Johannes Freitag, Hanno Meyer, and Thomas Laepple
Clim. Past, 12, 1565–1581, https://doi.org/10.5194/cp-12-1565-2016, https://doi.org/10.5194/cp-12-1565-2016, 2016
Short summary
Short summary
Ice-core oxygen isotope ratios are a key climate archive to infer past temperatures, an interpretation however complicated by non-climatic noise. Based on 50 m firn trenches, we present for the first time a two-dimensional view (vertical × horizontal) of how oxygen isotopes are stored in Antarctic firn. A statistical noise model allows inferences for the validity of ice coring efforts to reconstruct past temperatures, highlighting the need of replicate cores for Holocene climate reconstructions.
Ghislain Picard, Laurent Arnaud, Jean-Michel Panel, and Samuel Morin
The Cryosphere, 10, 1495–1511, https://doi.org/10.5194/tc-10-1495-2016, https://doi.org/10.5194/tc-10-1495-2016, 2016
Short summary
Short summary
A cost-effective automatic laser scan has been built to measure snow depth spatio-temporal variations. Deployed in the Alps and in Dome C (Antarctica), two devices acquired daily scans covering a surface area of 100–150 m2. The precision and long-term stability of the measurements are about 1 cm and the accuracy is better than 5 cm. These high performances are particularly suited at Dome C, where it was possible to reveal that most of the accumulation in the year 2015 stems from a single event.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Ghislain Picard, Quentin Libois, Laurent Arnaud, Gauthier Verin, and Marie Dumont
The Cryosphere, 10, 1297–1316, https://doi.org/10.5194/tc-10-1297-2016, https://doi.org/10.5194/tc-10-1297-2016, 2016
Short summary
Short summary
Albedo of snow surfaces depends on snow grain size. By measuring albedo during 3 years at Dome C in Antarctica with an automatic spectroradiometer, we were able to monitor the snow specific surface area and show an overall growth of the grains in spring and summer followed by an accumulation of small-grained snow from mid-summer. This study focuses on the uncertainties due to the spectroradiometer and concludes that the observed variations are significant with respect to the precision.
Alexey Ekaykin, Lutz Eberlein, Vladimir Lipenkov, Sergey Popov, Mirko Scheinert, Ludwig Schröder, and Alexey Turkeev
The Cryosphere, 10, 1217–1227, https://doi.org/10.5194/tc-10-1217-2016, https://doi.org/10.5194/tc-10-1217-2016, 2016
Anna Dittmann, Elisabeth Schlosser, Valérie Masson-Delmotte, Jordan G. Powers, Kevin W. Manning, Martin Werner, and Koji Fujita
Atmos. Chem. Phys., 16, 6883–6900, https://doi.org/10.5194/acp-16-6883-2016, https://doi.org/10.5194/acp-16-6883-2016, 2016
Short summary
Short summary
For a better understanding of the stable water isotope data from ice cores, recent time periods have to be analysed, where both measurements and model simulations are available. This was done for Dome Fuji by combining observations, synoptic analysis, back trajectories, and isotopic modelling. It was found that a more northerly moisture source does not necessarily mean a larger temperature difference between source area and deposition site and thus precipitation more depleted in heavy isotopes.
Luc Charrois, Emmanuel Cosme, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Quentin Libois, and Ghislain Picard
The Cryosphere, 10, 1021–1038, https://doi.org/10.5194/tc-10-1021-2016, https://doi.org/10.5194/tc-10-1021-2016, 2016
Short summary
Short summary
This study investigates the assimilation of optical reflectances, snowdepth data and both combined into a multilayer snowpack model. Data assimilation is performed with an ensemble-based method, the Sequential Importance Resampling Particle filter. Experiments assimilating only synthetic data are conducted at one point in the French Alps, the Col du Lautaret, over five hydrological years. Results of the assimilation experiments show improvements of the snowpack bulk variables estimates.
Inga Labuhn, Valérie Daux, Olivier Girardclos, Michel Stievenard, Monique Pierre, and Valérie Masson-Delmotte
Clim. Past, 12, 1101–1117, https://doi.org/10.5194/cp-12-1101-2016, https://doi.org/10.5194/cp-12-1101-2016, 2016
Short summary
Short summary
This article presents a reconstruction of summer droughts in France for the last 680 years, based on oxygen isotope ratios in tree ring cellulose from living trees and building timbers at two sites, Fontainebleau and Angoulême. Both sites show coherent drought patterns during the 19th and 20th century, and are characterized by increasing drought in recent decades. A decoupling between sites points to a more heterogeneous climate in France during earlier centuries.
Elisabeth Schlosser, Barbara Stenni, Mauro Valt, Anselmo Cagnati, Jordan G. Powers, Kevin W. Manning, Marilyn Raphael, and Michael G. Duda
Atmos. Chem. Phys., 16, 4757–4770, https://doi.org/10.5194/acp-16-4757-2016, https://doi.org/10.5194/acp-16-4757-2016, 2016
Short summary
Short summary
Striking differences in the atmospheric flow and thus weather conditions in 2009 and 2010 at the Antarctic deep ice core drilling site Dome C were investigated using a mesoscale atmospheric model and precipitation measurements, and implications for interpretation of ice cores are discussed. Stable isotope ratios are commonly used to derive paleotemperatures and are strongly influenced by the prevailing atmospheric flow regime, namely a strong zonal flow or a highly meriodional flow.
Alexandra Touzeau, Amaëlle Landais, Barbara Stenni, Ryu Uemura, Kotaro Fukui, Shuji Fujita, Sarah Guilbaud, Alexey Ekaykin, Mathieu Casado, Eugeni Barkan, Boaz Luz, Olivier Magand, Grégory Teste, Emmanuel Le Meur, Mélanie Baroni, Joël Savarino, Ilann Bourgeois, and Camille Risi
The Cryosphere, 10, 837–852, https://doi.org/10.5194/tc-10-837-2016, https://doi.org/10.5194/tc-10-837-2016, 2016
Short summary
Short summary
The relationship between water isotope ratios and temperature is investigated in precipitation snow at Vostok and Dome C, as well as in surface snow along traverses. The temporal slope of the linear regression for the precipitation is smaller than the geographical slope. Thus, using the latter could lead to an underestimation of past temperature changes. The processes active at remote sites (best glacial analogs) are explored through a combination of water isotopes in short snow pits.
Lucie Bazin, Amaelle Landais, Emilie Capron, Valérie Masson-Delmotte, Catherine Ritz, Ghislain Picard, Jean Jouzel, Marie Dumont, Markus Leuenberger, and Frédéric Prié
Clim. Past, 12, 729–748, https://doi.org/10.5194/cp-12-729-2016, https://doi.org/10.5194/cp-12-729-2016, 2016
Short summary
Short summary
We present new measurements of δO2⁄N2 and δ18Oatm performed on well-conserved ice from EDC covering MIS5 and between 380 and 800 ka. The combination of the observation of a 100 ka periodicity in the new δO2⁄N2 record with a MIS5 multi-site multi-proxy study has revealed a potential influence of local climatic parameters on δO2⁄N2. Moreover, we propose that the varying delay between d18Oatm and precession for the last 800 ka is affected by the occurrence of ice sheet discharge events.
James Hansen, Makiko Sato, Paul Hearty, Reto Ruedy, Maxwell Kelley, Valerie Masson-Delmotte, Gary Russell, George Tselioudis, Junji Cao, Eric Rignot, Isabella Velicogna, Blair Tormey, Bailey Donovan, Evgeniya Kandiano, Karina von Schuckmann, Pushker Kharecha, Allegra N. Legrande, Michael Bauer, and Kwok-Wai Lo
Atmos. Chem. Phys., 16, 3761–3812, https://doi.org/10.5194/acp-16-3761-2016, https://doi.org/10.5194/acp-16-3761-2016, 2016
Short summary
Short summary
We use climate simulations, paleoclimate data and modern observations to infer that continued high fossil fuel emissions will yield cooling of Southern Ocean and North Atlantic surfaces, slowdown and shutdown of SMOC & AMOC, increasingly powerful storms and nonlinear sea level rise reaching several meters in 50–150 years, effects missed in IPCC reports because of omission of ice sheet melt and an insensitivity of most climate models, likely due to excessive ocean mixing.
Alexandre Roy, Alain Royer, Olivier St-Jean-Rondeau, Benoit Montpetit, Ghislain Picard, Alex Mavrovic, Nicolas Marchand, and Alexandre Langlois
The Cryosphere, 10, 623–638, https://doi.org/10.5194/tc-10-623-2016, https://doi.org/10.5194/tc-10-623-2016, 2016
Q. Libois, G. Picard, L. Arnaud, M. Dumont, M. Lafaysse, S. Morin, and E. Lefebvre
The Cryosphere, 9, 2383–2398, https://doi.org/10.5194/tc-9-2383-2015, https://doi.org/10.5194/tc-9-2383-2015, 2015
Short summary
Short summary
The albedo and surface energy budget of the Antarctic Plateau are largely determined by snow specific surface area. The latter experiences substantial daily-to-seasonal variations in response to meteorological conditions. In particular, it decreases by a factor three in summer, causing a drop in albedo. These variations are monitored from in situ and remote sensing observations at Dome C. For the first time, they are also simulated with a snowpack evolution model adapted to Antarctic conditions.
C. Reutenauer, A. Landais, T. Blunier, C. Bréant, M. Kageyama, M.-N. Woillez, C. Risi, V. Mariotti, and P. Braconnot
Clim. Past, 11, 1527–1551, https://doi.org/10.5194/cp-11-1527-2015, https://doi.org/10.5194/cp-11-1527-2015, 2015
Short summary
Short summary
Isotopes of atmospheric O2 undergo millennial-scale variations during the last glacial period, and systematically increase during Heinrich stadials.
Such variations are mostly due to vegetation and water cycle processes.
Our modeling approach reproduces the main observed features of Heinrich stadials in terms of climate, vegetation and rainfall.
It highlights the strong role of hydrology on O2 isotopes, which can be seen as a global integrator of precipitation changes over vegetated areas.
H. Löwe and G. Picard
The Cryosphere, 9, 2101–2117, https://doi.org/10.5194/tc-9-2101-2015, https://doi.org/10.5194/tc-9-2101-2015, 2015
Short summary
Short summary
The paper establishes a theoretical link between two widely used microwave models for snow. The scattering formulations from both models are unified by reformulating their microstructure models in a common framework. The results show that the scattering formulations can be considered equivalent, if exactly the same microstructure model is used. The paper also provides a method to measure a hitherto unknown input parameter for the microwave models from tomography images of snow.
F. Guglielmo, C. Risi, C. Ottlé, V. Valdayskikh, T. Radchenko, O. Nekrasova, O. Cattani, O. Stukova, J. Jouzel, V. Zakharov, S. Dantec-Nédélec, and J. Ogée
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-9393-2015, https://doi.org/10.5194/hessd-12-9393-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
We show that water stable isotopes help constraining key processes in the land surface model ORCHIDEE. We implemented 18O, 2H, δ18O and δD in soil and leaf water in the model, ran it and evaluated results on measured profiles of soil water isotopes ratios. Relevant features of δ18O profiles are relatively well simulated. We show the importance of infiltration pathway and vegetation/bare-soil cover in ORCHIDEE and to which extent we can determine the evaporation/evapotranspiration ratio.
J.-L. Tison, M. de Angelis, G. Littot, E. Wolff, H. Fischer, M. Hansson, M. Bigler, R. Udisti, A. Wegner, J. Jouzel, B. Stenni, S. Johnsen, V. Masson-Delmotte, A. Landais, V. Lipenkov, L. Loulergue, J.-M. Barnola, J.-R. Petit, B. Delmonte, G. Dreyfus, D. Dahl-Jensen, G. Durand, B. Bereiter, A. Schilt, R. Spahni, K. Pol, R. Lorrain, R. Souchez, and D. Samyn
The Cryosphere, 9, 1633–1648, https://doi.org/10.5194/tc-9-1633-2015, https://doi.org/10.5194/tc-9-1633-2015, 2015
Short summary
Short summary
The oldest paleoclimatic information is buried within the lowermost layers of deep ice cores. It is therefore essential to judge how deep these records remain unaltered. We study the bottom 60 meters of the EPICA Dome C ice core from central Antarctica to show that the paleoclimatic signal is only affected at the small scale (decimeters) in terms of some of the global ice properties. However our data suggest that the time scale has been considerably distorted by mechanical stretching.
V. Masson-Delmotte, H. C. Steen-Larsen, P. Ortega, D. Swingedouw, T. Popp, B. M. Vinther, H. Oerter, A. E. Sveinbjornsdottir, H. Gudlaugsdottir, J. E. Box, S. Falourd, X. Fettweis, H. Gallée, E. Garnier, V. Gkinis, J. Jouzel, A. Landais, B. Minster, N. Paradis, A. Orsi, C. Risi, M. Werner, and J. W. C. White
The Cryosphere, 9, 1481–1504, https://doi.org/10.5194/tc-9-1481-2015, https://doi.org/10.5194/tc-9-1481-2015, 2015
Short summary
Short summary
The deep NEEM ice core provides the oldest Greenland ice core record, enabling improved understanding of the response of ice core records to local climate. Here, we focus on shallow ice cores providing a stack record of accumulation and water-stable isotopes spanning the past centuries. For the first time, we document the ongoing warming in a Greenland ice core. By combining our data with other Greenland ice cores and model results, we characterise the spatio-temporal patterns of variability.
C. Amory, A. Trouvilliez, H. Gallée, V. Favier, F. Naaim-Bouvet, C. Genthon, C. Agosta, L. Piard, and H. Bellot
The Cryosphere, 9, 1373–1383, https://doi.org/10.5194/tc-9-1373-2015, https://doi.org/10.5194/tc-9-1373-2015, 2015
B. Lemieux-Dudon, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, M. Guillevic, P. Kindler, F. Parrenin, and P. Martinerie
Clim. Past, 11, 959–978, https://doi.org/10.5194/cp-11-959-2015, https://doi.org/10.5194/cp-11-959-2015, 2015
H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, C. Amory, and M. Legrand
Atmos. Chem. Phys., 15, 6225–6236, https://doi.org/10.5194/acp-15-6225-2015, https://doi.org/10.5194/acp-15-6225-2015, 2015
Short summary
Short summary
Regional climate model MAR was run for the region of Dome C located on the East Antarctic plateau, during summer 2011–2012, with a high vertical resolution in the lower troposphere. MAR is generally in very good agreement with the observations and provides sufficiently reliable information about surface turbulent fluxes and vertical profiles of vertical diffusion coefficients when discussing the representativeness of chemical measurements made nearby the ground surface at Dome C.
H. Gallée, H. Barral, E. Vignon, and C. Genthon
Atmos. Chem. Phys., 15, 6237–6246, https://doi.org/10.5194/acp-15-6237-2015, https://doi.org/10.5194/acp-15-6237-2015, 2015
Short summary
Short summary
This is the first time that a low-level jet observed above the East Antarctic Plateau is simulated by a regional climate model. This paper illustrates in a 3-D simulation the respective influences of the large-scale pressure gradient force and turbulence on the onset of the low-level jet. As atmospheric turbulence plays a key role in explaining the behaviour of chemical tracers during the OPALE campaign, this paper also increases our confidence in using the outputs of the model for this purpose.
F. Parrenin, L. Bazin, E. Capron, A. Landais, B. Lemieux-Dudon, and V. Masson-Delmotte
Geosci. Model Dev., 8, 1473–1492, https://doi.org/10.5194/gmd-8-1473-2015, https://doi.org/10.5194/gmd-8-1473-2015, 2015
Short summary
Short summary
This manuscript describes a probabilistic model which aims at optimizing the chronology of ice cores by combining different sources of information.
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015, https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
Short summary
We present a new 10Be record at EDC between 269 and 355ka. Our 10Be-based accumulation rate is in good agreement with the one associated with the EDC3 timescale except for the warm MIS 9.3 optimum. This suggests that temperature reconstruction from water isotopes may be underestimated by 2.4K for the difference between the MIS 9.3 and present day. The CMIP5-PMIP3 models do not quantitatively reproduce changes in precipitation vs. temperature increase during glacial–interglacial transitions.
F. Parrenin, S. Fujita, A. Abe-Ouchi, K. Kawamura, V. Masson-Delmotte, H. Motoyama, F. Saito, M. Severi, B. Stenni, R. Uemura, and E. Wolff
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-377-2015, https://doi.org/10.5194/cpd-11-377-2015, 2015
Revised manuscript has not been submitted
M. Guillevic, L. Bazin, A. Landais, C. Stowasser, V. Masson-Delmotte, T. Blunier, F. Eynaud, S. Falourd, E. Michel, B. Minster, T. Popp, F. Prié, and B. M. Vinther
Clim. Past, 10, 2115–2133, https://doi.org/10.5194/cp-10-2115-2014, https://doi.org/10.5194/cp-10-2115-2014, 2014
H. Barral, C. Genthon, A. Trouvilliez, C. Brun, and C. Amory
The Cryosphere, 8, 1905–1919, https://doi.org/10.5194/tc-8-1905-2014, https://doi.org/10.5194/tc-8-1905-2014, 2014
V. Gryazin, C. Risi, J. Jouzel, N. Kurita, J. Worden, C. Frankenberg, V. Bastrikov, K. Gribanov, and O. Stukova
Atmos. Chem. Phys., 14, 9807–9830, https://doi.org/10.5194/acp-14-9807-2014, https://doi.org/10.5194/acp-14-9807-2014, 2014
C. Palerme, J. E. Kay, C. Genthon, T. L'Ecuyer, N. B. Wood, and C. Claud
The Cryosphere, 8, 1577–1587, https://doi.org/10.5194/tc-8-1577-2014, https://doi.org/10.5194/tc-8-1577-2014, 2014
N. V. Rokotyan, V. I. Zakharov, K. G. Gribanov, M. Schneider, F.-M. Bréon, J. Jouzel, R. Imasu, M. Werner, M. Butzin, C. Petri, T. Warneke, and J. Notholt
Atmos. Meas. Tech., 7, 2567–2580, https://doi.org/10.5194/amt-7-2567-2014, https://doi.org/10.5194/amt-7-2567-2014, 2014
H. C. Steen-Larsen, A. E. Sveinbjörnsdottir, A. J. Peters, V. Masson-Delmotte, M. P. Guishard, G. Hsiao, J. Jouzel, D. Noone, J. K. Warren, and J. W. C. White
Atmos. Chem. Phys., 14, 7741–7756, https://doi.org/10.5194/acp-14-7741-2014, https://doi.org/10.5194/acp-14-7741-2014, 2014
G. Picard, A. Royer, L. Arnaud, and M. Fily
The Cryosphere, 8, 1105–1119, https://doi.org/10.5194/tc-8-1105-2014, https://doi.org/10.5194/tc-8-1105-2014, 2014
V. Bastrikov, H. C. Steen-Larsen, V. Masson-Delmotte, K. Gribanov, O. Cattani, J. Jouzel, and V. Zakharov
Atmos. Meas. Tech., 7, 1763–1776, https://doi.org/10.5194/amt-7-1763-2014, https://doi.org/10.5194/amt-7-1763-2014, 2014
K. Gribanov, J. Jouzel, V. Bastrikov, J.-L. Bonne, F.-M. Breon, M. Butzin, O. Cattani, V. Masson-Delmotte, N. Rokotyan, M. Werner, and V. Zakharov
Atmos. Chem. Phys., 14, 5943–5957, https://doi.org/10.5194/acp-14-5943-2014, https://doi.org/10.5194/acp-14-5943-2014, 2014
M. Butzin, M. Werner, V. Masson-Delmotte, C. Risi, C. Frankenberg, K. Gribanov, J. Jouzel, and V. I. Zakharov
Atmos. Chem. Phys., 14, 5853–5869, https://doi.org/10.5194/acp-14-5853-2014, https://doi.org/10.5194/acp-14-5853-2014, 2014
M. Pommier, J.-L. Lacour, C. Risi, F. M. Bréon, C. Clerbaux, P.-F. Coheur, K. Gribanov, D. Hurtmans, J. Jouzel, and V. Zakharov
Atmos. Meas. Tech., 7, 1581–1595, https://doi.org/10.5194/amt-7-1581-2014, https://doi.org/10.5194/amt-7-1581-2014, 2014
J.-L. Bonne, V. Masson-Delmotte, O. Cattani, M. Delmotte, C. Risi, H. Sodemann, and H. C. Steen-Larsen
Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, https://doi.org/10.5194/acp-14-4419-2014, 2014
H. C. Steen-Larsen, V. Masson-Delmotte, M. Hirabayashi, R. Winkler, K. Satow, F. Prié, N. Bayou, E. Brun, K. M. Cuffey, D. Dahl-Jensen, M. Dumont, M. Guillevic, S. Kipfstuhl, A. Landais, T. Popp, C. Risi, K. Steffen, B. Stenni, and A. E. Sveinbjörnsdottír
Clim. Past, 10, 377–392, https://doi.org/10.5194/cp-10-377-2014, https://doi.org/10.5194/cp-10-377-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
Q. Libois, G. Picard, J. L. France, L. Arnaud, M. Dumont, C. M. Carmagnola, and M. D. King
The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, https://doi.org/10.5194/tc-7-1803-2013, 2013
D. V. Alexandrov, J. Jouzel, I. Nizovtseva, and L. B. Ryashko
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-5659-2013, https://doi.org/10.5194/tcd-7-5659-2013, 2013
Revised manuscript not accepted
S. Hou, J. Chappellaz, D. Raynaud, V. Masson-Delmotte, J. Jouzel, P. Bousquet, and D. Hauglustaine
Clim. Past, 9, 2549–2554, https://doi.org/10.5194/cp-9-2549-2013, https://doi.org/10.5194/cp-9-2549-2013, 2013
J. Jouzel
Clim. Past, 9, 2525–2547, https://doi.org/10.5194/cp-9-2525-2013, https://doi.org/10.5194/cp-9-2525-2013, 2013
L. Bazin, A. Landais, B. Lemieux-Dudon, H. Toyé Mahamadou Kele, D. Veres, F. Parrenin, P. Martinerie, C. Ritz, E. Capron, V. Lipenkov, M.-F. Loutre, D. Raynaud, B. Vinther, A. Svensson, S. O. Rasmussen, M. Severi, T. Blunier, M. Leuenberger, H. Fischer, V. Masson-Delmotte, J. Chappellaz, and E. Wolff
Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, https://doi.org/10.5194/cp-9-1715-2013, 2013
D. Veres, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, B. Lemieux-Dudon, F. Parrenin, P. Martinerie, E. Blayo, T. Blunier, E. Capron, J. Chappellaz, S. O. Rasmussen, M. Severi, A. Svensson, B. Vinther, and E. W. Wolff
Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, https://doi.org/10.5194/cp-9-1733-2013, 2013
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
M. Guillevic, L. Bazin, A. Landais, P. Kindler, A. Orsi, V. Masson-Delmotte, T. Blunier, S. L. Buchardt, E. Capron, M. Leuenberger, P. Martinerie, F. Prié, and B. M. Vinther
Clim. Past, 9, 1029–1051, https://doi.org/10.5194/cp-9-1029-2013, https://doi.org/10.5194/cp-9-1029-2013, 2013
E. Capron, A. Landais, D. Buiron, A. Cauquoin, J. Chappellaz, M. Debret, J. Jouzel, M. Leuenberger, P. Martinerie, V. Masson-Delmotte, R. Mulvaney, F. Parrenin, and F. Prié
Clim. Past, 9, 983–999, https://doi.org/10.5194/cp-9-983-2013, https://doi.org/10.5194/cp-9-983-2013, 2013
P. Mathiot, H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina
Clim. Past, 9, 887–901, https://doi.org/10.5194/cp-9-887-2013, https://doi.org/10.5194/cp-9-887-2013, 2013
M. Casado, P. Ortega, V. Masson-Delmotte, C. Risi, D. Swingedouw, V. Daux, D. Genty, F. Maignan, O. Solomina, B. Vinther, N. Viovy, and P. Yiou
Clim. Past, 9, 871–886, https://doi.org/10.5194/cp-9-871-2013, https://doi.org/10.5194/cp-9-871-2013, 2013
Related subject area
Discipline: Snow | Subject: Antarctic
Contribution of blowing-snow sublimation to the surface mass balance of Antarctica
A decade (2008–2017) of water stable isotope composition of precipitation at Concordia Station, East Antarctica
Dual-frequency radar observations of snowmelt processes on Antarctic perennial sea ice by CFOSCAT and ASCAT
Firn air content changes on Antarctic ice shelves under three future warming scenarios
Surface processes and drivers of the snow water stable isotopic composition at Dome C, East Antarctica – a multi-datasets and modelling analysis
Extreme events of snow grain size increase in East Antarctica and their relationship with meteorological conditions
Local spatial variability in the occurrence of summer precipitation in the Sør Rondane Mountains, Antarctica
Characteristics of the 1979–2020 Antarctic firn layer simulated with IMAU-FDM v1.2A
The sensitivity of satellite microwave observations to liquid water in the Antarctic snowpack
Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt
Distinguishing the impacts of ozone and ozone-depleting substances on the recent increase in Antarctic surface mass balance
Representative surface snow density on the East Antarctic Plateau
Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations
Drifting-snow statistics from multiple-year autonomous measurements in Adélie Land, East Antarctica
Impact of exhaust emissions on chemical snowpack composition at Concordia Station, Antarctica
Observation of the process of snow accumulation on the Antarctic Plateau by time lapse laser scanning
Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica
Investigation of a wind-packing event in Queen Maud Land, Antarctica
Srinidhi Gadde and Willem Jan van de Berg
The Cryosphere, 18, 4933–4953, https://doi.org/10.5194/tc-18-4933-2024, https://doi.org/10.5194/tc-18-4933-2024, 2024
Short summary
Short summary
Blowing-snow sublimation is the major loss term in the mass balance of Antarctica. In this study we update the blowing-snow representation in the Regional Atmospheric Climate Model (RACMO). With the updates, results compare well with observations from East Antarctica. Also, the continent-wide variation of blowing snow compares well with satellite observations. Hence, the updates provide a clear step forward in producing a physically sound and reliable estimate of the mass balance of Antarctica.
Giuliano Dreossi, Mauro Masiol, Barbara Stenni, Daniele Zannoni, Claudio Scarchilli, Virginia Ciardini, Mathieu Casado, Amaëlle Landais, Martin Werner, Alexandre Cauquoin, Giampietro Casasanta, Massimo Del Guasta, Vittoria Posocco, and Carlo Barbante
The Cryosphere, 18, 3911–3931, https://doi.org/10.5194/tc-18-3911-2024, https://doi.org/10.5194/tc-18-3911-2024, 2024
Short summary
Short summary
Oxygen and hydrogen stable isotopes have been extensively used to reconstruct past temperatures, with precipitation representing the input signal of the isotopic records in ice cores. We present a 10-year record of stable isotopes in daily precipitation at Concordia Station: this is the longest record for inland Antarctica and represents a benchmark for quantifying post-depositional processes and improving the paleoclimate interpretation of ice cores.
Rui Xu, Chaofang Zhao, Stefanie Arndt, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2024-2054, https://doi.org/10.5194/egusphere-2024-2054, 2024
Short summary
Short summary
The onset of snowmelt on Antarctic sea ice is an important indicator of sea ice change. In this study, we used two radar scatterometers to detect the onset of snowmelt on the perennial Antarctic sea ice. It shows that since 2007, the snowmelt onset has demonstrated strong interannual and regional variabilities. We also found that the difference of snowmelt onsets between the two scatterometers is closely related to snow metamorphism.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 1983–1999, https://doi.org/10.5194/tc-18-1983-2024, https://doi.org/10.5194/tc-18-1983-2024, 2024
Short summary
Short summary
We use the IMAU firn densification model to simulate the 21st-century evolution of Antarctic firn air content. Ice shelves on the Antarctic Peninsula and the Roi Baudouin Ice Shelf in Dronning Maud Land are particularly vulnerable to total firn air content (FAC) depletion. Our results also underline the potentially large vulnerability of low-accumulation ice shelves to firn air depletion through ice slab formation.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685, https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Claudio Stefanini, Giovanni Macelloni, Marion Leduc-Leballeur, Vincent Favier, Benjamin Pohl, and Ghislain Picard
The Cryosphere, 18, 593–608, https://doi.org/10.5194/tc-18-593-2024, https://doi.org/10.5194/tc-18-593-2024, 2024
Short summary
Short summary
Local and large-scale meteorological conditions have been considered in order to explain some peculiar changes of snow grains on the East Antarctic Plateau from 2000 to 2022, by using remote sensing observations and reanalysis. We identified some extreme grain size events on the highest ice divide, resulting from a combination of conditions of low wind speed and low temperature. Moreover, the beginning of seasonal grain growth has been linked to the occurrence of atmospheric rivers.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023, https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Sanne B. M. Veldhuijsen, Willem Jan van de Berg, Max Brils, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 17, 1675–1696, https://doi.org/10.5194/tc-17-1675-2023, https://doi.org/10.5194/tc-17-1675-2023, 2023
Short summary
Short summary
Firn is the transition of snow to glacier ice and covers 99 % of the Antarctic ice sheet. Knowledge about the firn layer and its variability is important, as it impacts satellite-based estimates of ice sheet mass change. Also, firn contains pores in which nearly all of the surface melt is retained. Here, we improve a semi-empirical firn model and simulate the firn characteristics for the period 1979–2020. We evaluate the performance with field and satellite measures and test its sensitivity.
Ghislain Picard, Marion Leduc-Leballeur, Alison F. Banwell, Ludovic Brucker, and Giovanni Macelloni
The Cryosphere, 16, 5061–5083, https://doi.org/10.5194/tc-16-5061-2022, https://doi.org/10.5194/tc-16-5061-2022, 2022
Short summary
Short summary
Using a snowpack radiative transfer model, we investigate in which conditions meltwater can be detected from passive microwave satellite observations from 1.4 to 37 GHz. In particular, we determine the minimum detectable liquid water content, the maximum depth of detection of a buried wet snow layer and the risk of false alarm due to supraglacial lakes. These results provide information for the developers of new, more advanced satellite melt products and for the users of the existing products.
Alia L. Khan, Heidi M. Dierssen, Ted A. Scambos, Juan Höfer, and Raul R. Cordero
The Cryosphere, 15, 133–148, https://doi.org/10.5194/tc-15-133-2021, https://doi.org/10.5194/tc-15-133-2021, 2021
Short summary
Short summary
We present radiative forcing (RF) estimates by snow algae in the Antarctic Peninsula (AP) region from multi-year measurements of solar radiation and ground-based hyperspectral characterization of red and green snow algae collected during a brief field expedition in austral summer 2018. Mean daily RF was double for green (~26 W m−2) vs. red (~13 W m−2) snow algae during the peak growing season, which is on par with midlatitude dust attributions capable of advancing snowmelt.
Rei Chemke, Michael Previdi, Mark R. England, and Lorenzo M. Polvani
The Cryosphere, 14, 4135–4144, https://doi.org/10.5194/tc-14-4135-2020, https://doi.org/10.5194/tc-14-4135-2020, 2020
Short summary
Short summary
The increase in Antarctic surface mass balance (SMB, precipitation vs. evaporation/sublimation) is projected to mitigate sea-level rise. Here we show that nearly half of this increase over the 20th century is attributed to stratospheric ozone depletion and ozone-depleting substance (ODS) emissions. Our results suggest that the phaseout of ODS by the Montreal Protocol, and the recovery of stratospheric ozone, will act to decrease the SMB over the 21st century and the mitigation of sea-level rise.
Alexander H. Weinhart, Johannes Freitag, Maria Hörhold, Sepp Kipfstuhl, and Olaf Eisen
The Cryosphere, 14, 3663–3685, https://doi.org/10.5194/tc-14-3663-2020, https://doi.org/10.5194/tc-14-3663-2020, 2020
Short summary
Short summary
From 1 m snow profiles along a traverse on the East Antarctic Plateau, we calculated a representative surface snow density of 355 kg m−3 for this region with an error less than 1.5 %.
This density is 10 % higher and density fluctuations seem to happen on smaller scales than climate model outputs suggest. Our study can help improve the parameterization of surface snow density in climate models to reduce the error in future sea level predictions.
Marie-Laure Roussel, Florentin Lemonnier, Christophe Genthon, and Gerhard Krinner
The Cryosphere, 14, 2715–2727, https://doi.org/10.5194/tc-14-2715-2020, https://doi.org/10.5194/tc-14-2715-2020, 2020
Short summary
Short summary
The Antarctic precipitation is evaluated against space radar data in the most recent climate model intercomparison CMIP6 and reanalysis ERA5. The seasonal cycle is mostly well reproduced, but relative errors are higher in areas of complex topography, particularly in the higher-resolution models. At continental and regional scales all results are biased high, with no significant progress in the more recent models. Predicting Antarctic contribution to sea level still requires model improvements.
Charles Amory
The Cryosphere, 14, 1713–1725, https://doi.org/10.5194/tc-14-1713-2020, https://doi.org/10.5194/tc-14-1713-2020, 2020
Short summary
Short summary
This paper presents an assessment of drifting-snow occurrences and snow mass transport from up to 9 years (2010–2018) of half-hourly observational records collected at two remote locations in coastal Adelie Land (East Antarctica) using second-generation IAV Engineering acoustic FlowCapt sensors. The dataset is freely available to the scientific community and can be used to complement satellite products and evaluate snow-transport models close to the surface and at high temporal frequency.
Detlev Helmig, Daniel Liptzin, Jacques Hueber, and Joel Savarino
The Cryosphere, 14, 199–209, https://doi.org/10.5194/tc-14-199-2020, https://doi.org/10.5194/tc-14-199-2020, 2020
Short summary
Short summary
We present 15 months of trace gas observations from air withdrawn within the snowpack and from above the snow at Concordia Station in Antarctica. The data show occasional positive spikes, indicative of pollution from the station generator. The pollution signal can be seen in snowpack air shortly after it is observed above the snow surface, and lasting for up to several days, much longer than above the surface.
Ghislain Picard, Laurent Arnaud, Romain Caneill, Eric Lefebvre, and Maxim Lamare
The Cryosphere, 13, 1983–1999, https://doi.org/10.5194/tc-13-1983-2019, https://doi.org/10.5194/tc-13-1983-2019, 2019
Short summary
Short summary
To study how snow accumulates in Antarctica, we analyze daily surface elevation recorded by an automatic laser scanner. We show that new snow often accumulates in thick patches covering a small fraction of the surface. Most patches are removed by erosion within weeks, implying that only a few contribute to the snowpack. This explains the heterogeneity on the surface and in the snowpack. These findings are important for surface mass and energy balance, photochemistry, and ice core interpretation.
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Christian Gabriel Sommer, Nander Wever, Charles Fierz, and Michael Lehning
The Cryosphere, 12, 2923–2939, https://doi.org/10.5194/tc-12-2923-2018, https://doi.org/10.5194/tc-12-2923-2018, 2018
Short summary
Short summary
Wind packing is how wind produces hard crusts at the surface of the snowpack. This is relevant for the local mass balance in polar regions. However, not much is known about this process and it is difficult to capture its high spatial and temporal variability. A wind-packing event was measured in Antarctica. It could be quantified how drifting snow leads to wind packing and generates barchan dunes. The documentation of these deposition dynamics is an important step in understanding polar snow.
Cited articles
Alley, R. B.: Densification and recrystallization of firn at Dome C, East
Antarctica, Institute of Polar Studies, The Ohio State University, 1980. a
Altnau, S., Schlosser, E., Isaksson, E., and Divine, D.: Climatic signals
from 76 shallow firn cores in Dronning Maud Land, East Antarctica, The
Cryosphere, 9, 925–944, https://doi.org/10.5194/tc-9-925-2015, 2015. a
Baroni, M., Bard, E., Petit, J. R., Magand, O., and Bourlès, D.:
Volcanic and solar activity, and atmospheric circulation influences on
cosmogenic 10Be fallout at Vostok and Concordia (Antarctica) over the last
60years, Geochim. Cosmochim. Ac., 75, 7132–7145,
https://doi.org/10.1016/j.gca.2011.09.002, 2011. a
Berkelhammer, M., Noone, D. C., Steen-Larsen, H. C., Bailey, A., Cox, C. J.,
O'Neill, M. S., Schneider, D., Steffen, K., and White, J. W. C.:
Surface-atmosphere decoupling limits accumulation at Summit, Greenland,
Sci. Adv., 2, e1501704, https://doi.org/10.1126/sciadv.1501704, 2016. a
Calonne, N., Geindreau, C., and Flin, F.: Macroscopic modeling of heat and
water vapor transfer with phase change in dry snow based on an upscaling
method: Influence of air convection, J. Geophys. Res.-Earth, 120,
2476–2497, https://doi.org/10.1002/2015JF003605, 2015. a
Casado, M., Landais, A., Masson-Delmotte, V., Genthon, C., Kerstel, E.,
Kassi, S., Arnaud, L., Picard, G., Prie, F., Cattani, O., Steen-Larsen,
H.-C., Vignon, E., and Cermak, P.: Continuous measurements of isotopic
composition of water vapour on the East Antarctic Plateau, Atmos. Chem.
Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, 2016. a, b, c, d, e, f, g, h, i
Casey, K. A., Fudge, T. J., Neumann, T. A., Steig, E. J., Cavitte, M. G. P.,
and Blankenship, D. D.: The 1500 m South Pole ice core: recovering a 40 ka
environmental record, Ann. Glaciol., 55, 137–146, 2014. a
Ciais, P. and Jouzel, J.: Deuterium and oxygen 18 in precipitation: Isotopic
model, including mixed cloud processes, J. Geophys. Res.-Atmos, 99,
16793–16803, https://doi.org/10.1029/94JD00412, 1994. a, b
Criss, R. E.: Principles of stable isotope distribution, vol. 254, Oxford
University Press, New York, 1999. a
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964. a
Delaygue, G., Jouzel, J., Masson, V., Koster, R. D., and Bard, E.: Validity
of the isotopic thermometer in central Antarctica: limited impact of glacial
precipitation seasonality and moisture origin, Geophys. Res. Lett., 27,
2677–2680, 2000. a
Ebner, P. P., Steen-Larsen, H. C., Stenni, B., Schneebeli, M., and Steinfeld,
A.: Experimental observation of transient δ18O interaction between
snow and advective airflow under various temperature gradient conditions, The
Cryosphere, 11, 1733–1743, https://doi.org/10.5194/tc-11-1733-2017, 2017. a, b
Ekaykin, A.: Meteorological regime of central Antarctica and its role in the
formation of isotope composition of snow thickness, PhD thesis, Geography
Faculty of Saint Petersbourg, 2003. a
Ekaykin, A. A., Lipenkov, V. Y., Barkov, N. I., Petit, J. R., and
Masson-Delmotte, V.: Spatial and temporal variability in isotope composition
of recent snow in the vicinity of Vostok station, Antarctica: implications
for ice-core record interpretation, Ann. Glaciol., 35, 181–186,
https://doi.org/10.3189/172756402781816726, 2002. a, b, c, d, e
Ekaykin, A. A., Lipenkov, V. Y., Kuzmina, I. N., Petit, J. R.,
Masson-Delmotte, V., and Johnsen, S. J.: The changes in isotope composition
and accumulation of snow at Vostok station, East Antarctica, over the past
200 years, Ann. Glaciol., 39, 569–575, https://doi.org/10.3189/172756404781814348,
2004. a, b
Ekaykin, A. A., Kozachek, A. V., Lipenkov, V. Y., and Shibaev, Y. A.:
Multiple climate shifts in the Southern Hemisphere over the past three
centuries based on central Antarctic snow pits and core studies, Ann.
Glaciol., 55, 259–266, 2014. a
EPICA: Eight glacial cycles from an Antarctic ice core, Nature, 429,
623–628, 2004. a
EPICA: One-to-one coupling of glacial climate variability in Greenland and
Antarctica, Nature, 444, 195–198, 2006. a
Fisher, D. A., Reeh, N., and Clausen, H. B.: Stratigraphic noise in time
series derived from ice cores, Ann. Glaciol, 7, 76–83, 1985. a
Fujita, K. and Abe, O.: Stable isotopes in daily precipitation at Dome Fuji,
East Antarctica, Geophys. Res. Lett., 33, L18503,
https://doi.org/10.1029/2006GL026936, 2006. a, b, c
Genthon, C., Six, D., Favier, V., Lazzara, M., and Keller, L.: Atmospheric
Temperature Measurement Biases on the Antarctic Plateau, J. Atmos. Ocean.
Tech., 28, 1598–1605, https://doi.org/10.1175/jtech-d-11-00095.1, 2011. a
Genthon, C., Six, D., Gallée, H., Grigioni, P., and Pellegrini, A.:
Two years of atmospheric boundary layer observations on a 45-m tower at Dome
C on the Antarctic plateau, J. Geophys. Res.-Atmos., 118, 3218–3232,
https://doi.org/10.1002/jgrd.50128, 2013. a, b
Genthon, C., Six, D., Scarchilli, C., Ciardini, V., and Frezzotti, M.:
Meteorological and snow accumulation gradients across Dome C, East Antarctic
plateau, Int. J. Climatol., 36, 455–466, https://doi.org/10.1002/joc.4362, 2015. a, b, c
Genthon, C., Piard, L., Vignon, E., Madeleine, J.-B., Casado, M., and
Gallée, H.: Atmospheric moisture supersaturation in the near-surface
atmosphere at Dome C, Antarctic Plateau, Atmos. Chem. Phys., 17, 691–704,
https://doi.org/10.5194/acp-17-691-2017, 2017. a, b
Gkinis, V., Simonsen, S. B., Buchardt, S. L., White, J. W. C., and Vinther,
B. M.: Water isotope diffusion rates from the NorthGRIP ice core for the
last 16,000 years-Glaciological and paleoclimatic implications, Earth
Planet. Sc. Lett., 405, 132–141, 2014. a
Groot Zwaaftink, C. D., Cagnati, A., Crepaz, A., Fierz, C., Macelloni, G.,
Valt, M., and Lehning, M.: Event-driven deposition of snow on the Antarctic
Plateau: analyzing field measurements with SNOWPACK, The Cryosphere, 7,
333–347, https://doi.org/10.5194/tc-7-333-2013, 2013. a
Johnsen, S. J., Clausen, H. B., Cuffey, K. M., Hoffmann, G., and Creyts,
T. T.: Diffusion of stable isotopes in polar firn and ice: the isotope
effect in firn diffusion, Physics of ice core records, Hokkaido University Press, Sapporo, Japan, 121–140,
2000. a
Jouzel, J. and Masson-Delmotte, V.: Paleoclimates: what do we learn from deep
ice cores?, WIRES Clim. Change, 1, 654–669, https://doi.org/10.1002/wcc.72, 2010. a
Jouzel, J. and Merlivat, L.: Deuterium and oxygen 18 in precipitation:
Modeling of the isotopic effects during snow formation, J. Geophys.
Res.-Atmos., 89, 11749–11757, https://doi.org/10.1029/JD089iD07p11749, 1984. a
Jouzel, J., Merlivat, L., Petit, J. R., and Lorius, C.: Climatic information
over the last century deduced from a detailed isotopic record in the south
pole snow, J. Geophys. Res.-Oceans, 88, 2693–2703,
https://doi.org/10.1029/JC088iC04p02693, 1983. a, b, c
Kawamura, K., Abe-Ouchi, A., Motoyama, H., Ageta, Y., Aoki, S., Azuma, N.,
Fujii, Y., Fujita, K., Fujita, S., and Fukui, K.: State dependence of
climatic instability over the past 720,000 years from Antarctic ice cores and
climate modeling, Sci. Adv., 3, e1600446, https://doi.org/10.1126/sciadv.1600446, 2017. a
Koster, R. D., Jouzel, J., Suozzo, R. J., and Russell, G. L.: Origin of July
Antarctic precipitation and its influence on deuterium content: a GCM
analysis, Clim. Dynam., 7, 195–203, https://doi.org/10.1007/BF00206861, 1992. a
Krinner, G., Genthon, C., and Jouzel, J.: GCM analysis of local influences
on ice core delta signals, Geophys. Res. Lett., 24, 2825–2828,
https://doi.org/10.1029/97gl52891, 1997. a
Küttel, M., Steig, E. J., Ding, Q., Monaghan, A. J., and Battisti,
D. S.: Seasonal climate information preserved in West Antarctic ice core
water isotopes: relationships to temperature, large-scale circulation, and
sea ice, Clim. Dynam., 39, 1841–1857, https://doi.org/10.1007/s00382-012-1460-7,
2012. a
Laepple, T., Münch, T., Casado, M., Hoerhold, M., Landais, A., and
Kipfstuhl, S.: On the similarity and apparent cycles of isotopic variations
in East Antarctic snow pits, The Cryosphere, 12, 169–187,
https://doi.org/10.5194/tc-12-169-2018, 2018. a, b
Landais, A., Barkan, E., and Luz, B.: Record of δ18O and 17O-excess
in ice from Vostok Antarctica during the last 150,000 years, Geophys. Res.
Lett., 35, L02709, https://doi.org/10.1029/2007GL032096, 2008. a
Langway, C. C.: Stratigraphic analysis of a deep ice core from Greenland,
GSA Special Papers, vol. 125, Geological Society of America,
https://doi.org/10.1130/SPE125, 1970. a
Lazzara, M. A., Keller, L. M., Markle, T., and Gallagher, J.: Fifty-year
Amundsen-Scott South Pole station surface climatology, Atmos. Res., 118,
240–259, https://doi.org/10.1016/j.atmosres.2012.06.027, 2012. a
Libois, Q., Picard, G., Arnaud, L., Morin, S., and Brun, E.: Modeling the
impact of snow drift on the decameter-scale variability of snow properties on
the Antarctic Plateau, J. Geophys. Res.-Atmos., 119, 11662–11681,
https://doi.org/10.1002/2014JD022361, 2014. a
Libois, Q., Picard, G., Arnaud, L., Dumont, M., Lafaysse, M., Morin, S., and
Lefebvre, E.: Summertime evolution of snow specific surface area close to the
surface on the Antarctic Plateau, The Cryosphere, 9, 2383–2398,
https://doi.org/10.5194/tc-9-2383-2015, 2015. a, b
Lorius, C., Merlivat, L., and Hagemann, R.: Variation in the mean deuterium
content of precipitations in Antarctica, J. Geophys. Res., 74, 7027–7031,
https://doi.org/10.1029/JC074i028p07027, 1969. a
Markle, B. R., Steig, E. J., Buizert, C., Schoenemann, S. W., Bitz, C. M.,
Fudge, T. J., Pedro, J. B., Ding, Q., Jones, T. R., and White, J. W. C.:
Global atmospheric teleconnections during Dansgaard-Oeschger events, Nat.
Geosci., 10, 36–40, 2017. a
Masson-Delmotte, V., Delmotte, M., Morgan, V., Etheridge, D., Van Ommen,
T., Tartarin, S., and Hoffmann, G.: Recent southern Indian Ocean climate
variability inferred from a Law Dome ice core: New insights for the
interpretation of coastal Antarctic isotopic records, Clim. Dynam., 21,
153–166, 2003. a
Morgan, V. I.: An oxygen isotope-climate record from the Law Dome,
Antarctica, Clim. Change, 7, 415–426, 1985. a
Münch, T., Kipfstuhl, S., Freitag, J., Meyer, H., and Laepple, T.:
Constraints on post-depositional isotope modifications in East Antarctic firn
from analysing temporal changes of isotope profiles, The Cryosphere, 11,
2175-2188, https://doi.org/10.5194/tc-11-2175-2017, 2017. a, b, c
NEEM Community members: Eemian interglacial reconstructed from a Greenland
folded ice core, Nature, 493, 489–494, 2013. a
Nicolas, J. P. and Bromwich, D. H.: New Reconstruction of Antarctic
Near-Surface Temperatures: Multidecadal Trends and Reliability of Global
Reanalyses, J. Climate, 27, 8070–8093, https://doi.org/10.1175/JCLI-D-13-00733.1,
2014. a
North Greenland Ice Core Project members: High-resolution record of
Northern Hemisphere climate extending into the last interglacial period,
Nature, 431, 147–151, 2004. a
Nyquist, H.: Certain Factors Affecting Telegraph Speed, Bell. Syst. Tech.
J., 3, 324–346, 1924. a
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F.,
Miller, H., Graf, W., and Sommer, S.: Accumulation rates in Dronning Maud
Land, Antarctica, as revealed by dielectric-profiling measurements of shallow
firn cores, Ann. Glaciol., 30, 27–34, 2000. a
Papritz, L., Pfahl, S., Rudeva, I., Simmonds, I., Sodemann, H., and Wernli,
H.: The Role of Extratropical Cyclones and Fronts for Southern Ocean
Freshwater Fluxes, J. Climate, 27, 6205–6224,
https://doi.org/10.1175/JCLI-D-13-00409.1, 2014. a
Petit, J. R., Jouzel, J., Pourchet, M., and Merlivat, L.: A detailed study
of snow accumulation and stable isotope content in Dome C (Antarctica), J.
Geophys. Res.-Oceans, 87, 4301–4308, https://doi.org/10.1029/JC087iC06p04301, 1982. a
Petit, R. J., Raynaud, D., Basile, I., Chappellaz, J., Ritz, C., Delmotte,
M., Legrand, M., Lorius, C., Pe, L., Petit, J. R., Jouzel, J., Raynaud, D.,
Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis,
M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov,
V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M.:
Climate and atmospheric history of the past 420,000 years from the Vostok
ice core, Antarctica, Nature, 399, 429–436, 1999. a
Picard, G., Arnaud, L., Panel, J.-M., and Morin, S.: Design of a scanning
laser meter for monitoring the spatio-temporal evolution of snow depth and
its application in the Alps and in Antarctica, The Cryosphere, 10,
1495–1511, https://doi.org/10.5194/tc-10-1495-2016, 2016a. a
Picard, G., Libois, Q., Arnaud, L., Verin, G., and Dumont, M.: Development
and calibration of an automatic spectral albedometer to estimate near-surface
snow SSA time series, The Cryosphere, 10, 1297–1316,
https://doi.org/10.5194/tc-10-1297-2016, 2016b. a
Pol, K., Masson-Delmotte, V., Cattani, O., Debret, M., Falourd, S., Jouzel,
J., Landais, A., Minster, B., Mudelsee, M., Schulz, M., and Stenni, B.:
Climate variability features of the last interglacial in the East Antarctic
EPICA Dome C ice core, Geophys. Res. Lett., 41, 4004–4012,
https://doi.org/10.1002/2014GL059561, 2014. a
Ritter, F., Steen-Larsen, H. C., Werner, M., Masson-Delmotte, V., Orsi, A.,
Behrens, M., Birnbaum, G., Freitag, J., Risi, C., and Kipfstuhl, S.: Isotopic
exchange on the diurnal scale between near-surface snow and lower atmospheric
water vapor at Kohnen station, East Antarctica, The Cryosphere, 10,
1647–1663, https://doi.org/10.5194/tc-10-1647-2016, 2016. a, b, c, d, e, f, g
Schlosser, E., Reijmer, C., Oerter, H., and Graf, W.: The influence of
precipitation origin on the δ18O–T relationship at Neumayer
station, Ekströmisen, Antarctica, Ann. Glaciol., 39, 41–48, 2004. a
Schmidt, G. A., LeGrande, A. N., and Hoffmann, G.: Water isotope expressions
of intrinsic and forced variability in a coupled ocean/atmosphere model, J.
Geophys. Res.-Atmos., 112, D10103, https://doi.org/10.1029/2006JD007781, 2007. a
Shannon, C. E.: Communication in the presence of noise, Proc. IRE, 37,
10–21, 1949. a
Sodemann, H. and Stohl, A.: Asymmetries in the moisture origin of Antarctic
precipitation, Geophys. Res. Lett., 36, L22803, https://doi.org/10.1029/2009GL040242,
2009. a
Sokratov, S. A. and Golubev, V. N.: Snow isotopic content change by
sublimation, J. Glaciol., 55, 823–828, https://doi.org/10.3189/002214309790152456,
2009. a, b
Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R.,
Satow, K., Prié, F., Bayou, N., Brun, E., Cuffey, K. M., Dahl-Jensen, D.,
Dumont, M., Guillevic, M., Kipfstuhl, S., Landais, A., Popp, T., Risi, C.,
Steffen, K., Stenni, B., and Sveinbjörnsdottír, A. E.: What controls
the isotopic composition of Greenland surface snow?, Clim. Past, 10,
377–392, https://doi.org/10.5194/cp-10-377-2014, 2014. a, b, c
Stenni, B., Scarchilli, C., Masson-Delmotte, V., Schlosser, E., Ciardini, V.,
Dreossi, G., Grigioni, P., Bonazza, M., Cagnati, A., Karlicek, D., Risi, C.,
Udisti, R., and Valt, M.: Three-year monitoring of stable isotopes of
precipitation at Concordia Station, East Antarctica, The Cryosphere, 10,
2415–2428, https://doi.org/10.5194/tc-10-2415-2016, 2016. a, b, c, d, e, f, g, h
Touzeau, A., Landais, A., Stenni, B., Uemura, R., Fukui, K., Fujita, S.,
Guilbaud, S., Ekaykin, A., Casado, M., Barkan, E., Luz, B., Magand, O.,
Teste, G., Le Meur, E., Baroni, M., Savarino, J., Bourgeois, I., and Risi,
C.: Acquisition of isotopic composition for surface snow in East Antarctica
and the links to climatic parameters, The Cryosphere, 10, 837–852,
https://doi.org/10.5194/tc-10-837-2016, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Town, M. S., Warren, S. G., Walden, V. P., and Waddington, E. D.: Effect of
atmospheric water vapor on modification of stable isotopes in near-surface
snow on ice sheets, J. Geophys. Res.-Atmos., 113, D24303,
https://doi.org/10.1029/2008JD009852, 2008. a
van As, D., van den Broeke, M. R., and Helsen, M. M.: Strong-wind events and
their impact on the near-surface climate at Kohnen Station on the Antarctic
Plateau, Antarct. Sci., 19, 507–519, https://doi.org/10.1017/S095410200700065X, 2007. a
Van Den Broeke, M. R.: The semi-annual oscillation and Antarctic climate,
Part 1: Influence on near surface temperatures (1957–79), Antarct. Sci.,
10, 175–183, 1998. a
Vignon, E., van de Wiel, B. J. H., van Hooijdonk, I. G. S., Genthon, C.,
van der Linden, S. J. A., van Hooft, J. A., Baas, P., Maurel, W.,
Traullé, O., and Casasanta, G.: Stable boundary layer regimes at Dome
C, Antarctica: observation and analysis, Q. J. Roy. Meteor. Soc., 143,
1241–1253, 2017. a, b
Vimeux, F., Masson, V., Jouzel, J., Stievenard, M., and Petit, J. R.:
Glacial-interglacial changes in ocean surface conditions in the Southern
Hemisphere, Nature, 398, 410–413, 1999. a
Vinther, B. M., Jones, P. D., Briffa, K. R., Clausen, H. B., Andersen, K. K.,
Dahl-Jensen, D., and Johnsen, S. J.: Climatic signals in multiple highly
resolved stable isotope records from Greenland, Quaternary Sci. Rev., 29,
522–538, https://doi.org/10.1016/j.quascirev.2009.11.002, 2010. a
WAIS Divide Project members: Onset of deglacial warming in West Antarctica
driven by local orbital forcing, Nature, 500, 440–444, 2013. a
Wendler, G. and Kodama, Y.: On the climate of Dome C, Antarctica, in
relation to its geographical setting, J. Climatol, 4, 495–508, 1984. a
Whillans, I. M. and Grootes, P. M.: Isotopic diffusion in cold snow and
firn, J. Geophys. Res.-Atmos., 90, 3910–3918,
https://doi.org/10.1029/JD090iD02p03910, 1985. a
Winkler, R.: Triple-oxygen isotopic composition of meteoric waters: 17
O-excess a new tracer of the hydrological cycle, 2012. a
Winkler, R., Landais, A., Sodemann, H., Dümbgen, L., Prié, F.,
Masson-Delmotte, V., Stenni, B., and Jouzel, J.: Deglaciation records of
17O-excess in East Antarctica: reliable reconstruction of oceanic
normalized relative humidity from coastal sites, Clim. Past, 8, 1–16,
https://doi.org/10.5194/cp-8-1-2012, 2012. a, b, c
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival processes of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Ice core isotopic records rely on the knowledge of the processes involved in the archival...