Articles | Volume 10, issue 2
Research article
11 Mar 2016
Research article |  | 11 Mar 2016

Monitoring ice break-up on the Mackenzie River using MODIS data

P. Muhammad, C. Duguay, and K.-K. Kang

Related authors

Forward modelling of synthetic-aperture radar (SAR) backscatter during lake ice melt conditions using the Snow Microwave Radiative Transfer (SMRT) model
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888,,, 2024
Short summary
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229,,, 2023
Short summary
Bedfast and floating-ice dynamics of thermokarst lakes using a temporal deep-learning mapping approach: case study of the Old Crow Flats, Yukon, Canada
Maria Shaposhnikova, Claude Duguay, and Pascale Roy-Léveillée
The Cryosphere, 17, 1697–1721,,, 2023
Short summary
A 41-year (1979–2019) passive-microwave-derived lake ice phenology data record of the Northern Hemisphere
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347,,, 2022
Short summary
River ice phenology and thickness from satellite altimetry: potential for ice bridge road operation and climate studies
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407,,, 2021
Short summary

Related subject area

Remote Sensing
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773,,, 2024
Short summary
A low-cost and open-source approach for supraglacial debris thickness mapping using UAV-based infrared thermography
Jérôme Messmer and Alexander Raphael Groos
The Cryosphere, 18, 719–746,,, 2024
Short summary
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574,,, 2024
Short summary
Passive microwave remote-sensing-based high-resolution snow depth mapping for Western Himalayan zones using multifactor modeling approach
Dhiraj Kumar Singh, Srinivasarao Tanniru, Kamal Kant Singh, Harendra Singh Negi, and RAAJ Ramsankaran
The Cryosphere, 18, 451–474,,, 2024
Short summary
Refined glacial lake extraction in a high-Asia region by deep neural network and superpixel-based conditional random field methods
Yungang Cao, Rumeng Pan, Meng Pan, Ruodan Lei, Puying Du, and Xueqin Bai
The Cryosphere, 18, 153–168,,, 2024
Short summary

Cited articles

Abdul Aziz, O. I. and Burn, D. H.: Trends and variability in the hydrological regime of the Mackenzie River Basin, J. Hydrol., 319, 282–294,, 2006.
Allen, W. T. R.: Freeze-up, Break-up and Ice Thickness in Canada: Embâcle, Débâcle Et Épaisseur de la Glace Au Canada, Environnement Atmosphérique, Downsview, Ontario, USA, 1977.
Beltaos, S.: Onset of river ice breakup, Cold Reg. Sci. Technol., 25, 183–196,, 1997.
Beltaos, S.: Progress in the study and management of river ice jams, Cold Reg. Sci. Technol., 51, 2–19, 2008.
Beltaos, S.: Hydrodynamic characteristics and effects of river waves caused by ice jam releases, Cold Reg. Sci. Technol., 85, 42–55,, 2013.
Short summary
This study involves the analysis of MODIS Level 3500 m snow products, complemented with 250 m Level 1B data, to monitor ice cover during the break-up period on the Mackenzie River, Canada. Results from the analysis of data for 13 ice seasons (2001–2013) show that ice-off begins between days of year (DOYs) 115 and 125 and ends between DOYs 145 and 155, resulting in average melt durations of about 30–40 days; we conclude that MODIS can monitor ice break-up.