Articles | Volume 11, issue 5
The Cryosphere, 11, 2363–2381, 2017
https://doi.org/10.5194/tc-11-2363-2017

Special issue: Mass balance of the Greenland Ice Sheet

The Cryosphere, 11, 2363–2381, 2017
https://doi.org/10.5194/tc-11-2363-2017

Special issue editorial 23 Oct 2017

Special issue editorial | 23 Oct 2017

Investigating the local-scale influence of sea ice on Greenland surface melt

Julienne C. Stroeve et al.

Related authors

Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover
Robbie D. C. Mallett, Julienne C. Stroeve, Michel Tsamados, Jack C. Landy, Rosemary Willatt, Vishnu Nandan, and Glen E. Liston
The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021,https://doi.org/10.5194/tc-15-2429-2021, 2021
Short summary
Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay sea ice thickness
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-135,https://doi.org/10.5194/tc-2021-135, 2021
Preprint under review for TC
Short summary
Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice
Rasmus T. Tonboe, Vishnu Nandan, John Yackel, Stefan Kern, Leif Toudal Pedersen, and Julienne Stroeve
The Cryosphere, 15, 1811–1822, https://doi.org/10.5194/tc-15-1811-2021,https://doi.org/10.5194/tc-15-1811-2021, 2021
Short summary
Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021,https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021,https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary

Related subject area

Greenland
Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979–2019)
Paolo Colosio, Marco Tedesco, Roberto Ranzi, and Xavier Fettweis
The Cryosphere, 15, 2623–2646, https://doi.org/10.5194/tc-15-2623-2021,https://doi.org/10.5194/tc-15-2623-2021, 2021
Short summary
Impact of updated radiative transfer scheme in snow and ice in RACMO2.3p3 on the surface mass and energy budget of the Greenland ice sheet
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 15, 1823–1844, https://doi.org/10.5194/tc-15-1823-2021,https://doi.org/10.5194/tc-15-1823-2021, 2021
Short summary
Winter drainage of surface lakes on the Greenland Ice Sheet from Sentinel-1 SAR imagery
Corinne L. Benedek and Ian C. Willis
The Cryosphere, 15, 1587–1606, https://doi.org/10.5194/tc-15-1587-2021,https://doi.org/10.5194/tc-15-1587-2021, 2021
Short summary
Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland
Nathan Maier, Florent Gimbert, Fabien Gillet-Chaulet, and Adrien Gilbert
The Cryosphere, 15, 1435–1451, https://doi.org/10.5194/tc-15-1435-2021,https://doi.org/10.5194/tc-15-1435-2021, 2021
Short summary
The GRISLI-LSCE contribution to the Ice Sheet Model Intercomparison Project for phase 6 of the Coupled Model Intercomparison Project (ISMIP6) – Part 1: Projections of the Greenland ice sheet evolution by the end of the 21st century
Aurélien Quiquet and Christophe Dumas
The Cryosphere, 15, 1015–1030, https://doi.org/10.5194/tc-15-1015-2021,https://doi.org/10.5194/tc-15-1015-2021, 2021
Short summary

Cited articles

Alexander, P. M., Tedesco, M., Fettweis, X., van de Wal, R. S. W., Smeets, C. J. P. P., and van den Broeke, M. R.: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013), The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, 2014.
Ballinger, T. J., Hanna, E., Hall, R. J., and Hoyer, J. L.: Greenland coastal air temperatures linked to Baffin Bay and Greenland ice conditions during autumn through regional blocking patterns, Clim. Dyn., https://doi.org/10.1007/s00382-017-3583-3, 2017.
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kullie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86, https://doi.org/10.1038/nature12002, 2013.
Bezeau, P., Sharp, M., and Gascon, G.: Variability in summer anticyclonic circulation over the Canadian Arctic Archipelago and west Greenland in the late 20th/early 21st centuries and its effect on glacier mass balance, Int. J. Climatol., 35, 540–557, https://doi.org/10.1002/joc.4000, 2015.
Bhatt, U. S., Walker, D. A., Raynolds, M. K., Comiso, J. C., Epstein, H. E., Jia, G., Gens, R., Pinzon, J. E., Tucker, C. J., Tweedie, C. E., and Webber, P. J.: Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline, Earth Interact., 14, 1–20, https://doi.org/10.1175/2010EI315.1, 2010.
Download
Short summary
As the sea ice has declined strongly in recent years there has been a corresponding increase in Greenland melting. While both are likely a result of changes in atmospheric circulation patterns that favor summer melt, this study evaluates whether or not sea ice reductions around the Greenland ice sheet are having an influence on Greenland summer melt through enhanced sensible and latent heat transport from open water areas onto the ice sheet.