Articles | Volume 18, issue 9
https://doi.org/10.5194/tc-18-3991-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-3991-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice viscosity governs hydraulic fracture that causes rapid drainage of supraglacial lakes
Tim Hageman
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
Jessica Mejía
Department of Geology, the University at Buffalo, Buffalo, NY 14260, USA
Ravindra Duddu
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Vanderbilt university, Nashville, TN37235 USA
Department of Earth and Environmental sciences, Vanderbilt university, Nashville, TN37235 USA
Emilio Martínez-Pañeda
CORRESPONDING AUTHOR
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
Related authors
Theo Clayton, Ravindra Duddu, Tim Hageman, and Emilio Martínez-Pañeda
The Cryosphere, 18, 5573–5593, https://doi.org/10.5194/tc-18-5573-2024, https://doi.org/10.5194/tc-18-5573-2024, 2024
Short summary
Short summary
We develop and validate new analytical solutions that quantitatively consider how the properties of ice vary along the depth of ice shelves and that can be readily used in existing ice sheet models. Depth-varying firn properties are found to have a profound impact on ice sheet fracture and calving events. Our results show that grounded glaciers are less vulnerable than previously anticipated, while floating ice shelves are significantly more vulnerable to fracture and calving.
Meghana Ranganathan, Alexander A. Robel, Alexander Huth, and Ravindra Duddu
The Cryosphere, 19, 1599–1619, https://doi.org/10.5194/tc-19-1599-2025, https://doi.org/10.5194/tc-19-1599-2025, 2025
Short summary
Short summary
The rate of ice loss from ice sheets is controlled by the flow of ice from the center of the ice sheet and by the internal fracturing of the ice. These processes are coupled; fractures reduce the viscosity of ice and enable more rapid flow, and rapid flow causes the fracturing of ice. We present a simplified way of representing damage that is applicable to long-timescale flow estimates. Using this model, we find that including fracturing in an ice sheet simulation can increase the loss of ice by 13–29 %.
Jessica Mejia, Jason Gulley, Celia Trunz, Charles Breithaupt, and Matthew Covington
EGUsphere, https://doi.org/10.5194/egusphere-2024-3676, https://doi.org/10.5194/egusphere-2024-3676, 2024
Short summary
Short summary
This study shows that drainage catchments on the Greenland Ice Sheet can change size and shape from year to year. Snow buildup in glacier rivers can reroute meltwater, merging neighboring catchments. Over three years, three catchments combined into one large 32 km2 catchment, increasing in size by 387 %. These findings suggest that seasonal changes in snow and water flow can significantly affect how the ice sheet drains, with potential impacts on ice dynamics.
Theo Clayton, Ravindra Duddu, Tim Hageman, and Emilio Martínez-Pañeda
The Cryosphere, 18, 5573–5593, https://doi.org/10.5194/tc-18-5573-2024, https://doi.org/10.5194/tc-18-5573-2024, 2024
Short summary
Short summary
We develop and validate new analytical solutions that quantitatively consider how the properties of ice vary along the depth of ice shelves and that can be readily used in existing ice sheet models. Depth-varying firn properties are found to have a profound impact on ice sheet fracture and calving events. Our results show that grounded glaciers are less vulnerable than previously anticipated, while floating ice shelves are significantly more vulnerable to fracture and calving.
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023, https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Short summary
Models simulating water pressure variations at the bottom of glaciers must use large storage parameters to produce realistic results. Whether that storage occurs englacially (in moulins) or subglacially is a matter of debate. Here, we directly simulate moulin volume to constrain the storage there. We find it is not enough. Instead, subglacial processes, including basal melt and input from upstream moulins, must be responsible for stabilizing these water pressure fluctuations.
Cited articles
Andrews, L. C., Hoffman, M. J., Neumann, T. A., and Catania, G. A.: Seasonal Evolution of the Subglacial Hydrologic System Modified by Supraglacial Lake Drainage in Western Greenland, J. Geophys. Res.-Earth, 123, 1479–1496, https://doi.org/10.1029/2017JF004585, 2018. a, b
Andrews, L. C., Poinar, K., and Trunz, C.: Controls on Greenland moulin geometry and evolution from the Moulin Shape model, The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022, 2022. a, b, c, d
Aschwanden, A., Bartholomaus, T. C., Brinkerhoff, D. J., and Truffer, M.: Brief communication: A roadmap towards credible projections of ice sheet contribution to sea level, The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, 2021. a
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R. M.: Ice sheet contributions to future sea-level rise from structured expert judgment, P. Natl. Acad. Sci. USA, 166, 11195–11200, https://doi.org/10.1073/pnas.1817205116, 2019. a
Benn, D. I., Hulton, N. R., and Mottram, R. H.: 'Calving laws', 'sliding laws' and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, https://doi.org/10.3189/172756407782871161, 2007. a
Bevis, M., Harig, C., Khan, S. A., Brown, A., Simons, F. J., Willis, M. J., Fettweis, X., van den Broeke, M. R., Madsen, F. B., Kendrick, E., Caccamise, D. J., van Dam, T., Knudsen, P., and Nylen, T.: Accelerating changes in ice mass within Greenland, and the ice sheet's sensitivity to atmospheric forcing, P. Natl. Acad. Sci. USA, 116, 1934–1939, https://doi.org/10.1073/pnas.1806562116, 2019. a
Boone, T. J. and Ingraffea, A. R.: A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media, Int. J. Numer. Anal. Met., 14, 27–47, https://doi.org/10.1002/nag.1610140103, 1990. a
Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6, Geosci. Model Dev., 8, 1613–1635, https://doi.org/10.5194/gmd-8-1613-2015, 2015. a
Carrier, B. and Granet, S.: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model, Eng. Fract. Mech., 79, 312–328, https://doi.org/10.1016/j.engfracmech.2011.11.012, 2012. a
Christoffersen, P., Bougamont, M., Hubbard, A., Doyle, S. H., Grigsby, S., and Pettersson, R.: Cascading lake drainage on the Greenland Ice Sheet triggered by tensile shock and fracture, Nat. Commun., 9, 1–12, https://doi.org/10.1038/s41467-018-03420-8, 2018. a
Chudley, T. R., Christoffersen, P., Doyle, S. H., Bougamont, M., Schoonman, C. M., Hubbard, B., and James, M. R.: Supraglacial lake drainage at a fast-flowing Greenlandic outlet glacier, P. Natl. Acad. Sci. USA, 116, 25468–25477, https://doi.org/10.1073/PNAS.1913685116, 2019. a, b, c
Clayton, T., Duddu, R., Siegert, M., and Martínez-Pañeda, E.: A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves, Eng. Fract. Mech., 272, 108693, https://doi.org/10.1016/J.ENGFRACMECH.2022.108693, 2022. a, b
Crawford, A. J., Benn, D. I., Todd, J., Åström, J. A., Bassis, J. N., and Zwinger, T.: Marine Ice-Cliff Instability Modeling Shows Mixed-Mode Ice-Cliff Failure and Yields Calving Rate Parameterization, Nat. Commun., 12, 1–9, https://doi.org/10.1038/s41467-021-23070-7, 2021. a
de Borst, R.: Fluid flow in fractured and fracturing porous media: A unified view, Mech. Res. Commun., 80, 47–57, https://doi.org/10.1016/j.mechrescom.2016.05.004, 2017. a
de Fleurian, B., Gagliardini, O., Zwinger, T., Durand, G., Le Meur, E., Mair, D., and Råback, P.: A double continuum hydrological model for glacier applications, The Cryosphere, 8, 137–153, https://doi.org/10.5194/tc-8-137-2014, 2014. a
Desroches, J., Detournay, E., Lenoach, B., Papanastasiou, P., Pearson, J. R. A., Thiercelin, M., and Cheng, A.: The crack tip region in hydraulic fracturing, P. Roy. Soc. Lond. A-Mat., 447, 39–48, 1994. a
Doyle, S. H., Hubbard, A. L., Dow, C. F., Jones, G. A., Fitzpatrick, A., Gusmeroli, A., Kulessa, B., Lindback, K., Pettersson, R., and Box, J. E.: Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet, The Cryosphere, 7, 129–140, https://doi.org/10.5194/tc-7-129-2013, 2013. a, b, c
Duddu, R. and Waisman, H.: A temperature dependent creep damage model for polycrystalline ice, Mech. Mater., 46, 23–41, https://doi.org/10.1016/J.MECHMAT.2011.11.007, 2012. a, b
Duddu, R., Jiménez, S., and Bassis, J.: A non-local continuum poro-damage mechanics model for hydrofracturing of surface crevasses in grounded glaciers, J. Glaciol., 66, 415–429, 2020. a
Gauckler, P.: Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des Eaux, C. R. Acad. Sci. Paris, 64, 818–822, 1867. a
Ghosh, G., Duddu, R., and Annavarapu, C.: A stabilized finite element method for enforcing stiff anisotropic cohesive laws using interface elements, Computer Method. Appl. M., 348, 1013–1038, 2019. a
Glen, J. W.: The creep of polycrystalline ice, P. Roy. Soc. Lond. A-Mat., 228, 519–538, https://doi.org/10.1098/rspa.1955.0066, 1955. a, b
Goelzer, H., Robinson, A., Seroussi, H., and van de Wal, R. S.: Recent Progress in Greenland Ice Sheet Modelling, Current Climate Change Reports, 3, 291–302, https://doi.org/10.1007/s40641-017-0073-y, 2017. a
Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec'h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., and van den Broeke, M.: The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, 2020. a
Greve, R., Zwinger, T., and Gong, Y.: On the pressure dependence of the rate factor in Glen's flow law, J. Glaciol., 60, 397–399, https://doi.org/10.3189/2014JOG14J019, 2014. a
Hageman, T.: T-Hageman/MATLAB_IceHydroFrac: Final version (final), Zenodo [code], https://doi.org/10.5281/zenodo.13629447, 2024. a
Hageman, T. and de Borst, R.: Flow of non-Newtonian fluids in fractured porous media: Isogeometric vs standard finite element discretisation, Int. J. Numer. Anal. Met., 43, 2020–2037, https://doi.org/10.1002/nag.2948, 2019. a
Hageman, T. and de Borst, R.: A refined two-scale model for Newtonian and non-Newtonian fluids in fractured poroelastic media, J. Comput. Phys., 441, 110424, https://doi.org/10.1016/j.jcp.2021.110424, 2021. a, b
Hageman, T. and de Borst, R.: Direct simulation vs subgrid scale modelling of fluid flow in fractured or fracturing porous media, Computat. Geosci., 26, 503–515, https://doi.org/10.1007/s10596-022-10138-6, 2022. a
Hageman, T., Pervaiz Fathima, K. M., and de Borst, R.: Isogeometric analysis of fracture propagation in saturated porous media due to a pressurised non-Newtonian fluid, Comput. Geotech., 112, 272–283, https://doi.org/10.1016/j.compgeo.2019.04.030, 2019. a
Hageman, T., Mejía, J., Duddu, R., and Martínez-Pañeda, E.: Ice viscosity governs hydraulic fracture causing rapid drainage of supraglacial lakes, TIB AV-Portal [video], https://doi.org/10.5446/68350, 2024. a
Hewitt, I. J., Schoof, C., and Werder, M. A.: Flotation and free surface flow in a model for subglacial drainage. Part 2. Channel flow, J. Fluid Mech., 702, 157–187, https://doi.org/10.1017/JFM.2012.166, 2012. a
Hofer, S., Lang, C., Amory, C., Kittel, C., Delhasse, A., Tedstone, A., and Fettweis, X.: Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6, Nat. Commun., 11, 6289, https://doi.org/10.1038/s41467-020-20011-8, 2020. a
Hoffman, M. J., Catania, G. A., Neumann, T. A., Andrews, L. C., and Rumrill, J. A.: Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet, J. Geophys. Res.-Earth, 116, 1–16, https://doi.org/10.1029/2010JF001934, 2011. a, b
Hoffman, M. J., Perego, M., Andrews, L. C., Catania, G. A., Price, S. F., Lüthi, M. P., Neumann, T. A., and Johnson, J. V.: Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland, Geophys. Res. Lett., 45, 778–788, https://doi.org/10.1002/2017GL075659, 2018. a
Howat, I. M., de la Peña, S., van Angelen, J. H., Lenaerts, J. T. M., and van den Broeke, M. R.: Brief Communication “Expansion of meltwater lakes on the Greenland Ice Sheet”, The Cryosphere, 7, 201–204, https://doi.org/10.5194/tc-7-201-2013, 2013. a
Imperial College London research computing service: https://doi.org/10.14469/hpc/2232, 2024. a
Jellinek, H. H. G. and Brill, R.: Viscoelastic Properties of Ice, J. Appl. Phys., 27, 1198–1209, https://doi.org/10.1063/1.1722231, 1956. a
Jezek, K. C.: A modified theory of bottom crevasses used as a means for measuring the buttressing effect of ice shelves on inland ice sheets, J. Geophys. Res.-Sol. Ea., 89, 1925–1931, https://doi.org/10.1029/JB089IB03P01925, 1984. a
Jimenez, S. and Duddu, R.: On the evaluation of the stress intensity factor in calving models using linear elastic fracture mechanics, J. Glaciol., 64, 759–770, 2018. a
Krawczynski, M. J., Behn, M. D., Das, S. B., and Joughin, I.: Constraints on the lake volume required for hydro-fracture through ice sheets, Geophys. Res. Lett., 36, 10501, https://doi.org/10.1029/2008GL036765, 2009. a
Lai, C. Y., Stevens, L. A., Chase, D. L., Creyts, T. T., Behn, M. D., Das, S. B., and Stone, H. A.: Hydraulic Transmissivity Inferred from Ice-Sheet Relaxation Following Greenland Supraglacial Lake Drainages, Nat. Commun., 12, 1–10, https://doi.org/10.1038/s41467-021-24186-6, 2021. a, b, c
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM), J. Geophys. Res.-Earth, 117, 1022, https://doi.org/10.1029/2011JF002140, 2012. a
Liang, Y. L., Colgan, W., Lv, Q., Steffen, K., Abdalati, W., Stroeve, J., Gallaher, D., and Bayou, N.: A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm, Remote Sens. Environ., 123, 127–138, https://doi.org/10.1016/J.RSE.2012.03.020, 2012. a
Lipscomb, W. H., Price, S. F., Hoffman, M. J., Leguy, G. R., Bennett, A. R., Bradley, S. L., Evans, K. J., Fyke, J. G., Kennedy, J. H., Perego, M., Ranken, D. M., Sacks, W. J., Salinger, A. G., Vargo, L. J., and Worley, P. H.: Description and evaluation of the Community Ice Sheet Model (CISM) v2.1, Geosci. Model Dev., 12, 387–424, https://doi.org/10.5194/gmd-12-387-2019, 2019. a, b
Litwin, K. L., Zygielbaum, B. R., Polito, P. J., Sklar, L. S., and Collins, G. C.: Influence of temperature, composition, and grain size on the tensile failure of water ice: Implications for erosion on Titan, J. Geophys. Res.-Planets, 117, 8013, https://doi.org/10.1029/2012JE004101, 2012. a
Mejía, J. Z., Gulley, J. D., Trunz, C., Covington, M. D., Bartholomaus, T. C., Xie, S., and Dixon, T.: Isolated cavities dominate Greenland Ice Sheet dynamic response to lake drainage, Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2021gl094762, 2021. a, b, c
Nick, F. M., Van Der Veen, C. J., Vieli, A., and Benn, D. I.: A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics, J. Glaciol., 56, 781–794, https://doi.org/10.3189/002214310794457344, 2010. a
Pattyn, F.: The Paradigm Shift in Antarctic Ice Sheet Modelling, Nat. Commun., 9, 1–3, https://doi.org/10.1038/s41467-018-05003-z, 2018. a
Pimentel, S. and Flowers, G. E.: A numerical study of hydrologically driven glacier dynamics and subglacial flooding, P. Roy. Soc. A-Math. Phy., 467, 537–558, https://doi.org/10.1098/RSPA.2010.0211, 2011. a
Poinar, K., Joughin, I., Lilien, D., Brucker, L., Kehrl, L., and Nowicki, S.: Drainage of southeast Greenland firn aquifer water through crevasses to the bed, Front. Earth Sci., 5, https://doi.org/10.3389/feart.2017.00005, 2017. a
Réthoré, J., de Borst, R., and Abellan, M.-A.: A two-scale approach for fluid flow in fractured porous media, Int. J. Numer. Meth. Eng., 71, 780–800, https://doi.org/10.1002/nme.1962, 2006. a
Rice, J. R., Tsai, V. C., Fernandes, M. C., and Platt, J. D.: Time scale for rapid draining of a surficial lake into the Greenland ice sheet, J. Appl. Mech.-T. ASME, 82, 071001, https://doi.org/10.1115/1.4030325, 2015. a
Ryser, C., Lüthi, M. P., Andrews, L. C., Catania, G. A., Funk, M., Hawley, R., Hoffman, M., and Neumann, T. A.: Caterpillar-like ice motion in the ablation zone of the Greenland ice sheet, J. Geophys. Res.-Earth, 119, 2258–2271, https://doi.org/10.1002/2013JF003067, 2014a. a
Ryser, C., Luthi, M. P., Andrews, L. C., Hoffman, M. J., Catania, G. A., Hawley, R. L., Neumann, T. A., and Kristensen, S. S.: Sustained high basal motion of the Greenland ice sheet revealed by borehole deformation, J. Glaciol., 60, 647–660, https://doi.org/10.3189/2014JOG13J196, 2014b. a, b
Selmes, N., Murray, T., and James, T. D.: Fast draining lakes on the Greenland Ice Sheet, Geophys. Res. Lett., 38, 15501, https://doi.org/10.1029/2011GL047872, 2011. a, b
Seroussi, H., Morlighem, M., Rignot, E., Larour, E., Aubry, D., Ben Dhia, H., and Kristensen, S. S.: Ice Flux Divergence Anomalies on 79north Glacier, Greenland, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL047338, 2011. a
Shannon, S. R., Payne, A. J., Bartholomew, I. D., Broeke, M. R. V. D., Edwards, T. L., Fettweis, X., Gagliardini, O., Gillet-Chaulet, F., Goelzer, H., Hoffman, M. J., Huybrechts, P., Mair, D. W., Nienow, P. W., Perego, M., Price, S. F., Smeets, C. J. P., Sole, A. J., Wal, R. S. V. D., and Zwinger, T.: Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise, P. Natl. Acad. Sci. USA, 110, 14156–14161, https://doi.org/10.1073/pnas.1212647110, 2013. a
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H., Rennermalm, A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T., Moustafa, S. E., Tedesco, M., Forster, R. R., LeWinter, A. L., Finnegan, D. C., Sheng, Y., and Balog, J.: Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet, P. Natl. Acad. Sci. USA, 112, 1001–1006, https://doi.org/10.1073/pnas.1413024112, 2015. a
Smith, R. A.: The Application of Fracture Mechanics to the Problem of Crevasse Penetration, J. Glaciol., 17, 223–228, https://doi.org/10.3189/S0022143000013563, 1976. a
Stevens, L. A., Behn, M. D., McGuire, J. J., Das, S. B., Joughin, I., Herring, T., Shean, D. E., and King, M. A.: Greenland supraglacial lake drainages triggered by hydrologically induced basal slip, Nature, 522, 73–76, https://doi.org/10.1038/nature14480, 2015. a, b, c, d
Stevens, L. A., Nettles, M., Davis, J. L., Creyts, T. T., Kingslake, J., Hewitt, I. J., and Stubblefield, A.: Tidewater-glacier response to supraglacial lake drainage, Nat. Commun., 13, 6065, https://doi.org/10.1038/s41467-022-33763-2, 2022. a
Sun, X., Duddu, R., and Hirshikesh: A poro-damage phase field model for hydrofracturing of glacier crevasses, Extreme Mechanics Letters, 45, 101277, https://doi.org/10.1016/j.eml.2021.101277, 2021. a
Trunz, C., Covington, M. D., Poinar, K., Andrews, L. C., Mejia, J., and Gulley, J.: Modeling the Influence of Moulin Shape on Subglacial Hydrology, J. Geophys. Res.-Earth, 127, e2022JF006674, https://doi.org/10.1029/2022JF006674, 2022. a
Tsai, V. C. and Rice, J. R.: A model for turbulent hydraulic fracture and application to crack propagation at glacier beds, J. Geophys. Res.-Earth, 115, 3007, https://doi.org/10.1029/2009JF001474, 2010. a, b, c
Tsai, V. C. and Rice, J. R.: Modeling Turbulent Hydraulic Fracture Near a Free Surface, J. Appl. Mech., 79, 031003, https://doi.org/10.1115/1.4005879, 2012. a, b, c
Van Der Veen, C. J.: Fracture mechanics approach to penetration of surface crevasses on glaciers, Cold Regions Science and Technology, 27, 31–47, https://doi.org/10.1016/S0165-232X(97)00022-0, 1998. a
van der Veen, C. J.: Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers, Geophys. Res. Lett., 34, L01501, https://doi.org/10.1029/2006GL028385, 2007. a, b
Weertman, J.: Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath oceanic ridges, J. Geophys. Res., 76, 1171–1183, https://doi.org/10.1029/JB076I005P01171, 1971. a, b
Weertman, J.: Can a water filled crevasse reach the bottom surface of a glacier?, IASH Publ., 95, 139–145, https://doi.org/10.1017/CBO9781107415324.004, 1973. a, b
Weertman, J.: Creep deformation of ice, Annu. Rev. Earth Pl. Sc., 11, 215–240, https://doi.org/10.1146/annurev.ea.11.050183.001243, 1983. a
Witherspoon, P. A., Wang, J. S. Y., Iwai, K., and Gale, J. E.: Validity of Cubic Law for fluid flow in a deformable rock fracture, Water Resour. Res., 16, 1016–1024, https://doi.org/10.1029/WR016i006p01016, 1980. a
Zarrinderakht, M., Schoof, C., and Peirce, A.: The effect of hydrology and crevasse wall contact on calving, The Cryosphere, 16, 4491–4512, https://doi.org/10.5194/tc-16-4491-2022, 2022. a, b
Co-editor-in-chief
The study is one of the first to model fractures in ice sheets - a fascinating and visually stunning aspect of ice sheets. The model shows that crevasses may transport large volumes of water to the bed of a glacier very quickly and captures the opening of the crevasses due to the water inflow. The impact of surface lakes on the Greenland ice sheet dynamics and mass loss is now better described.
The study is one of the first to model fractures in ice sheets - a fascinating and visually...
Short summary
Due to surface melting, meltwater lakes seasonally form on the surface of glaciers. These lakes drive hydrofractures that rapidly transfer water to the base of ice sheets. This paper presents a computational method to capture the complicated hydrofracturing process. Our work reveals that viscous ice rheology has a great influence on the short-term propagation of fractures, enabling fast lake drainage, whereas thermal effects (frictional heating, conduction, and freezing) have little influence.
Due to surface melting, meltwater lakes seasonally form on the surface of glaciers. These lakes...