Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-2731-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-2731-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Simulating ice layer formation under the presence of preferential flow in layered snowpacks
Nander Wever
CORRESPONDING AUTHOR
École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Sebastian Würzer
École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Charles Fierz
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Michael Lehning
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
Related authors
Cesar Vera Valero, Nander Wever, Marc Christen, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 18, 869–887, https://doi.org/10.5194/nhess-18-869-2018, https://doi.org/10.5194/nhess-18-869-2018, 2018
Short summary
Short summary
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow depth, density, temperature and liquid water content. These initial conditions are used to drive an avalanche dynamics model. The runout results are compared using a contigency analysis.
Nander Wever, Francesco Comola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 21, 4053–4071, https://doi.org/10.5194/hess-21-4053-2017, https://doi.org/10.5194/hess-21-4053-2017, 2017
Short summary
Short summary
The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the
linkage between the snow cover, soil and discharge in the stream network. Simulations of soil moisture and streamflow were performed and compared with observations. It was found that discharge at the catchment outlet during intense rainfall or snowmelt periods correlates positively with the initial soil moisture state, in both measurements and simulations.
Anna Haberkorn, Nander Wever, Martin Hoelzle, Marcia Phillips, Robert Kenner, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, https://doi.org/10.5194/tc-11-585-2017, 2017
Short summary
Short summary
The effects of permafrost degradation on rock slope stability in the Alps affect people and infrastructure. Modelling the evolution of permafrost is therefore of great importance. However, the snow cover has generally not been taken into account in model studies of steep, rugged rock walls. Thus, we present a distributed model study on the influence of the snow cover on rock temperatures. The promising results are discussed against detailed rock temperature measurements and snow depth data.
Johan Gaume, Alec van Herwijnen, Guillaume Chambon, Nander Wever, and Jürg Schweizer
The Cryosphere, 11, 217–228, https://doi.org/10.5194/tc-11-217-2017, https://doi.org/10.5194/tc-11-217-2017, 2017
Short summary
Short summary
Based on DEM simulations we developed a new model for the onset of crack propagation in snow slab avalanche release. The model reconciles past approaches by considering the complex interplay between slab elasticity and the mechanical behavior of the weak layer including its structural collapse. The model agrees with extensive field data and can reproduce crack propagation on low-angle terrain and the decrease in critical crack length with increasing slope angle observed in numerical experiments.
Cesar Vera Valero, Nander Wever, Yves Bühler, Lukas Stoffel, Stefan Margreth, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 16, 2303–2323, https://doi.org/10.5194/nhess-16-2303-2016, https://doi.org/10.5194/nhess-16-2303-2016, 2016
Short summary
Short summary
Simulating medium–small avalanches operationally on a mine service road allows avalanche hazard to be assessed on the mine transportation route. Using accurate data from the snow cover and the avalanche paths, the avalanche dynamic model developed can calculate the avalanche runout distances and snow volumes of the deposits. The model does not predict whether the avalanche is coming or not, but if it comes, the model will predict runout distances and mass of the deposits.
N. Wever, L. Schmid, A. Heilig, O. Eisen, C. Fierz, and M. Lehning
The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, https://doi.org/10.5194/tc-9-2271-2015, 2015
Short summary
Short summary
A verification of the physics based SNOWPACK model with field observations showed that typical snowpack properties like density and temperature are adequately simulated. Also two water transport schemes were verified, showing that although Richards equation improves snowpack runoff and several aspects of the internal snowpack structure, the bucket scheme appeared to have a higher agreement with the snow microstructure. The choice of water transport scheme may depend on the intended application.
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024, https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Short summary
Wind-driven airborne transport of snow is a frequent phenomenon in snow-covered regions and a process difficult to study in the field as it is unfolding over large distances. Thus, we use a ring wind tunnel with infinite fetch positioned in a cold laboratory to study the evolution of the shape and size of airborne snow. With the help of stable water isotope analyses, we identify the hitherto unobserved process of airborne snow metamorphism that leads to snow particle rounding and growth.
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024, https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
Short summary
Information about atmospheric variables is needed to produce simulations of mountain snowpacks. We present a model that can represent processes that shape mountain snowpack, focusing on the accumulation of snow. Simulations show that this model can simulate the complex path that a snowflake takes towards the ground and that this leads to differences in the distribution of snow by the end of winter. Overall, this model shows promise with regard to improving forecasts of snow in mountains.
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023, https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Joel Fiddes, Kristoffer Aalstad, and Michael Lehning
Geosci. Model Dev., 15, 1753–1768, https://doi.org/10.5194/gmd-15-1753-2022, https://doi.org/10.5194/gmd-15-1753-2022, 2022
Short summary
Short summary
This study describes and evaluates a new downscaling scheme that addresses the need for hillslope-scale atmospheric forcing time series for modelling the local impact of regional climate change on the land surface in mountain areas. The method has a global scope and is able to generate all model forcing variables required for hydrological and land surface modelling. This is important, as impact models require high-resolution forcings such as those generated here to produce meaningful results.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Louis Quéno, Charles Fierz, Alec van Herwijnen, Dylan Longridge, and Nander Wever
The Cryosphere, 14, 3449–3464, https://doi.org/10.5194/tc-14-3449-2020, https://doi.org/10.5194/tc-14-3449-2020, 2020
Short summary
Short summary
Deep ice layers may form in the snowpack due to preferential water flow with impacts on the snowpack mechanical, hydrological and thermodynamical properties. We studied their formation and evolution at a high-altitude alpine site, combining a comprehensive observation dataset at a daily frequency (with traditional snowpack observations, penetration resistance and radar measurements) and detailed snowpack modeling, including a new parameterization of ice formation in the 1-D SNOWPACK model.
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
Short summary
During winter 2015–2016, the standard program to monitor the structure and stability of the snowpack at Weissflujoch, Swiss Alps, was complemented by additional measurements to compare between various traditional and newly developed techniques. Snow micro-penetrometer measurements allowed monitoring of the evolution of the snowpack's internal structure at a daily resolution throughout the winter. We show the potential of such high-resolution data for detailed evaluations of snowpack models.
Benjamin Walter, Hendrik Huwald, Josué Gehring, Yves Bühler, and Michael Lehning
The Cryosphere, 14, 1779–1794, https://doi.org/10.5194/tc-14-1779-2020, https://doi.org/10.5194/tc-14-1779-2020, 2020
Short summary
Short summary
We applied a horizontally mounted low-cost precipitation radar to measure velocities, frequency of occurrence, travel distances and turbulence characteristics of blowing snow off a mountain ridge. Our analysis provides a first insight into the potential of radar measurements for determining blowing snow characteristics, improves our understanding of mountain ridge blowing snow events and serves as a valuable data basis for validating coupled numerical weather and snowpack simulations.
Nander Wever, Leonard Rossmann, Nina Maaß, Katherine C. Leonard, Lars Kaleschke, Marcel Nicolaus, and Michael Lehning
Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020, https://doi.org/10.5194/gmd-13-99-2020, 2020
Short summary
Short summary
Sea ice is an important component of the global climate system. The presence of a snow layer covering sea ice can impact ice mass and energy budgets. The detailed, physics-based, multi-layer snow model SNOWPACK was modified to simulate the snow–sea-ice system, providing simulations of the snow microstructure, water percolation and flooding, and superimposed ice formation. The model is applied to in situ measurements from snow and ice mass-balance buoys installed in the Antarctic Weddell Sea.
Varun Sharma, Louise Braud, and Michael Lehning
The Cryosphere, 13, 3239–3260, https://doi.org/10.5194/tc-13-3239-2019, https://doi.org/10.5194/tc-13-3239-2019, 2019
Short summary
Short summary
Snow surfaces, under the action of wind, form beautiful shapes such as waves and dunes. This study is the first ever study to simulate these shapes using a state-of-the-art numerical modelling tool. While these beautiful and ephemeral shapes on snow surfaces are fascinating from a purely aesthetic point of view, they are also critical in regulating the transfer of heat and mass between the atmosphere and snowpacks, thus being of huge importance to the Earth system.
Cécile B. Ménard, Richard Essery, Alan Barr, Paul Bartlett, Jeff Derry, Marie Dumont, Charles Fierz, Hyungjun Kim, Anna Kontu, Yves Lejeune, Danny Marks, Masashi Niwano, Mark Raleigh, Libo Wang, and Nander Wever
Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, https://doi.org/10.5194/essd-11-865-2019, 2019
Short summary
Short summary
This paper describes long-term meteorological and evaluation datasets from 10 reference sites for use in snow modelling. We demonstrate how data sharing is crucial to the identification of errors and how the publication of these datasets contributes to good practice, consistency, and reproducibility in geosciences. The ease of use, availability, and quality of the datasets will help model developers quantify and reduce model uncertainties and errors.
Ian Allison, Charles Fierz, Regine Hock, Andrew Mackintosh, Georg Kaser, and Samuel U. Nussbaumer
Hist. Geo Space. Sci., 10, 97–107, https://doi.org/10.5194/hgss-10-97-2019, https://doi.org/10.5194/hgss-10-97-2019, 2019
Short summary
Short summary
The International Association of Cryospheric Sciences (IACS) became the eighth and most recent association of IUGG in July 2007. IACS was launched in recognition of the importance of the cryosphere, particularly at a time of significant global change. The forbears of IACS, however, start with the 1894 Commission Internationale des Glaciers (CIG). This paper traces the transition from CIG to IACS; scientific objectives that drove activities and changes, and key events and individuals involved.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Varun Sharma, Francesco Comola, and Michael Lehning
The Cryosphere, 12, 3499–3509, https://doi.org/10.5194/tc-12-3499-2018, https://doi.org/10.5194/tc-12-3499-2018, 2018
Short summary
Short summary
The Thorpe-Mason (TM) model describes how an ice grain sublimates during aeolian transport. We revisit this classic model using simple numerical experiments and discover that for many common scenarios, the model is likely to underestimate the amount of ice loss. Extending this result to drifting and blowing snow using high-resolution turbulent flow simulations, the study shows that current estimates for ice loss due to sublimation in regions such as Antarctica need to be significantly updated.
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018, https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary
Short summary
A comparison of winter precipitation variability in operational radar measurements and high-resolution simulations reveals that large-scale variability is well captured by the model, depending on the event. Precipitation variability is driven by topography and wind. A good portion of small-scale variability is captured at the highest resolution. This is essential to address small-scale precipitation processes forming the alpine snow seasonal snow cover – an important source of water.
Ladina Steiner, Michael Meindl, Charles Fierz, and Alain Geiger
The Cryosphere, 12, 3161–3175, https://doi.org/10.5194/tc-12-3161-2018, https://doi.org/10.5194/tc-12-3161-2018, 2018
Short summary
Short summary
The amount of water stored in snow cover is of high importance for flood risks, climate change, and early-warning systems. We evaluate the potential of using GPS to estimate the stored water. We use GPS antennas buried underneath the snowpack and develop a model based on the path elongation of the GPS signals while propagating through the snowpack. The method works well over full seasons, including melt periods. Results correspond within 10 % to the state-of-the-art reference data.
Christian Gabriel Sommer, Nander Wever, Charles Fierz, and Michael Lehning
The Cryosphere, 12, 2923–2939, https://doi.org/10.5194/tc-12-2923-2018, https://doi.org/10.5194/tc-12-2923-2018, 2018
Short summary
Short summary
Wind packing is how wind produces hard crusts at the surface of the snowpack. This is relevant for the local mass balance in polar regions. However, not much is known about this process and it is difficult to capture its high spatial and temporal variability. A wind-packing event was measured in Antarctica. It could be quantified how drifting snow leads to wind packing and generates barchan dunes. The documentation of these deposition dynamics is an important step in understanding polar snow.
Cesar Vera Valero, Nander Wever, Marc Christen, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 18, 869–887, https://doi.org/10.5194/nhess-18-869-2018, https://doi.org/10.5194/nhess-18-869-2018, 2018
Short summary
Short summary
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow depth, density, temperature and liquid water content. These initial conditions are used to drive an avalanche dynamics model. The runout results are compared using a contigency analysis.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Thomas Grünewald, Fabian Wolfsperger, and Michael Lehning
The Cryosphere, 12, 385–400, https://doi.org/10.5194/tc-12-385-2018, https://doi.org/10.5194/tc-12-385-2018, 2018
Short summary
Short summary
Snow farming is the conservation of snow during summer. Large snow piles are covered with a sawdust insulation layer, reducing melt and guaranteeing a specific amount of available snow in autumn, independent of the weather conditions. Snow volume changes in two heaps were monitored, showing that about a third of the snow was lost. Model simulations confirmed the large effect of the insulation on energy balance and melt. The model can now be used as a tool to examine future snow-farming projects.
Roman Juras, Sebastian Würzer, Jirka Pavlásek, Tomáš Vitvar, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 4973–4987, https://doi.org/10.5194/hess-21-4973-2017, https://doi.org/10.5194/hess-21-4973-2017, 2017
Short summary
Short summary
This research investigates the rainwater dynamics in the snowpack under artificial rain-on-snow events. Deuterium-enriched water was sprayed on the isolated snowpack and rainwater was further identified in the runoff. We found that runoff from cold snowpack was created faster than from the ripe snowpack. Runoff from the cold snowpack also contained more rainwater compared to the ripe snowpack. These results are valuable for further snowpack runoff forecasting.
Nander Wever, Francesco Comola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 21, 4053–4071, https://doi.org/10.5194/hess-21-4053-2017, https://doi.org/10.5194/hess-21-4053-2017, 2017
Short summary
Short summary
The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the
linkage between the snow cover, soil and discharge in the stream network. Simulations of soil moisture and streamflow were performed and compared with observations. It was found that discharge at the catchment outlet during intense rainfall or snowmelt periods correlates positively with the initial soil moisture state, in both measurements and simulations.
Sebastian Würzer, Nander Wever, Roman Juras, Michael Lehning, and Tobias Jonas
Hydrol. Earth Syst. Sci., 21, 1741–1756, https://doi.org/10.5194/hess-21-1741-2017, https://doi.org/10.5194/hess-21-1741-2017, 2017
Short summary
Short summary
We discuss a dual-domain water transport model in a physics-based snowpack model to account for preferential flow (PF) in addition to matrix flow. So far no operationally used snow model has explicitly accounted for PF. The new approach is compared to existing water transport models and validated against in situ data from sprinkling and natural rain-on-snow (ROS) events. Our work demonstrates the benefit of considering PF in modelling hourly snowpack runoff, especially during ROS conditions.
Anna Haberkorn, Nander Wever, Martin Hoelzle, Marcia Phillips, Robert Kenner, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 585–607, https://doi.org/10.5194/tc-11-585-2017, https://doi.org/10.5194/tc-11-585-2017, 2017
Short summary
Short summary
The effects of permafrost degradation on rock slope stability in the Alps affect people and infrastructure. Modelling the evolution of permafrost is therefore of great importance. However, the snow cover has generally not been taken into account in model studies of steep, rugged rock walls. Thus, we present a distributed model study on the influence of the snow cover on rock temperatures. The promising results are discussed against detailed rock temperature measurements and snow depth data.
Christoph Marty, Sebastian Schlögl, Mathias Bavay, and Michael Lehning
The Cryosphere, 11, 517–529, https://doi.org/10.5194/tc-11-517-2017, https://doi.org/10.5194/tc-11-517-2017, 2017
Short summary
Short summary
We simulate the future snow cover in the Alps with the help of a snow model, which is fed by projected temperature and precipitation changes from a large set of climate models. The results demonstrate that snow below 1000 m is probably a rare guest at the end of the century. Moreover, even above 3000 m the simulations show a drastic decrease in snow depth. However, the results reveal that the projected snow cover reduction can be mitigated by 50 % if we manage to keep global warming below 2°.
Johan Gaume, Alec van Herwijnen, Guillaume Chambon, Nander Wever, and Jürg Schweizer
The Cryosphere, 11, 217–228, https://doi.org/10.5194/tc-11-217-2017, https://doi.org/10.5194/tc-11-217-2017, 2017
Short summary
Short summary
Based on DEM simulations we developed a new model for the onset of crack propagation in snow slab avalanche release. The model reconciles past approaches by considering the complex interplay between slab elasticity and the mechanical behavior of the weak layer including its structural collapse. The model agrees with extensive field data and can reproduce crack propagation on low-angle terrain and the decrease in critical crack length with increasing slope angle observed in numerical experiments.
Aurélien Gallice, Mathias Bavay, Tristan Brauchli, Francesco Comola, Michael Lehning, and Hendrik Huwald
Geosci. Model Dev., 9, 4491–4519, https://doi.org/10.5194/gmd-9-4491-2016, https://doi.org/10.5194/gmd-9-4491-2016, 2016
Short summary
Short summary
This paper presents the improvements brought to an existing model for discharge and temperature prediction in Alpine streams. Compared to the original model version, it is now possible to choose between various alternatives to simulate certain parts of the water cycle, such as the technique used to transfer water along the stream network. The paper includes an example of application of the model over an Alpine catchment in Switzerland.
Cesar Vera Valero, Nander Wever, Yves Bühler, Lukas Stoffel, Stefan Margreth, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 16, 2303–2323, https://doi.org/10.5194/nhess-16-2303-2016, https://doi.org/10.5194/nhess-16-2303-2016, 2016
Short summary
Short summary
Simulating medium–small avalanches operationally on a mine service road allows avalanche hazard to be assessed on the mine transportation route. Using accurate data from the snow cover and the avalanche paths, the avalanche dynamic model developed can calculate the avalanche runout distances and snow volumes of the deposits. The model does not predict whether the avalanche is coming or not, but if it comes, the model will predict runout distances and mass of the deposits.
Rebecca Mott, Enrico Paterna, Stefan Horender, Philip Crivelli, and Michael Lehning
The Cryosphere, 10, 445–458, https://doi.org/10.5194/tc-10-445-2016, https://doi.org/10.5194/tc-10-445-2016, 2016
Short summary
Short summary
For the first time, this contribution investigates atmospheric decoupling above melting snow in a wind tunnel study. High-resolution vertical profiles of
sensible heat fluxes are measured directly over the melting snow patch.
The study shows that atmospheric decoupling is strongly increased in topographic sheltering but only for low wind velocities. Then turbulent mixing close to the surface is strongly suppressed, facilitating the formation of cold-air pooling in local depressions.
Martin Proksch, Nick Rutter, Charles Fierz, and Martin Schneebeli
The Cryosphere, 10, 371–384, https://doi.org/10.5194/tc-10-371-2016, https://doi.org/10.5194/tc-10-371-2016, 2016
Short summary
Short summary
Density is a fundamental property of porous media such as snow. During the MicroSnow Davos 2014 workshop, different approaches (box-, wedge- and cylinder-type density cutters, micro-computed tomography) to measure snow density were applied in a controlled laboratory environment and in the field. In general, results suggest that snow densities measured by different methods agree within 9 %. However, the density profiles resolved by the measurement methods differed considerably.
N. Wever, L. Schmid, A. Heilig, O. Eisen, C. Fierz, and M. Lehning
The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, https://doi.org/10.5194/tc-9-2271-2015, 2015
Short summary
Short summary
A verification of the physics based SNOWPACK model with field observations showed that typical snowpack properties like density and temperature are adequately simulated. Also two water transport schemes were verified, showing that although Richards equation improves snowpack runoff and several aspects of the internal snowpack structure, the bucket scheme appeared to have a higher agreement with the snow microstructure. The choice of water transport scheme may depend on the intended application.
W. Steinkogler, B. Sovilla, and M. Lehning
The Cryosphere, 9, 1819–1830, https://doi.org/10.5194/tc-9-1819-2015, https://doi.org/10.5194/tc-9-1819-2015, 2015
Short summary
Short summary
Infrared radiation thermography (IRT) was used to assess the surface temperature of avalanches with high spatial resolution. Thermal energy increase due to friction was mainly depending on the elevation drop of the avalanche. Warming due to entrainment was very specific to the individual avalanche and depends on the temperature of the snow along the path and the erosion depth. The warmest temperatures were located in the deposits of the dense core.
A. Gallice, B. Schaefli, M. Lehning, M. B. Parlange, and H. Huwald
Hydrol. Earth Syst. Sci., 19, 3727–3753, https://doi.org/10.5194/hess-19-3727-2015, https://doi.org/10.5194/hess-19-3727-2015, 2015
Short summary
Short summary
This study presents a new model to estimate the monthly mean stream temperature of ungauged rivers over multiple years in an Alpine country. Contrary to the other approaches developed to date, which are usually based on standard regression techniques, our model makes use of the understanding that we have about the physics controlling stream temperature. On top of its accuracy being comparable to that of the other models, it can be used to gain some knowledge about the stream temperature dynamics
E. Trujillo and M. Lehning
The Cryosphere, 9, 1249–1264, https://doi.org/10.5194/tc-9-1249-2015, https://doi.org/10.5194/tc-9-1249-2015, 2015
Short summary
Short summary
In this article, we present a methodology for the objective evaluation of the error in capturing mean snow depths from point measurements. We demonstrate, using LIDAR snow depths, how the model can be used for assisting the design of survey strategies such that the error is minimized or an estimation threshold is achieved. Furthermore, the model can be extended to other spatially distributed snow variables (e.g., SWE) whose statistical properties are comparable to those of snow depth.
J. Schwaab, M. Bavay, E. Davin, F. Hagedorn, F. Hüsler, M. Lehning, M. Schneebeli, E. Thürig, and P. Bebi
Biogeosciences, 12, 467–487, https://doi.org/10.5194/bg-12-467-2015, https://doi.org/10.5194/bg-12-467-2015, 2015
T. Grünewald, Y. Bühler, and M. Lehning
The Cryosphere, 8, 2381–2394, https://doi.org/10.5194/tc-8-2381-2014, https://doi.org/10.5194/tc-8-2381-2014, 2014
Short summary
Short summary
Elevation dependencies of snow depth are analysed based on snow depth maps obtained from airborne remote sensing. Elevation gradients are characterised by a specific shape: an increase of snow depth with elevation is followed by a distinct peak at a certain level and a decrease in the highest elevations. We attribute this shape to an increase of precipitation with altitude, which is modified by topographical-induced redistribution processes of the snow on the ground (wind, gravitation).
N. Wever, T. Jonas, C. Fierz, and M. Lehning
Hydrol. Earth Syst. Sci., 18, 4657–4669, https://doi.org/10.5194/hess-18-4657-2014, https://doi.org/10.5194/hess-18-4657-2014, 2014
Short summary
Short summary
We simulated a severe rain-on-snow event in the Swiss Alps in October 2011 with a detailed multi-layer snow cover model. We found a strong modulating effect of the incoming rainfall signal by the snow cover. Initially, water from both rainfall and snow melt was absorbed by the snowpack. But once the snowpack released the stored water, simulated outflow rates exceeded rainfall and snow melt rates. The simulations suggest that structural snowpack changes enhanced the outflow during this event.
N. Wever, C. Fierz, C. Mitterer, H. Hirashima, and M. Lehning
The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, https://doi.org/10.5194/tc-8-257-2014, 2014
T. Grünewald, J. Stötter, J. W. Pomeroy, R. Dadic, I. Moreno Baños, J. Marturià, M. Spross, C. Hopkinson, P. Burlando, and M. Lehning
Hydrol. Earth Syst. Sci., 17, 3005–3021, https://doi.org/10.5194/hess-17-3005-2013, https://doi.org/10.5194/hess-17-3005-2013, 2013
C. D. Groot Zwaaftink, A. Cagnati, A. Crepaz, C. Fierz, G. Macelloni, M. Valt, and M. Lehning
The Cryosphere, 7, 333–347, https://doi.org/10.5194/tc-7-333-2013, https://doi.org/10.5194/tc-7-333-2013, 2013
Related subject area
Seasonal Snow
Characterization of non-Gaussianity in the snow distributions of various landscapes
A simple snow temperature index model exposes discrepancies between reanalysis snow water equivalent products
Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?
Snow depth sensitivity to mean temperature, precipitation, and elevation in the Austrian and Swiss Alps
From snow accumulation to snow depth distributions by quantifying meteoric ice fractions in the Weddell Sea
Snow depth in high-resolution regional climate model simulations over southern Germany – suitable for extremes and impact-related research?
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Variability and drivers of winter near-surface temperatures over boreal and tundra landscapes
Benchmarking of SWE products based on outcomes of the SnowPEx+ Intercomparison Project
Use of multiple reference data sources to cross validate gridded snow water equivalent products over North America
Spatiotemporal snow water storage uncertainty in the midlatitude American Cordillera
Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Change in the potential snowfall phenology: past, present, and future in the Chinese Tianshan mountainous region, Central Asia
The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
Impact of measured and simulated tundra snowpack properties on heat transfer
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
Past changes in natural and managed snow reliability of French Alps ski resorts from 1961 to 2019
Multilayer observation and estimation of the snowpack cold content in a humid boreal coniferous forest of eastern Canada
Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis dataset
Recent changes in pan-Arctic sea ice, lake ice, and snow-on/off timing
Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements
Observed snow depth trends in the European Alps: 1971 to 2019
Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling
Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps)
Local-scale variability of snow density on Arctic sea ice
Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach
Evaluation of long-term Northern Hemisphere snow water equivalent products
Towards a webcam-based snow cover monitoring network: methodology and evaluation
Simulated single-layer forest canopies delay Northern Hemisphere snowmelt
Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers
Converting snow depth to snow water equivalent using climatological variables
Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study
The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China
Brief Communication: Early season snowpack loss and implications for oversnow vehicle recreation travel planning
Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps
Canadian snow and sea ice: assessment of snow, sea ice, and related climate processes in Canada's Earth system model and climate-prediction system
Canadian snow and sea ice: historical trends and projections
Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models
Black carbon and mineral dust in snow cover on the Tibetan Plateau
Snow farming: conserving snow over the summer season
Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites
Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012
Measuring snow water equivalent from common-offset GPR records through migration velocity analysis
Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models
Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China
Noriaki Ohara, Andrew D. Parsekian, Benjamin M. Jones, Rodrigo C. Rangel, Kenneth M. Hinkel, and Rui A. P. Perdigão
The Cryosphere, 18, 5139–5152, https://doi.org/10.5194/tc-18-5139-2024, https://doi.org/10.5194/tc-18-5139-2024, 2024
Short summary
Short summary
Snow distribution characterization is essential for accurate snow water estimation for water resource prediction from existing in situ observations and remote-sensing data at a finite spatial resolution. Four different observed snow distribution datasets were analyzed for Gaussianity. We found that non-Gaussianity of snow distribution is a signature of the wind redistribution effect. Generally, seasonal snowpack can be approximated well by a Gaussian distribution for a fully snow-covered area.
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
The Cryosphere, 18, 4955–4969, https://doi.org/10.5194/tc-18-4955-2024, https://doi.org/10.5194/tc-18-4955-2024, 2024
Short summary
Short summary
We look at three commonly used snow depth datasets that are produced through a combination of snow modelling and historical measurements (reanalysis). When compared with each other, these datasets have differences that arise for various reasons. We show that a simple snow model can be used to examine these inconsistencies and highlight issues. This method indicates that one of the complex datasets should be excluded from further studies.
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1172, https://doi.org/10.5194/egusphere-2024-1172, 2024
Short summary
Short summary
Snow depth plays an important role in water resources, mountain tourism, and hazard management across the European Alps. Our study uses station-based historical observations to quantify how changes in temperature and precipitation affect average seasonal snow depth. We find that the relationship between these variables has been surprisingly robust over the last 120 years. This allows us to more accurately estimate how future climate will affect seasonal snow depth in different elevation zones.
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
The Cryosphere, 18, 2001–2015, https://doi.org/10.5194/tc-18-2001-2024, https://doi.org/10.5194/tc-18-2001-2024, 2024
Short summary
Short summary
Antarctic sea ice maintains year-round snow cover, crucial for its energy and mass budgets. Despite its significance, snow depth remains poorly understood. Over the last decades, Snow Buoys have been deployed extensively on the sea ice to measure snow accumulation but not actual depth due to snow transformation into meteoric ice. Therefore, in this study we utilize sea ice and snow models to estimate meteoric ice fractions in order to calculate actual snow depth in the Weddell Sea.
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024, https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Short summary
Information about snow depth is important within climate research but also many other sectors, such as tourism, mobility, civil engineering, and ecology. Climate models often feature a spatial resolution which is too coarse to investigate snow depth. Here, we analyse high-resolution simulations and identify added value compared to a coarser-resolution state-of-the-art product. Also, daily snow depth extremes are well reproduced by two models.
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024, https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.
Vilna Tyystjärvi, Pekka Niittynen, Julia Kemppinen, Miska Luoto, Tuuli Rissanen, and Juha Aalto
The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024, https://doi.org/10.5194/tc-18-403-2024, 2024
Short summary
Short summary
At high latitudes, winter ground surface temperatures are strongly controlled by seasonal snow cover and its spatial variation. Here, we measured surface temperatures and snow cover duration in 441 study sites in tundra and boreal regions. Our results show large variations in how much surface temperatures in winter vary depending on the landscape and its impact on snow cover. These results emphasise the importance of understanding microclimates and their drivers under changing winter conditions.
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
EGUsphere, https://doi.org/10.5194/egusphere-2023-3014, https://doi.org/10.5194/egusphere-2023-3014, 2024
Short summary
Short summary
We evaluate and rank 23 products that estimate historical snow amounts. The evaluation uses new a set of ground measurements with improved spatial coverage enabling evaluation across both mountain and non-mountain regions. Performance measures vary tremendously across the products: while most perform reasonably in non-mountain regions, accurate representation of snow amounts in mountain regions and of historical trends is much more variable.
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyvich
EGUsphere, https://doi.org/10.5194/egusphere-2023-3013, https://doi.org/10.5194/egusphere-2023-3013, 2024
Short summary
Short summary
Ground measurements of snow water equivalent (SWE) are vital for understanding the accuracy of large-scale estimates from satellites and climate models. We compare two different types of measurements – snow courses and airborne gamma SWE estimates – and analyse how measurement type impacts the accuracy assessment of gridded SWE products. We use this analysis produce a combined reference SWE dataset for North America, applicable for future gridded SWE product evaluations and other applications.
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023, https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Short summary
Using newly developed snow reanalysis datasets as references, snow water storage is at high uncertainty among commonly used global products in the Andes and low-resolution products in the western United States, where snow is the key element of water resources. In addition to precipitation, elevation differences and model mechanism variances drive snow uncertainty. This work provides insights for research applying these products and generating future products in areas with limited in situ data.
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023, https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Short summary
We evaluated snow cover properties in state-of-the-art reanalyses (ERA5 and ERA5-Land) with satellite-based datasets. Both ERA5 and ERA5-Land overestimate snow mass, whereas albedo estimates are more consistent between the datasets. Snow cover extent (SCE) is accurately described in ERA5-Land, while ERA5 shows larger SCE than the satellite-based datasets. The trends in snow mass, SCE, and albedo are mostly negative in 1982–2018, and the negative trends become more apparent when spring advances.
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023, https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary
Short summary
Beyond directly using in situ observations, often sparsely available in mountain regions, climate model simulations and so-called reanalyses are increasingly used for climate change impact studies. Here we evaluate such datasets in the European Alps from 1950 to 2020, with a focus on snow cover information and its main drivers: air temperature and precipitation. In terms of variability and trends, we identify several limitations and provide recommendations for future use of these datasets.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023, https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from aeroplane to large (> 100 km2) detailed and accurate snow depth maps around Davos (CH). We use these maps to describe the existing snow depth distribution, other special features and potential applications.
Xuemei Li, Xinyu Liu, Kaixin Zhao, Xu Zhang, and Lanhai Li
The Cryosphere, 17, 2437–2453, https://doi.org/10.5194/tc-17-2437-2023, https://doi.org/10.5194/tc-17-2437-2023, 2023
Short summary
Short summary
Quantifying change in the potential snowfall phenology (PSP) is an important area of research for understanding regional climate change past, present, and future. However, few studies have focused on the PSP and its change in alpine mountainous regions. We proposed three innovative indicators to characterize the PSP and its spatial–temporal variation. Our study provides a novel approach to understanding PSP in alpine mountainous regions and can be easily extended to other snow-dominated regions.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022, https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary
Short summary
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic natural processes. Our study of a winter time series of high-resolution snow depth maps found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability at a couloir study site in the Bridger Range of Montana, USA. The results of this research have the potential to reduce uncertainty associated with snowpack and snow water resource analysis.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Bertrand Cluzet, Matthieu Lafaysse, César Deschamps-Berger, Matthieu Vernay, and Marie Dumont
The Cryosphere, 16, 1281–1298, https://doi.org/10.5194/tc-16-1281-2022, https://doi.org/10.5194/tc-16-1281-2022, 2022
Short summary
Short summary
The mountainous snow cover is highly variable at all temporal and spatial scales. Snow cover models suffer from large errors, while snowpack observations are sparse. Data assimilation combines them into a better estimate of the snow cover. A major challenge is to propagate information from observed into unobserved areas. This paper presents a spatialized version of the particle filter, in which information from in situ snow depth observations is successfully used to constrain nearby simulations.
Kerttu Kouki, Petri Räisänen, Kari Luojus, Anna Luomaranta, and Aku Riihelä
The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, https://doi.org/10.5194/tc-16-1007-2022, 2022
Short summary
Short summary
We analyze state-of-the-art climate models’ ability to describe snow mass and whether biases in modeled temperature or precipitation can explain the discrepancies in snow mass. In winter, biases in precipitation are the main factor affecting snow mass, while in spring, biases in temperature becomes more important, which is an expected result. However, temperature or precipitation cannot explain all snow mass discrepancies. Other factors, such as models’ structural errors, are also significant.
Lucas Berard-Chenu, Hugues François, Emmanuelle George, and Samuel Morin
The Cryosphere, 16, 863–881, https://doi.org/10.5194/tc-16-863-2022, https://doi.org/10.5194/tc-16-863-2022, 2022
Short summary
Short summary
This study investigates the past snow reliability (1961–2019) of 16 ski resorts in the French Alps using state-of-the-art snowpack modelling. We used snowmaking investment figures to infer the evolution of snowmaking coverage at the individual ski resort level. Snowmaking improved snow reliability for the core of the winter season for the highest-elevation ski resorts. However it did not counterbalance the decreasing trend in snow cover reliability for lower-elevation ski resorts and in spring.
Achut Parajuli, Daniel F. Nadeau, François Anctil, and Marco Alves
The Cryosphere, 15, 5371–5386, https://doi.org/10.5194/tc-15-5371-2021, https://doi.org/10.5194/tc-15-5371-2021, 2021
Short summary
Short summary
Cold content is the energy required to attain an isothermal (0 °C) state and resulting in the snow surface melt. This study focuses on determining the multi-layer cold content (30 min time steps) relying on field measurements, snow temperature profile, and empirical formulation in four distinct forest sites of Montmorency Forest, eastern Canada. We present novel research where the effect of forest structure, local topography, and meteorological conditions on cold content variability is explored.
Yufei Liu, Yiwen Fang, and Steven A. Margulis
The Cryosphere, 15, 5261–5280, https://doi.org/10.5194/tc-15-5261-2021, https://doi.org/10.5194/tc-15-5261-2021, 2021
Short summary
Short summary
We examined the spatiotemporal distribution of stored water in the seasonal snowpack over High Mountain Asia, based on a new snow reanalysis dataset. The dataset was derived utilizing satellite-observed snow information, which spans across 18 water years, at a high spatial (~ 500 m) and temporal (daily) resolution. Snow mass and snow storage distribution over space and time are analyzed in this paper, which brings new insights into understanding the snowpack variability over this region.
Alicia A. Dauginis and Laura C. Brown
The Cryosphere, 15, 4781–4805, https://doi.org/10.5194/tc-15-4781-2021, https://doi.org/10.5194/tc-15-4781-2021, 2021
Short summary
Short summary
This work examines changes in the timing (on/off dates) of Arctic snow, lake ice, and sea ice to investigate how they have responded to recent climate change and determine if they are responding similarly. We looked at pan-Arctic trends since 1997 and regional trends since 2004 using (mainly) satellite data. Strong regional variability was shown in the snow and ice trends, which highlights the need for a detailed understanding of the regional response to ongoing changes in the Arctic climate.
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Jianwei Yang, Lingmei Jiang, Kari Luojus, Jinmei Pan, Juha Lemmetyinen, Matias Takala, and Shengli Wu
The Cryosphere, 14, 1763–1778, https://doi.org/10.5194/tc-14-1763-2020, https://doi.org/10.5194/tc-14-1763-2020, 2020
Short summary
Short summary
There are many challenges for accurate snow depth estimation using passive microwave data. Machine learning (ML) techniques are deemed to be powerful tools for establishing nonlinear relations between independent variables and a given target variable. In this study, we investigate the potential capability of the random forest (RF) model on snow depth estimation at temporal and spatial scales. The result indicates that the fitted RF algorithms perform better on temporal than spatial scales.
Colleen Mortimer, Lawrence Mudryk, Chris Derksen, Kari Luojus, Ross Brown, Richard Kelly, and Marco Tedesco
The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, https://doi.org/10.5194/tc-14-1579-2020, 2020
Short summary
Short summary
Existing stand-alone passive microwave SWE products have markedly different climatological SWE patterns compared to reanalysis-based datasets. The AMSR-E SWE has low spatial and temporal correlations with the four reanalysis-based products evaluated and GlobSnow and perform poorly in comparisons with snow transect data from Finland, Russia, and Canada. There is better agreement with in situ data when multiple SWE products, excluding the stand-alone passive microwave SWE products, are combined.
Céline Portenier, Fabia Hüsler, Stefan Härer, and Stefan Wunderle
The Cryosphere, 14, 1409–1423, https://doi.org/10.5194/tc-14-1409-2020, https://doi.org/10.5194/tc-14-1409-2020, 2020
Short summary
Short summary
We present a method to derive snow cover maps from freely available webcam images in the Swiss Alps. With marginal manual user input, we can transform a webcam image into a georeferenced map and therewith perform snow cover analyses with a high spatiotemporal resolution over a large area. Our evaluation has shown that webcams could not only serve as a reference for improved validation of satellite-based approaches, but also complement satellite-based snow cover retrieval.
Markus Todt, Nick Rutter, Christopher G. Fletcher, and Leanne M. Wake
The Cryosphere, 13, 3077–3091, https://doi.org/10.5194/tc-13-3077-2019, https://doi.org/10.5194/tc-13-3077-2019, 2019
Short summary
Short summary
Vegetation is often represented by a single layer in global land models. Studies have found deficient simulation of thermal radiation beneath forest canopies when represented by single-layer vegetation. This study corrects thermal radiation in forests for a global land model using single-layer vegetation in order to assess the effect of deficient thermal radiation on snow cover and snowmelt. Results indicate that single-layer vegetation causes snow in forests to be too cold and melt too late.
Stefanie Arndt and Christian Haas
The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019, https://doi.org/10.5194/tc-13-1943-2019, 2019
David F. Hill, Elizabeth A. Burakowski, Ryan L. Crumley, Julia Keon, J. Michelle Hu, Anthony A. Arendt, Katreen Wikstrom Jones, and Gabriel J. Wolken
The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019, https://doi.org/10.5194/tc-13-1767-2019, 2019
Short summary
Short summary
We present a new statistical model for converting snow depths to water equivalent. The only variables required are snow depth, day of year, and location. We use the location to look up climatological parameters such as mean winter precipitation and mean temperature difference (difference between hottest month and coldest month). The model is simple by design so that it can be applied to depth measurements anywhere, anytime. The model is shown to perform better than other widely used approaches.
Rebecca Mott, Andreas Wolf, Maximilian Kehl, Harald Kunstmann, Michael Warscher, and Thomas Grünewald
The Cryosphere, 13, 1247–1265, https://doi.org/10.5194/tc-13-1247-2019, https://doi.org/10.5194/tc-13-1247-2019, 2019
Short summary
Short summary
The mass balance of very small glaciers is often governed by anomalous snow accumulation, winter precipitation being multiplied by snow redistribution processes, or by suppressed snow ablation driven by micrometeorological effects lowering net radiation and turbulent heat exchange. In this study we discuss the relative contribution of snow accumulation (avalanches) versus micrometeorology (katabatic flow) on the mass balance of the lowest perennial ice field of the Alps, the Ice Chapel.
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Short summary
We first investigated the optical characteristics and potential sources of chromophoric dissolved organic matter (CDOM) in seasonal snow over northwestern China. The abundance of CDOM showed regional variation. At some sites strongly influenced by local soil, the absorption of CDOM cannot be neglected compared to black carbon. We found two humic-like and one protein-like fluorophores in snow. The major sources of snow CDOM were soil, biomass burning, and anthropogenic pollution.
Benjamin J. Hatchett and Hilary G. Eisen
The Cryosphere, 13, 21–28, https://doi.org/10.5194/tc-13-21-2019, https://doi.org/10.5194/tc-13-21-2019, 2019
Short summary
Short summary
We examine the timing of early season snowpack relevant to oversnow vehicle (OSV) recreation over the past 3 decades in the Lake Tahoe region (USA). Data from two independent data sources suggest that the timing of achieving sufficient snowpack has shifted later by 2 weeks. Increasing rainfall and more dry days play a role in the later onset. Adaptation strategies are provided for winter travel management planning to address negative impacts of loss of early season snowpack for OSV usage.
Deborah Verfaillie, Matthieu Lafaysse, Michel Déqué, Nicolas Eckert, Yves Lejeune, and Samuel Morin
The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, https://doi.org/10.5194/tc-12-1249-2018, 2018
Short summary
Short summary
This article addresses local changes of seasonal snow and its meteorological drivers, at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps, for the period 1960–2100. We use an ensemble of adjusted RCM outputs consistent with IPCC AR5 GCM outputs (RCPs 2.6, 4.5 and 8.5) and the snowpack model Crocus. Beyond scenario-based approach, global temperature levels on the order of 1.5 °C and 2 °C above preindustrial levels correspond to 25 and 32% reduction of mean snow depth.
Paul J. Kushner, Lawrence R. Mudryk, William Merryfield, Jaison T. Ambadan, Aaron Berg, Adéline Bichet, Ross Brown, Chris Derksen, Stephen J. Déry, Arlan Dirkson, Greg Flato, Christopher G. Fletcher, John C. Fyfe, Nathan Gillett, Christian Haas, Stephen Howell, Frédéric Laliberté, Kelly McCusker, Michael Sigmond, Reinel Sospedra-Alfonso, Neil F. Tandon, Chad Thackeray, Bruno Tremblay, and Francis W. Zwiers
The Cryosphere, 12, 1137–1156, https://doi.org/10.5194/tc-12-1137-2018, https://doi.org/10.5194/tc-12-1137-2018, 2018
Short summary
Short summary
Here, the Canadian research network CanSISE uses state-of-the-art observations of snow and sea ice to assess how Canada's climate model and climate prediction systems capture variability in snow, sea ice, and related climate parameters. We find that the system performs well, accounting for observational uncertainty (especially for snow), model uncertainty, and chaotic climate variability. Even for variables like sea ice, where improvement is needed, useful prediction tools can be developed.
Lawrence R. Mudryk, Chris Derksen, Stephen Howell, Fred Laliberté, Chad Thackeray, Reinel Sospedra-Alfonso, Vincent Vionnet, Paul J. Kushner, and Ross Brown
The Cryosphere, 12, 1157–1176, https://doi.org/10.5194/tc-12-1157-2018, https://doi.org/10.5194/tc-12-1157-2018, 2018
Short summary
Short summary
This paper presents changes in both snow and sea ice that have occurred over Canada during the recent past and shows climate model estimates for future changes expected to occur by the year 2050. The historical changes of snow and sea ice are generally coherent and consistent with the regional history of temperature and precipitation changes. It is expected that snow and sea ice will continue to decrease in the future, declining by an additional 15–30 % from present day values by the year 2050.
Andrew M. Snauffer, William W. Hsieh, Alex J. Cannon, and Markus A. Schnorbus
The Cryosphere, 12, 891–905, https://doi.org/10.5194/tc-12-891-2018, https://doi.org/10.5194/tc-12-891-2018, 2018
Short summary
Short summary
Estimating winter snowpack throughout British Columbia is challenging due to the complex terrain, thick forests, and high snow accumulations present. This paper describes a way to make better snow estimates by combining publicly available data using machine learning, a branch of artificial intelligence research. These improved estimates will help water resources managers better plan for changes in rivers and lakes fed by spring snowmelt and will aid other research that supports such planning.
Yulan Zhang, Shichang Kang, Michael Sprenger, Zhiyuan Cong, Tanguang Gao, Chaoliu Li, Shu Tao, Xiaofei Li, Xinyue Zhong, Min Xu, Wenjun Meng, Bigyan Neupane, Xiang Qin, and Mika Sillanpää
The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, https://doi.org/10.5194/tc-12-413-2018, 2018
Short summary
Short summary
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snowpack and ice. This study focused on the black carbon and mineral dust in snow cover on the Tibetan Plateau. We discussed their concentrations, distributions, possible sources, and albedo reduction and radiative forcing. Findings indicated that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections.
Thomas Grünewald, Fabian Wolfsperger, and Michael Lehning
The Cryosphere, 12, 385–400, https://doi.org/10.5194/tc-12-385-2018, https://doi.org/10.5194/tc-12-385-2018, 2018
Short summary
Short summary
Snow farming is the conservation of snow during summer. Large snow piles are covered with a sawdust insulation layer, reducing melt and guaranteeing a specific amount of available snow in autumn, independent of the weather conditions. Snow volume changes in two heaps were monitored, showing that about a third of the snow was lost. Model simulations confirmed the large effect of the insulation on energy balance and melt. The model can now be used as a tool to examine future snow-farming projects.
Kristoffer Aalstad, Sebastian Westermann, Thomas Vikhamar Schuler, Julia Boike, and Laurent Bertino
The Cryosphere, 12, 247–270, https://doi.org/10.5194/tc-12-247-2018, https://doi.org/10.5194/tc-12-247-2018, 2018
Short summary
Short summary
We demonstrate how snow cover data from satellites can be used to constrain estimates of snow distributions at sites in the Arctic. In this effort, we make use of data assimilation to combine the information contained in the snow cover data with a simple snow model. By comparing our snow distribution estimates to independent observations, we find that this method performs favorably. Being modular, this method could be applied to other areas as a component of a larger reanalysis system.
Xinyue Zhong, Tingjun Zhang, Shichang Kang, Kang Wang, Lei Zheng, Yuantao Hu, and Huijuan Wang
The Cryosphere, 12, 227–245, https://doi.org/10.5194/tc-12-227-2018, https://doi.org/10.5194/tc-12-227-2018, 2018
James St. Clair and W. Steven Holbrook
The Cryosphere, 11, 2997–3009, https://doi.org/10.5194/tc-11-2997-2017, https://doi.org/10.5194/tc-11-2997-2017, 2017
Short summary
Short summary
We investigate the performance of a semiautomated algorithm for measuring snow water equivalent (SWE) from common-offset ground-penetrating radar (GPR) data. GPR-derived SWE estimates are similar to manual measurements, indicating that the method is reliable. Our results will hopefully make GPR a more attractive tool for monitoring SWE in mountain watersheds.
Silvia Terzago, Jost von Hardenberg, Elisa Palazzi, and Antonello Provenzale
The Cryosphere, 11, 1625–1645, https://doi.org/10.5194/tc-11-1625-2017, https://doi.org/10.5194/tc-11-1625-2017, 2017
Short summary
Short summary
The estimate of the current and future conditions of snow resources in mountain areas depends on the availability of reliable fine-resolution data sets and of climate models capable of properly representing snow processes and snow–climate interactions. This work considers the snow water equivalent data sets from remote sensing, reanalyses, regional and global climate models available for the Alps and explores their ability to provide a coherent view of the snowpack features and its changes.
Wei Pu, Xin Wang, Hailun Wei, Yue Zhou, Jinsen Shi, Zhiyuan Hu, Hongchun Jin, and Quanliang Chen
The Cryosphere, 11, 1213–1233, https://doi.org/10.5194/tc-11-1213-2017, https://doi.org/10.5194/tc-11-1213-2017, 2017
Short summary
Short summary
We conducted a large field campaign to collect snow samples in Xinjiang. We measured insoluble light-absorbing particles with estimated black carbon concentrations of 10–150 ngg-1. We found a probable shift in emission sources with the progression of winter and dominated contributions of BC and OC to light absorption. A PMF model indicated an optimal three-factor/source solution that included industrial pollution, biomass burning, and soil dust.
Cited articles
Albert, M., Koh, G., and Perron, F.: Radar investigations of melt pathways in a natural snowpack, Hydrol. Process., 13, 2991–3000, https://doi.org/10.1002/(SICI)1099-1085(19991230)13:18<2991::AID-HYP10>3.0.CO;2-5, 1999.
Avanzi, F., Hirashima, H., Yamaguchi, S., Katsushima, T., and De Michele, C.: Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments, The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, 2016.
Bartelt, P. and Lehning. M.: A physical SNOWPACK model for the Swiss avalanche warning Part I: Numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002.
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, 1992.
Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., and Charrier, P.: 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy, The Cryosphere, 6, 939–951, https://doi.org/10.5194/tc-6-939-2012, 2012.
Colbeck, S.: Water flow through heterogeneous snow, Cold Reg. Sci. Technol., 1, 37–45, https://doi.org/10.1016/0165-232X(79)90017-X, 1979.
Colbeck, S. C.: The layered character of snow covers, Rev. Geophys., 29, 81–96, https://doi.org/10.1029/90RG02351, 1991.
de la Peña, S., Howat, I. M., Nienow, P. W., van den Broeke, M. R., Mosley-Thompson, E., Price, S. F., Mair, D., Noël, B., and Sole, A. J.: Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming, The Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015, 2015.
DiCarlo, D. A.: Stability of gravity-driven multiphase flow in porous media: 40 years of advancements, Water Resour. Res., 49, 4531–4544, https://doi.org/10.1002/wrcr.20359, 2013.
Eiriksson, D., Whitson, M., Luce, C. H., Marshall, H. P., Bradford, J., Benner, S. G., Black, T., Hetrick, H., and McNamara, J. P.: An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales, Hydrol. Process., 27, 640–654, https://doi.org/10.1002/hyp.9666, 2013.
Fierz, C., Armstrong, R., Durand, Y., Etchevers, P., Greene, E., McClung, D., Nishimura, K., Satyawali, P., and Sokratov, S.: The International Classification for Seasonal Snow on the Ground (ICSSG), Tech. rep., IHP-VII Technical Documents in Hydrology No. 83, IACS Contribution No. 1, UNESCO-IHP, Paris, 2009.
Glass, R. J., Parlange, J. Y., and Steenhuis, T. S.: Wetting front instability 1. theoretical discussion and dimensional analysis, Water Resour. Res., 25, 1187–1194, https://doi.org/10.1029/WR025i006p01187, 1989a.
Glass, R. J., Parlange, J. Y., and Steenhuis, T. S.: Wetting front instability 2. experimental determination of relationships between system parameters and two-dimensional unstable flow field behavior in initially dry porous media, Water Resour. Res., 25, 1195–1207, https://doi.org/10.1029/WR025i006p01195, 1989b.
Hammonds, K., Lieb-Lappen, R., Baker, I., and Wang, X.: Investigating the thermophysical properties of the ice-snow interface under a controlled temperature gradient: Part I: Experiments & Observations, Cold Reg. Sci. Technol., 120, 157–167, https://doi.org/10.1016/j.coldregions.2015.09.006, 2015.
Hirashima, H., Yamaguchi, S., and Katsushima, T.: A multi-dimensional water transport model to reproduce preferential flow in the snowpack, Cold Reg. Sci. Technol., 108, 80–90, https://doi.org/10.1016/j.coldregions.2014.09.004, 2014.
Humphrey, N. F., Harper, J. T., and Pfeffer, W. T.: Thermal tracking of meltwater retention in Greenland's accumulation area, J. Geophys. Res., 117, F01010, https://doi.org/10.1029/2011JF002083, 2012.
Illangasekare, T. H., Walter Jr., R. J., Meier, M. F., and Pfeffer, W. T.: Modeling of meltwater infiltration in subfreezing snow, Water Resour. Res., 26, 1001–1012, https://doi.org/10.1029/WR026i005p01001, 1990.
Katsushima, T., Kumakura, T., and Takeuchi, Y.: A multiple snow layer model including a parameterization of vertical water channel process in snowpack, Cold Reg. Sci. Technol., 59, 143–151, https://doi.org/10.1016/j.coldregions.2009.09.002, 2009.
Katsushima, T., Yamaguchi, S., Kumakura, T., and Sato, A.: Experimental analysis of preferential flow in dry snowpack, Cold Reg. Sci. Technol., 85, 206–216, https://doi.org/10.1016/j.coldregions.2012.09.012, 2013.
Kattelmann, R.: Macropores in snowpacks of Sierra Nevada, Ann. Glaciol., 6, 272–273, 1985.
Kattelmann, R.: Snowmelt lysimeters in the evaluation of snowmelt models, Ann. Glaciol., 31, 406–410, https://doi.org/10.3189/172756400781820048, 2000.
Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U., and Zimmerli, M.: SNOWPACK calculations for avalanche warning based upon a new network of weather and snow stations, Cold Reg. Sci. Technol., 30, 145–157, https://doi.org/10.1016/S0165-232X(99)00022-1, 1999.
Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical SNOWPACK model for the Swiss avalanche warning Part II: Snow microstructure, Cold Reg. Sci. Technol., 35, 147–167, https://doi.org/10.1016/S0165-232X(02)00073-3, 2002a.
Lehning, M., Bartelt, P., Brown, B., and Fierz, C.: A physical SNOWPACK model for the Swiss avalanche warning Part III: Meteorological forcing, thin layer formation and evaluation, Cold Reg. Sci. Technol., 35, 169–184, https://doi.org/10.1016/S0165-232X(02)00072-1, 2002b.
Machguth, H., MacFerrin, M., van As, D., Box, J. E., Charalampidis, C., Colgan, W., Fausto, R. S., Meijer, H. A. J., Mosley-Thompson, E., and van de Wal, R. S. W.: Greenland meltwater storage in firn limited by near-surface ice formation, Nature Clim. Change, 6, 390–393, https://doi.org/10.1038/nclimate2899, 2016.
Marsh, P.: Flow fingers and ice columns in a cold snow cover, in: Proceedings of the 56th Annual Western Snow Conference, Western Snow Conference, Kalispell, Montana, 105–112, 1988.
Marsh, P.: Snowcover formation and melt: recent advances and future prospects, Hydrol. Process., 13, 2117–2134, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2117::AID-HYP869>3.0.CO;2-9, 1999.
Marsh, P. and Woo, M.-K.: Wetting front advance and freezing of meltwater within a snow cover: 2. A simulation model, Water Resour. Res., 20, 1865–1874, https://doi.org/10.1029/WR020i012p01865, 1984.
Marsh, P. and Woo, M.-K.: Meltwater movement in natural heterogeneous snow covers, Water Resour. Res., 21, 1710–1716, https://doi.org/10.1029/WR021i011p01710, 1985.
McGurk, B. J. and Marsh, P.: Flow-finger continuity in serial thick-sections in a melting sierran snowpack, in: Biogeochemistry of Seasonally Snow-Covered Catchments, Proceedings of a Boulder Symposium, July 1995, IAHS publ. no. 228, 1995.
Pfeffer, W. T. and Humphrey, N. F.: Formation of ice layers by infiltration and refreezing of meltwater, Ann. Glaciol., 26, 83–91, 1998.
Pfeffer, W. T., Meier, M. F., and Illangasekare, T. H.: Retention of Greenland runoff by refreezing: Implications for projected future sea level change, J. Geophys. Res., 96, 22117–22124, https://doi.org/10.1029/91JC02502, 1991.
Phillips, M., Haberkorn, A., Draebing, D., Krautblatter, M., Rhyner, H., and Kenner, R.: Seasonally intermittent water flow through deep fractures in an Alpine Rock Ridge: Gemsstock, Central Swiss Alps, Cold Reg. Sci. Technol., 125, 117–127, https://doi.org/10.1016/j.coldregions.2016.02.010, 2016.
Rees, A., Lemmetyinen, J., Derksen, C., Pulliainen, J., and English, M.: Observed and modelled effects of ice lens formation on passive microwave brightness temperatures over snow covered tundra, Remote Sens. Environ., 114, 116–126, https://doi.org/10.1016/j.rse.2009.08.013, 2010.
Rössler, O., Froidevaux, P., Börst, U., Rickli, R., Martius, O., and Weingartner, R.: Retrospective analysis of a nonforecasted rain-on-snow flood in the Alps – a matter of model limitations or unpredictable nature?, Hydrol. Earth Syst. Sci., 18, 2265–2285, https://doi.org/10.5194/hess-18-2265-2014, 2014.
Roy, A., Royer, A., St-Jean-Rondeau, O., Montpetit, B., Picard, G., Mavrovic, A., Marchand, N., and Langlois, A.: Microwave snow emission modeling uncertainties in boreal and subarctic environments, The Cryosphere, 10, 623–638, https://doi.org/10.5194/tc-10-623-2016, 2016.
Schneebeli, M.: Development and stability of preferential flow paths in a layered snowpack, in: Biogeochemistry of Seasonally Snow-Covered Catchments (Proceedings of a Boulder Symposium July 1995), edited by: Tonnessen, K., Williams, M., and Tranter, M., 89–95, AHS Publ. no. 228, 1995.
Schneebeli, M. and Johnson, J.: A constant-speed penetrometer for high-resolution snow stratigraphy, Ann. Glaciol., 26, 107–111, 1998.
Singh, P., Spitzbart, G., Hübl, H., and Weinmeister, H.: Hydrological response of snowpack under rain-on-snow events: a field study, J. Hydrol., 202, 1–20, https://doi.org/10.1016/S0022-1694(97)00004-8, 1997.
Surfleet, C. G. and Tullos, D.: Variability in effect of climate change on rain-on-snow peak flow events in a temperate climate, J. Hydrol., 479, 24–34, https://doi.org/10.1016/j.jhydrol.2012.11.021, 2013.
Vikhamar-Schuler, D., Hanssen-Bauer, I., Schuler, T., Mathiesen, S., and Lehning, M.: Use of a multilayer snow model to assess grazing conditions for reindeer, Ann. Glaciol., 54, 214–226, https://doi.org/10.3189/2013AoG62A306, 2013.
Watts, T., Rutter, N., Toose, P., Derksen, C., Sandells, M., and Woodward, J.: Brief communication: Improved measurement of ice layer density in seasonal snowpacks, The Cryosphere, 10, 2069–2074, https://doi.org/10.5194/tc-10-2069-2016, 2016.
Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model, The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, 2014a.
Wever, N., Jonas, T., Fierz, C., and Lehning, M.: Model simulations of the modulating effect of the snow cover in a rain-on-snow event, Hydrol. Earth Syst. Sci., 18, 4657–4669, https://doi.org/10.5194/hess-18-4657-2014, 2014b.
Wever, N., Schmid, L., Heilig, A., Eisen, O., Fierz, C., and Lehning, M.: Verification of the multi-layer SNOWPACK model with different water transport schemes, The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, 2015b.
Wever, N., Vera Valero, C., and Fierz, C.: Assessing wet snow avalanche activity using detailed physics based snowpack simulations, Geophys. Res. Lett., 43, 5732–5740, https://doi.org/10.1002/2016GL068428, 2016.
Williams, M. W., Rikkers, M., and Pfeffer, W. T.: Ice ccolumn and frozen rills in a warm snowpack, Green Lakes Valley, Colorado, U.S.A., Nord. Hydrol., 31, 169–186, 2000.
Willmott, C. J.: On the validation of models, Phys. Geogr., 2, 184–194, 1981.
WSL Institute for Snow and Avalanche Research SLF: Manual bi-weekly snow profiles from Weissfluhjoch, Davos, Switzerland, https://doi.org/10.16904/2, 2015.
Würzer, S., Jonas, T., Wever, N., and Lehning, M.: Influence of initial snowpack properties on runoff formation during rain-on-snow events, J. Hydrometeor., 17, 1801–1815, https://doi.org/10.1175/JHM-D-15-0181.1, 2016a.
Würzer, S., Wever, N., Juras, R., Lehning, M., and Jonas, T.: Modeling liquid water transport in snow under rain-on-snow conditions – considering preferential flow, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-351, in review, 2016b.
Yamaguchi, S., Watanabe, K., Katsushima, T., Sato, A., and Kumakura, T.: Dependence of the water retention curve of snow on snow characteristics, Ann. Glaciol., 53, 6–12, https://doi.org/10.3189/2012AoG61A001, 2012.
Ye, H., Yang, D., and Robinson, D.: Winter rain on snow and its association with air temperature in northern Eurasia, Hydrol. Process., 22, 2728–2736, https://doi.org/10.1002/hyp.7094, 2008.
Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series, r package version 0.3-8, https://CRAN.R-project.org/package=hydroGOF, 2014.
Short summary
The study presents a dual domain approach to simulate liquid water flow in snow using the 1-D physics based snow cover model SNOWPACK. In this approach, the pore space is separated into a part for matrix flow and a part that represents preferential flow. Using this approach, water can percolate sub-freezing snow and form dense (ice) layers. A comparison with snow pits shows that some of the observed ice layers were reproduced by the model while others remain challenging to simulate.
The study presents a dual domain approach to simulate liquid water flow in snow using the 1-D...