Articles | Volume 11, issue 1
The Cryosphere, 11, 319–329, 2017
https://doi.org/10.5194/tc-11-319-2017
The Cryosphere, 11, 319–329, 2017
https://doi.org/10.5194/tc-11-319-2017

Research article 31 Jan 2017

Research article | 31 Jan 2017

Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting

Rupert Michael Gladstone et al.

Related authors

Rapid fragmentation of Thwaites Eastern Ice Shelf, West Antarctica
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna Crawford, Stephen L. Cornford, Suzanne L. Bevan, Rupert Gladstone, Thomas Zwinger, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-288,https://doi.org/10.5194/tc-2021-288, 2021
Preprint under review for TC
Short summary
Thermal structure of the Amery Ice Shelf from borehole observations and simulations
Yu Wang, Chen Zhao, Rupert Gladstone, Ben Galton-Fenzi, and Roland Warner
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-248,https://doi.org/10.5194/tc-2021-248, 2021
Preprint under review for TC
Short summary
The Framework For Ice Sheet–Ocean Coupling (FISOC) V1.1
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021,https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020,https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Simulated retreat of Jakobshavn Isbræ during the 21st century
Xiaoran Guo, Liyun Zhao, Rupert M. Gladstone, Sainan Sun, and John C. Moore
The Cryosphere, 13, 3139–3153, https://doi.org/10.5194/tc-13-3139-2019,https://doi.org/10.5194/tc-13-3139-2019, 2019

Related subject area

Numerical Modelling
Assessment of neutrons from secondary cosmic rays at mountain altitudes – Geant4 simulations of environmental parameters including soil moisture and snow cover
Thomas Brall, Vladimir Mares, Rolf Bütikofer, and Werner Rühm
The Cryosphere, 15, 4769–4780, https://doi.org/10.5194/tc-15-4769-2021,https://doi.org/10.5194/tc-15-4769-2021, 2021
Short summary
A seasonal algorithm of the snow-covered area fraction for mountainous terrain
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021,https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Edge displacement scores
Arne Melsom
The Cryosphere, 15, 3785–3796, https://doi.org/10.5194/tc-15-3785-2021,https://doi.org/10.5194/tc-15-3785-2021, 2021
Short summary
The 21st-century fate of the Mocho-Choshuenco ice cap in southern Chile
Matthias Scheiter, Marius Schaefer, Eduardo Flández, Deniz Bozkurt, and Ralf Greve
The Cryosphere, 15, 3637–3654, https://doi.org/10.5194/tc-15-3637-2021,https://doi.org/10.5194/tc-15-3637-2021, 2021
Short summary
Lateral thermokarst patterns in permafrost peat plateaus in northern Norway
Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann
The Cryosphere, 15, 3423–3442, https://doi.org/10.5194/tc-15-3423-2021,https://doi.org/10.5194/tc-15-3423-2021, 2021
Short summary

Cited articles

Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016.
Budd, W., Keage, P. L., and Blundy, N. A.: Empirical studies of ice sliding, J. Glaciol., 23, 157–170, 1979.
Budd, W., Jenssen, D., and Smith, I.: A 3-dimensional time-dependent model of the West Antarctic Ice-Sheet, Ann. Glaciol., 5, 29–36, 1984.
Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Le Brocq, A. M., Gladstone, R. M., Payne, A. J., Ng, E., and Lipscomb, W. H.: Adaptive mesh, finite volume modeling of marine ice sheets, J. Comput. Phys., 232, 529–549, 2013.
Durand, G., Gagliardini, O., de Fleurian, B., Zwinger, T., and Le Meur, E.: Marine ice sheet dynamics: Hysteresis and neutral equilibrium, J. Geophys. Res.-Earth, 114, F03009, https://doi.org/10.1029/2008JF001170, 2009.
Download
Short summary
Computer models are used to simulate the behaviour of glaciers and ice sheets. It has been found that such models are required to be run at very high resolution (which means high computational expense) in order to accurately represent the evolution of marine ice sheets (ice sheets resting on bedrock below sea level), in certain situations which depend on sub-glacial physical processes.