Articles | Volume 17, issue 2
https://doi.org/10.5194/tc-17-567-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-567-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets
Earth Research Institute, University of California at Santa Barbara,
Santa Barbara, CA 93106, USA
Karl Rittger
Earth Research Institute, University of California at Santa Barbara,
Santa Barbara, CA 93106, USA
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80309, USA
Mark S. Raleigh
College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR 97331, USA
Alex Michell
Earth Research Institute, University of California at Santa Barbara,
Santa Barbara, CA 93106, USA
Robert E. Davis
Cold Regions Research and Engineering Laboratory, Hanover, NH 03755, USA
Edward H. Bair
Earth Research Institute, University of California at Santa Barbara,
Santa Barbara, CA 93106, USA
Related authors
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023, https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
Short summary
To test the title question, three snow cover products were used in a snow model. Contrary to previous work, higher-spatial-resolution snow cover products only improved the model accuracy marginally. Conclusions are as follows: (1) snow cover and albedo from moderate-resolution sensors continue to provide accurate forcings and (2) finer spatial and temporal resolutions are the future for Earth observations, but existing moderate-resolution sensors still offer value.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Edward H. Bair, Jeff Dozier, Charles Stern, Adam LeWinter, Karl Rittger, Alexandria Savagian, Timbo Stillinger, and Robert E. Davis
The Cryosphere, 16, 1765–1778, https://doi.org/10.5194/tc-16-1765-2022, https://doi.org/10.5194/tc-16-1765-2022, 2022
Short summary
Short summary
Understanding how snow and ice reflect solar radiation (albedo) is important for global climate. Using high-resolution topography, darkening from surface roughness (apparent albedo) is separated from darkening by the composition of the snow (intrinsic albedo). Intrinsic albedo is usually greater than apparent albedo, especially during melt. Such high-resolution topography is often not available; thus the use of a shade component when modeling mixtures is advised.
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025, https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary
Short summary
Key to the success of future satellite missions is understanding snowmelt in our warming climate, as this has implications for nearly 2 billion people. An obstacle is that an artifact, called the hook, is often mistaken for soot or dust. Instead, it is caused by three amplifying effects: (1) background reflectance that is too dark, (2) an assumption of level terrain, and (3) differences in optical constants of ice. Sensor calibration and directional effects may also contribute. Solutions are presented.
Sean P. Burns, Vincent Humphrey, Ethan D. Gutmann, Mark S. Raleigh, David R. Bowling, and Peter D. Blanken
EGUsphere, https://doi.org/10.5194/egusphere-2025-1755, https://doi.org/10.5194/egusphere-2025-1755, 2025
Short summary
Short summary
We compared two techniques that are affected by the amount of liquid water in a forest canopy. One technique relies on remote sensing (a pair of GPS systems) and the other uses tree motion generated by the wind. Though completely different, these two techniques show strikingly similar changes when rain falls on an evergreen forest. We combine these measurements with eddy-covariance fluxes of water vapor to provide some insight into the evaporation of canopy-intercepted precipitation.
Bareera N. Mirza, Eric E. Small, and Mark S. Raleigh
EGUsphere, https://doi.org/10.5194/egusphere-2025-978, https://doi.org/10.5194/egusphere-2025-978, 2025
Short summary
Short summary
Measuring snow depth in mountains is essential for water management, but current satellite methods have limitations. This study evaluates snow depth estimates from the Sentinel-1 radar satellite, revealing significant spatial errors, particularly during snowmelt. Combining it with other satellite data did not improve accuracy, emphasizing the need for improved techniques to advance global snow mapping for better water resource predictions
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
The Cryosphere, 19, 1279–1302, https://doi.org/10.5194/tc-19-1279-2025, https://doi.org/10.5194/tc-19-1279-2025, 2025
Short summary
Short summary
A new type of Earth-observing satellite is measuring reflected sunlight in all its colors. These measurements can be used to characterize snow properties, which give us important information about climate change. In our work, we emphasize the difficulties of obtaining these properties from rough mountainous regions and present a solution to the problem. Our research was inspired by the growing number of new satellite technologies and the increasing challenges associated with climate change.
Max Berkelhammer, Gerald F. M. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carlson, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark S. Raleigh, Eric Small, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 29, 701–718, https://doi.org/10.5194/hess-29-701-2025, https://doi.org/10.5194/hess-29-701-2025, 2025
Short summary
Short summary
Warming in montane systems is affecting the snowmelt input amount. At the global scale, this will impact subalpine forests that rely on spring snowmelt to support their water demands. We use a network of sensors across a hillslope in the Upper Colorado Basin to show that the changing spring snowpack has a more pronounced impact on dense forest stands, while open stands show a higher reliance on summer rain and are less sensitive to significant changes in snow.
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024, https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Short summary
Automated stations measure snow properties at a single point but are frequently used to validate data that represent much larger areas. We use lidar snow depth data to see how often the mean snow depth surrounding a snow station is within 10 cm of the snow station depth at different scales. We found snow stations overrepresent the area-mean snow depth in ~ 50 % of cases, but the direction of bias at a site is temporally consistent, suggesting a site could be calibrated to the surrounding area.
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024, https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Short summary
Snow water equivalent (SWE) is a critical parameter for yearly water supply forecasting and can be calculated by multiplying the snow depth by the snow density. We combined high-spatial-resolution snow depth information with ground-based radar measurements to solve for snow density. Extrapolated density estimates over our study area resolved detailed patterns that agree with the known interactions of snow with wind, terrain, and vegetation and were utilized in the calculation of SWE.
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023, https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
Short summary
To test the title question, three snow cover products were used in a snow model. Contrary to previous work, higher-spatial-resolution snow cover products only improved the model accuracy marginally. Conclusions are as follows: (1) snow cover and albedo from moderate-resolution sensors continue to provide accurate forcings and (2) finer spatial and temporal resolutions are the future for Earth observations, but existing moderate-resolution sensors still offer value.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Edward H. Bair, Jeff Dozier, Charles Stern, Adam LeWinter, Karl Rittger, Alexandria Savagian, Timbo Stillinger, and Robert E. Davis
The Cryosphere, 16, 1765–1778, https://doi.org/10.5194/tc-16-1765-2022, https://doi.org/10.5194/tc-16-1765-2022, 2022
Short summary
Short summary
Understanding how snow and ice reflect solar radiation (albedo) is important for global climate. Using high-resolution topography, darkening from surface roughness (apparent albedo) is separated from darkening by the composition of the snow (intrinsic albedo). Intrinsic albedo is usually greater than apparent albedo, especially during melt. Such high-resolution topography is often not available; thus the use of a shade component when modeling mixtures is advised.
Cited articles
Aalstad, K., Westermann, S., and Bertino, L.: Evaluating satellite
retrieved fractional snow-covered area at a high-Arctic site using
terrestrial photography, Remote Sens. Environ., 239, 111618, https://doi.org/10.1016/j.rse.2019.111618, 2020.
Adams, J. B., Smith, M. O., and Johnson, P. E.: Spectral Mixture Modeling –
a New Analysis of Rock and Soil Types at the Viking Lander-1 Site, J. Geophys.
Res.-Sol. Ea., 91, 8098–8112, https://doi.org/10.1029/JB091iB08p08098, 1986.
Armstrong, R. L., Rittger, K., Brodzik, M. J., Racoviteanu, A., Barrett, A. P.,Singh Khalsa, S.-J., Raup, B., Hill, A. F., Khan, A. L., Wilson, A. M., Kayastha, R. B., Fetterer, F., and Armstrong, B.: Runoff from
glacier ice and seasonal snow in High Asia: separating melt water sources in
river flow, Reg. Environ. Change, 19, 1249–1261, https://doi.org/10.1007/s10113-018-1429-0,
2018.
Ault, T. W., Czajkowski, K. P., Benko, T., Coss, J., Struble, J., Spongberg,
A., Templin, M., and Gross, C.: Validation of the MODIS snow product and
cloud mask using student and NWS cooperative station observations in the
Lower Great Lakes Region, Remote Sens. Environ., 105, 341–353, https://doi.org/10.1016/j.rse.2006.07.004, 2006.
Bair, E. and Stillinger, T.: SPIReS: Western USA snow cover and snow surface properties, water years 2001–2021, UCSB [data set], https://doi.org/10.21424/R4H05T, 2022.
Bair, E. H., Rittger, K., Davis, R. E., Painter, T. H., and Dozier, J.:
Validating reconstruction of snow water equivalent in California's Sierra
Nevada using measurements from the NASA Airborne Snow Observatory, Water
Resour. Res., 52, 8437–8460, https://doi.org/10.1002/2016wr018704, 2016.
Bair, E. H., Rittger, K., Skiles, S. M., and Dozier, J.: An Examination of
Snow Albedo Estimates From MODIS and Their Impact on Snow Water Equivalent
Reconstruction, Water Resour. Res., 55, 7826–7842, https://doi.org/10.1029/2019wr024810, 2019.
Bair, E. H., Stillinger, T., and Dozier, J.: Snow Property Inversion From
Remote Sensing (SPIReS): A Generalized Multispectral Unmixing Approach With
Examples From MODIS and Landsat 8 OLI, Ieee T. Geosci. Remote, 59, 7270–7284, https://doi.org/10.1109/TGRS.2020.3040328, 2021a.
Bair, E. H., Stillinger, T., Rittger, K., and Skiles, S. M.: COVID-19
Lockdowns Show Reduced Pollution on Snow and Ice in the Indus River Basin,
P. Natl. Acad. Sci. USA, 118, e2101174118, https://doi.org/10.1073/pnas.2101174118, 2021b.
Bair, E. H., Dozier, J., Stern, C., LeWinter, A., Rittger, K., Savagian, A., Stillinger, T., and Davis, R. E.: Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with implications for remote sensing, The Cryosphere, 16, 1765–1778, https://doi.org/10.5194/tc-16-1765-2022, 2022.
Baldridge, A. M., Hook, S. J., Grove, C. I., and Rivera, G.: The ASTER
spectral library version 2.0, Remote Sens. Environ., 113, 711–715, https://doi.org/10.1016/j.rse.2008.11.007, 2009.
Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H.: Estimating
snow-cover trends from space, Nat. Clim. Change, 8, 923–927, https://doi.org/10.1038/s41558-018-0318-3, 2018.
Branham, R. L. (Ed.): Scientific Data Analysis: An
Introduction to Overdetermined Systems, Springer New York, New York City,
NY, 1990.
Campagnolo, M. L. and Montaño, E. L.: Estimation of Effective Resolution
for Daily MODIS Gridded Surface Reflectance Products, Ieee T. Geosci. Remote,
52, 5622–5632, https://doi.org/10.1109/TGRS.2013.2291496, 2014.
Cao, Q., Painter, T. H., Currier, W. R., Lundquist, J. D., and Lettenmaier,
D. P.: Estimation of Precipitation over the OLYMPEX Domain during Winter
2015/16, J. Hydrometeorol., 19, 143–160, https://doi.org/10.1175/JHM-D-17-0076.1, 2018.
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B.,
Cullen, N. J., Kerr, T., Hreinsson, E. O., and Woods, R. A.: Representing
spatial variability of snow water equivalent in hydrologic and land-surface
models: A review, Water Resour. Res., 47, W07539, https://doi.org/10.1029/2011wr010745,
2011.
Coulston, J. W., Moisen, G. G., Wilson, B. T., Finco, M. V., Cohen, W. B., Brewer, C. K., Modeling percent tree canopy cover – A pilot study: Photogramm. Eng. Remote Sens., 78, 715–727, https://doi.org/10.14358/PERS.78.7.715, 2012 (data available at: https://s3-us-west-2.amazonaws.com/mrlc/nlcd_2016_treecanopy_2019_08_31.zip, last access: 20 June 2021).
Currier, W. R., Pflug, J., Mazzotti, G., Jonas, T., Deems, J. S., and
Bormann, K. J.: Comparing aerial lidar observations with terrestrial lidar
and snow-probe transects from NASA's 2017 SnowEx campaign, Water Resour. Res.,
55, 6285–6294, https://doi.org/10.1029/2018WR024533, 2019.
Deems, J. S., Painter, T. H., Barsugli, J. J., Belnap, J., and Udall, B.: Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology, Hydrol. Earth Syst. Sci., 17, 4401–4413, https://doi.org/10.5194/hess-17-4401-2013, 2013a.
Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow
depth: a review, J. Glaciol., 59, 467–479, https://doi.org/10.3189/2013JoG12J154, 2013b.
Dickerson-Lange, S. E., Vano, J. A., Gersonde, R., and Lundquist, J. D.:
Ranking Forest Effects on Snow Storage: A Decision Tool for Forest
Management, Water Resour. Res., 57, e2020WR027926, https://doi.org/10.1029/2020WR027926,
2021.
Dozier, J.: Spectral Signature of Alpine Snow Cover from the Landsat
Thematic Mapper, Remote Sens. Environ., 28, 9, https://doi.org/10.1016/0034-4257(89)90101-6, 1989.
Dozier, J., Schneider, S. R., and Mcginnis, D. F.: Effect of Grain-Size and
Snowpack Water Equivalence on Visible and near-Infrared
Satellite-Observations of Snow, Water Resour. Res., 17, 1213–1221, https://doi.org/10.1029/WR017i004p01213, 1981.
Dozier, J., Painter, T. H., Rittger, K., and Frew, J. E.: Time-space
continuity of daily maps of fractional snow cover and albedo from MODIS, Adv.
Water Resour., 31, 1515–1526, https://doi.org/10.1016/j.advwatres.2008.08.011, 2008.
Feng, S. and Hu, Q.: Changes in winter snowfall/precipitation ratio in the
contiguous United States, J. Geophys. Res.-Atmos., 112, D15109, https://doi.org/10.1029/2007JD008397, 2007.
Guan, B., Molotch, N. P., Waliser, D. E., Jepsen, S. M., Painter, T. H., and
Dozier, J.: Snow water equivalent in the Sierra Nevada: blending snow sensor
observations with snowmelt model simulations, Water Resour. Res., 49,
5029–5046, https://doi.org/10.1002/wrcr.20387, 2013.
Hall, D. K. and Riggs, G. A.: Accuracy assessment of the MODIS snow
products, Hydrol. Process., 21, 1534–1547, https://doi.org/10.1002/hyp.6715, 2007.
Hall, D. K. and Riggs, G. A.: MODIS/Terra CGF Snow Cover Daily L3 Global 500m SIN Grid, Version 61, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data Set], https://doi.org/10.5067/MODIS/MOD10A1F.061, 2020.
Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., and Bayr,
K. J.: MODIS snow-cover products, Remote Sens. Environ., 83, 181–194, https://doi.org/10.1016/S0034-4257(02)00095-0, 2002.
Hall, D. K., Riggs, G. A., Foster, J. L., and Kumar, S. V.: Development and
evaluation of a cloud-gap-filled MODIS daily snow-cover product, Remote Sens.
Environ., 114, 496–503, https://doi.org/10.1016/j.rse.2009.10.007, 2010.
Hall, D. K., Riggs, G. A., DiGirolamo, N. E., and Román, M. O.: Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record, Hydrol. Earth Syst. Sci., 23, 5227–5241, https://doi.org/10.5194/hess-23-5227-2019, 2019.
Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos,
P. Natl. Acad. Sci USA., 101, 423–428, https://doi.org/10.1073/pnas.2237157100, 2004.
Härer, S., Bernhardt, M., Siebers, M., and Schulz, K.: On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales, The Cryosphere, 12, 1629–1642, https://doi.org/10.5194/tc-12-1629-2018, 2018.
Homer, C., Huang, C. Q., Yang, L. M., Wylie, B., and Coan, M.: Development
of a 2001 National Land-Cover Database for the United States, Photogramm. Eng.
Rem. S., 70, 829–840, https://doi.org/10.14358/Pers.70.7.829, 2004.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate Change
Will Affect the Asian Water Towers, Science, 328, 1382–1385, https://doi.org/10.1126/science.1183188, 2010.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch,
T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernandez, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P.
D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T.
H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A.
B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.:
Importance and vulnerability of the world's water towers, Nature, 577,
364, https://doi.org/10.1038/s41586-019-1822-y, 2020.
Justice, C. O., Roman, M. O., Csiszar, I., Vermote, E. F., Wolfe, R. E.,
Hook, S. J., Friedl, M., Wang, Z. S., Schaaf, C. B., Miura, T., Tschudi, M.,
Riggs, G., Hall, D. K., Lyapustin, A. I., Devadiga, S., Davidson, C., and
Masuoka, E. J.: Land and cryosphere products from Suomi NPP VIIRS: Overview
and status, J. Geophys. Res.-Atmos., 118, 9753–9765, https://doi.org/10.1002/jgrd.50771, 2013.
Klein, A. G. and Barnett, A. C.: Validation of daily MODIS snow cover maps
of the Upper Rio Grande River Basin for the 2000–2001 snow year, Remote Sens.
Environ., 86, 162–176, https://doi.org/10.1016/S0034-4257(03)00097-X, 2003.
Klein, A. G., Hall, D. K., and Riggs, G. A.: Improving snow cover mapping in
forests through the use of a canopy reflectance model, Hydrol. Process., 12,
1723–1744, https://doi.org/10.1002/(Sici)1099-1085(199808/09)12:10/11<1723::Aid-Hyp691>3.0.Co;2-2, 1998.
Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and
Wood, E. F.: Inroads of remote sensing into hydrologic science during the
WRR era, Water Resour. Res., 51, 7309–7342, https://doi.org/10.1002/2015wr017616, 2015.
Liston, G. E.: Representing subgrid snow cover heterogeneities in regional
and global models, J. Climate, 17, 1381–1397, https://doi.org/10.1175/1520-0442(2004)017<1381:Rsschi>2.0.Co;2, 2004.
Liu, J., Woodcock, C. E., Melloh, R. A., Davis, R. E., McKenzie, C., and
Painter, T. H.: Modeling the view angle dependence of gap fractions in
forest canopies: Implications for mapping fractional snow cover using
optical remote sensing, J. Hydrometeorol., 9, 1005–1019, https://doi.org/10.1175/2008JHM866.1, 2008.
Liu, J. C., Melloh, R. A., Woodcock, C. E., Davis, R. E., and Ochs, E. S.:
The effect of viewing geometry and topography on viewable gap fractions
through forest canopies, Hydrol. Process., 18, 3595–3607, https://doi.org/10.1002/hyp.5802,
2004.
Lundquist, J. D., Chickadel, C., Cristea, N., Currier, W. R., Henn, B.,
Keenan, E., and Dozier, J.: Separating snow and forest temperatures with
thermal infrared remote sensing, Remote Sens. Environ., 209, 764–779, https://doi.org/10.1016/j.rse.2018.03.001, 2018.
Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y., and Diffenbaugh, N.
S.: The potential for snow to supply human water demand in the present and
future, Environ. Res. Lett., 10, 114016, https://doi.org/10.1088/1748-9326/10/11/114016,
2015.
Masson, T., Dumont, M., Dalla Mura, M., Sirguey, P., Gascoin, S., Dedieu, J.
P., and Chanussot, J.: An Assessment of Existing Methodologies to Retrieve
Snow Cover Fraction from MODIS Data, Remote Sens.-Basel, 10, 619, https://doi.org/10.3390/rs10040619, 2018.
Maurer, E. P., Rhoads, J. D., Dubayah, R. O., and Lettenmaier, D. P.:
Evaluation of the snow-covered area data product from MODIS, Hydrol. Process.,
17, 59–71, https://doi.org/10.1002/hyp.1193, 2003.
Meerdink, S. K., Hook, S. J., Roberts, D. A., and Abbott, E. A.: The
ECOSTRESS spectral library version 1.0, Remote Sens. Environ., 230,
111196, https://doi.org/10.1016/j.rse.2019.05.015, 2019.
Micheletty, P., Perrot, D., Day, G., and Rittger, K.: Assimilation of
Ground and Satellite Snow Observations in a Distributed Hydrologic Model for
Water Supply Forecasting, J. Am. Water Resour.
A., 58, 1030–1048, https://doi.org/10.1111/1752-1688.12975, 2021.
Micheletty, P. D., Kinoshita, A. M., and Hogue, T. S.: Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada, Hydrol. Earth Syst. Sci., 18, 4601–4615, https://doi.org/10.5194/hess-18-4601-2014, 2014.
Minder, J. R., Letcher, T. W., and Skiles, S. M.: An evaluation of
high-resolution regional climate model simulations of snow cover and albedo
over the Rocky Mountains, with implications for the simulated snow-albedo
feedback, J. Geophys. Res.-Atmos., 121, 9069–9088, https://doi.org/10.1002/2016jd024995, 2016.
Molotch, N. P., Painter, T. H., Bales, R. C., and Dozier, J.: Incorporating
remotely-sensed snow albedo into a spatially-distributed snowmelt model,
Geophys. Res. Lett., 31, L03501, https://doi.org/10.1029/2003gl019063, 2004.
Morsdorf, F., Kötz, B., Meier, E., Itten, K. I., and Allgöwer, B.: Estimation of LAI and fractional cover from small
footprint airborne laser scanning data based on gap fraction, Remote Sens.
Environ., 104.1, 50–61, https://doi.org/10.1016/j.rse.2006.04.019, 2006.
Nolin, A. W.: Recent advances in remote sensing of seasonal snow, J. Glaciol.,
56, 1141–1150, https://doi.org/10.3189/002214311796406077, 2010.
Nolin, A. W. and Dozier, J.: Estimating Snow Grain-Size Using Aviris Data,
Remote Sens. Environ., 44, 231–238, https://doi.org/10.1016/0034-4257(93)90018-S, 1993.
Nolin, A. W., Dozier, J., and Mertes, L. A. K.: Mapping Alpine Snow Using a
Spectral Mixture Modeling Technique, Ann. Glaciol., 17, 121–124, https://doi.org/10.3189/S0260305500012702, 1993.
Nolin, A. W., Sproles, E. A., Rupp, D. E., Crumley, R. L., Webb, M. J.,
Palomaki, R. T., and Mar, E.: New snow metrics for a warming world, Hydrol.
Process., 35, e14262, https://doi.org/10.1002/hyp.14262, 2021.
Oaida, C. M., Reager, J. T., Andreadis, K. M., David, C. H., Levoe, S. R.,
Painter, T. H., Bormann, K. J., Trangsrud, A. R., Girotto, M., and
Famiglietti, J. S.: A High-Resolution Data Assimilation Framework for Snow
Water Equivalent Estimation across the Western United States and Validation
with the Airborne Snow Observatory, J Hydrometeorol., 20, 357–378, https://doi.org/10.1175/JHM-D-18-0009.1, 2019.
Painter, T. H., Roberts, D. A., Green, R. O., and Dozier, J.: The effect of
grain size on spectral mixture analysis of snow-covered area from AVIRIS
data, Remote Sens. Environ., 65, 320–332, https://doi.org/10.1016/S0034-4257(98)00041-8, 1998.
Painter, T. H., Dozier, J., Roberts, D. A., Davis, R. E., and Green, R. O.:
Retrieval of subpixel snow-covered area and grain size from imaging
spectrometer data, Remote Sens. Environ., 85, 64–77, https://doi.org/10.1016/S0034-4257(02)00187-6, 2003.
Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., and
Dozier, J.: Retrieval of subpixel snow covered area, grain size, and albedo
from MODIS, Remote Sens. Environ., 113, 868–879, https://doi.org/10.1016/j.rse.2009.01.001,
2009.
Painter, T. H., Bryant, A. C., and Skiles, S. M.: Radiative forcing by light
absorbing impurities in snow from MODIS surface reflectance data, Geophys.
Res. Lett., 39, L17502, https://doi.org/10.1029/2012gl052457, 2012.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J.
S., Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann,
C., McGurk, B., Ramirez, P., Richardson, M., Skiles, S. M., Seidel, F. C.,
and Winstral, A.: The Airborne Snow Observatory: Fusion of scanning lidar,
imaging spectrometer, and physically-based modeling for mapping snow water
equivalent and snow albedo, Remote Sens. Environ., 184, 139–152, https://doi.org/10.1016/j.rse.2016.06.018, 2016 (data available at: https://nsidc.org/data/aso, last access: 26 March 2021; https://data.airbornesnowobservatories.com/, last access: 12 February 2012).
Raleigh, M. S., Rittger, K., Moore, C. E., Henn, B., Lutz, J. A., and
Lundquist, J. D.: Ground-based testing of MODIS fractional snow cover in
subalpine meadows and forests of the Sierra Nevada, Remote Sens. Environ.,
128, 44–57, https://doi.org/10.1016/j.rse.2012.09.016, 2013.
Riggs, G., Hall, D. K., and Román, M. O.: VIIRS/NPP CGF Snow Cover Daily L3 Global 375m SIN Grid, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data Set], https://doi.org/10.5067/VIIRS/VNP10A1F.001, 2019.
Rittger, K.: Snow cover from spectral mixture analysis algorithm SCAG: OLI and MODIS (v2023.beta), Zenodo [data set], https://doi.org/10.5281/zenodo.7510861, 2023.
Rittger, K. and Raleigh, M. S.: Snow Today, https://nsidc.org/snow-today (last access: 29 June 2022), 24 February 2020.
Rittger, K., Painter, T. H., and Dozier, J.: Assessment of methods for
mapping snow cover from MODIS, Adv. Water Resour., 51, 367–380, https://doi.org/10.1016/j.advwatres.2012.03.002, 2013.
Rittger, K., Bair, E. H., Kahl, A., and Dozier, J.: Spatial estimates of
snow water equivalent from reconstruction, Adv. Water Resour., 94, 345–363, https://doi.org/10.1016/j.advwatres.2016.05.015, 2016.
Rittger, K., Raleigh, M. S., Dozier, J., Hill, A. F., Lutz, J. A., and
Painter, T. H.: Canopy Adjustment and Improved Cloud Detection for Remotely
Sensed Snow Cover Mapping, Water Resour. Res., 56, e2019WR024914, https://doi.org/10.1029/2019WR024914, 2020.
Rittger, K., Bormann, K. J., Bair, E. H., Dozier, J., and Painter, T. H.:
Evaluation of VIIRS and MODIS Snow Cover Fraction in High-Mountain Asia
Using Landsat 8 OLI, Front. Remote Sens., 2, https://doi.org/10.3389/frsen.2021.647154, 2021a.
Rittger, K., Krock, M., Kleiber, W., Bair, E. H., Brodzik, M. J.,
Stephenson, T. R., Rajagopalan, B., Bormann, K. J., and Painter, T. H.:
Multi-sensor fusion using random forests for daily fractional snow cover at
30 m, Remote Sens. Environ., 264, 112608, https://doi.org/10.1016/j.rse.2021.112608, 2021b.
Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., and Green,
R. O.: Mapping chaparral in the Santa Monica Mountains using multiple
endmember spectral mixture models, Remote Sens. Environ., 65, 267–279, https://doi.org/10.1016/S0034-4257(98)00037-6, 1998.
Romanov, P., Tarpley, D., Gutman, G., and Carroll, T.: Mapping and
monitoring of the snow cover fraction over North America, J.
Geophys. Res., 108, 8619, https://doi.org/10.1029/2002JD003142, 2003.
Rosenthal, W. and Dozier, J.: Automated Mapping of Montane Snow Cover at
Subpixel Resolution From the Landsat Thematic Mapper, Water Resour. Res., 115–130, https://doi.org/10.1029/95WR02718, 1996.
Safa, H., Krogh, S. A., Greenberg, J., Kostadinov, T. S., and Harpold, A.
A.: Unraveling the Controls on Snow Disappearance in Montane Conifer Forests
Using Multi-Site Lidar, Water Resour. Res., 57, e2020WR027522, https://doi.org/10.1029/2020WR027522, 2021.
Salomonson, V. V. and Appel, I.: Estimating fractional snow cover from MODIS
using the normalized difference snow index, Remote Sens. Environ., 89,
351–360, https://doi.org/10.1016/j.rse.2003.10.016, 2004.
Salomonson, V. V. and Appel, I.: Development of the Aqua MODIS NDSI
fractional snow cover algorithm and validation results, Ieee T. Geosci.
Remote, 44, 1747–1756, https://doi.org/10.1109/Tgrs.2006.876029, 2006.
Selkowitz, D. J., Forster, R. R., and Caldwell, M. K.: Prevalence of Pure
Versus Mixed Snow Cover Pixels across Spatial Resolutions in Alpine
Environments, Remote Sens.-Basel, 6, 12478–12508, https://doi.org/10.3390/rs61212478, 2014.
Selkowitz, D. J., Painter, T. H., Rittger, K. E., Schmidt, G., and Forster,
R.: The USGS Landsat Snow Covered Area Products: Methods and Preliminary
Validation, in: Automated Approaches for Snow and Ice Cover Monitoring Using
Optical Remote Sensing, edited by: Selkowitz, D. J., The University of Utah,
Salt Lake City, Utah, 76–119, 2017.
Serquet, G., Marty, C., Dulex, J.-P., and Rebetez, M.: Seasonal trends and
temperature dependence of the snowfall/precipitation-day ratio in
Switzerland, Geophys Res Lett, 38, L07703, https://doi.org/10.1029/2011GL046976, 2011.
Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy
height globally with spaceborne lidar, J. Biophys. Res., 116, G04021, https://doi.org/10.1029/2011JG001708, 2011.
Simic, A., Fernandes, R., Brown, R., Romanov, P., Park, W., Hall, D. K., and
Ca, A. S. N. G.: Validation of MODIS, VEGETATION, and GOES plus SSM/I snow
cover products over Canada based on surface snow depth observations, Hydrol.
Process., 836–838, https://doi.org/10.1002/hyp.5509, 2004.
Sirguey, P., Mathieu, R., and Arnaud, Y.: Subpixel monitoring of the
seasonal snow cover with MODIS at 250 m spatial resolution in the southern
alps of New Zealand: Methodology and accuracy assessment, Remote Sens.
Environ., 113, 160–181, https://doi.org/10.1016/j.rse.2008.09.008, 2009.
Skiles, S. M., Painter, T. H., Deems, J. S., Bryant, A. C., and Landry, C.
C.: Dust radiative forcing in snow of the Upper Colorado River Basin: 2.
Interannual variability in radiative forcing and snowmelt rates, Water
Resour. Res., 48, W07522, https://doi.org/10.1029/2012wr011986, 2012.
Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes toward earlier
streamflow timing across western North America, J. Climate, 18, 1136–1155, https://doi.org/10.1175/Jcli3321.1, 2005.
Stillinger, T. and Bair, E.: SPIReS: Landsat 8 snow cover and snow surface properties co-incident with 3 m LiDAR from the Airborne Snow Observatory, UCSB [data set], https://doi.org/10.21424/R4C62H, 2022.
Stillinger, T., Roberts, D. A., Collar, N. M., and Dozier, J.: Cloud Masking
for Landsat 8 and MODIS Terra Over Snow-Covered Terrain: Error Analysis and
Spectral Similarity Between Snow and Cloud, Water Resour. Res., 55, 6169–6184, https://doi.org/10.1029/2019wr024932, 2019.
Sturm, M. and Liston, G. E.: Revisiting the Global Seasonal Snow
Classification: An Updated Dataset for Earth System Applications, J.
Hydrometeorol., 22, 2917–2938, https://doi.org/10.1175/Jhm-D-21-0070.1, 2021.
Tong, R., Parajka, J., Komma, J., and Bloschl, G.: Mapping snow cover from
daily Collection 6 MODIS products over Austria, J. Hydrol., 590, 125548, https://doi.org/10.1016/j.jhydrol.2020.125548, 2020.
Vikhamar, D. and Solberg, R.: Snow-cover mapping in forests by constrained
linear spectral unmixing of MODIS data, Remote Sens. Environ., 88, 309–323, https://doi.org/10.1016/j.rse.2003.06.004, 2003.
Warren, S. G.: Optical-Properties of Snow, Rev. Geophys., 20, 67–89, https://doi.org/10.1029/RG020i001p00067, 1982.
Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L., and Dewitz, J. A.:
Thematic accuracy assessment of the NLCD 2016 land cover for the
conterminous United States, Remote Sens. Environ., 257, 112357, https://doi.org/10.1016/j.rse.2021.112357, 2021.
Xin, Q., Woodcock, C. E., Liu, J., Tan, B., Melloh, R. A., and Davis, R. E.:
View angle effects on MODIS snow mapping in forests, Remote Sens. Environ.,
118, 50–59, https://doi.org/10.1016/j.rse.2011.10.029, 2012.
Zemp, M., Frey, H., Gartner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul,
F., Haeberli, W., Denzinger, F., Ahlstrom, A. P., Anderson, B., Bajracharya,
S., Baroni, C., Braun, L. N., Caceres, B. E., Casassa, G., Cobos, G.,
Davila, L. R., Granados, H. D., Demuth, M. N., Espizua, L., Fischer, A.,
Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi,
N., Li, Z. Q., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A.,
Prinz, R., Sangewar, C. V., Severskiy, I., Sigurosson, O., Soruco, A.,
Usubaliev, R., Vincent, C., and Correspondents, W. N.: Historically
unprecedented global glacier decline in the early 21st century, J. Glaciol.,
61, 745, https://doi.org/10.3189/2015JoG15J017, 2015.
Zhao, F., Strahler, A. H., Schaaf, C. L., Yao, T., Yang, X., Wang, Z., and
Schull, M. A.: Measuring gap fraction, element clumping index and LAI in
Sierra Forest stands using a full-waveform ground-based lidar, Remote Sens.
Environ., 125, 73–79, https://doi.org/10.1016/j.rse.2012.07.007, 2012.
Zheng, Z., Kirchner, P. B., and Bales, R. C.: Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: a statistical summary from lidar data, The Cryosphere, 10, 257–269, https://doi.org/10.5194/tc-10-257-2016, 2016.
Short summary
Understanding global snow cover is critical for comprehending climate change and its impacts on the lives of billions of people. Satellites are the best way to monitor global snow cover, yet snow varies at a finer spatial resolution than most satellite images. We assessed subpixel snow mapping methods across a spectrum of conditions using airborne lidar. Spectral-unmixing methods outperformed older operational methods and are ready to to advance snow cover mapping at the global scale.
Understanding global snow cover is critical for comprehending climate change and its impacts on...