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Abstract. Snow cover mapping algorithms utilizing multi-
spectral satellite data at various spatial resolutions are avail-
able, each treating subpixel variation differently. Past eval-
uations of snow mapping accuracy typically relied on satel-
lite data collected at a higher spatial resolution than the data
in question. However, these optical data cannot characterize
snow cover mapping performance under forest canopies or
at the meter scale. Here, we use 3 m spatial resolution snow
depth maps collected on 116 d by an aerial laser scanner to
validate band ratio and spectral-mixture snow cover map-
ping algorithms. Such a comprehensive evaluation of sub-
canopy snow mapping performance has not been undertaken
previously. The following standard (produced operationally
by an agency) products are evaluated: NASA gap-filled
Moderate Resolution Imaging Spectroradiometer (MODIS)
MOD10A1F, NASA gap-filled Visible Infrared Imaging Ra-
diometer Suite (VIIRS) VNP10A1F, and United States Ge-
ological Survey (USGS) Landsat 8 Level-3 Fractional Snow
Covered Area. Two spectral-unmixing approaches are also
evaluated: Snow-Covered Area and Grain Size (SCAG) and
Snow Property Inversion from Remote Sensing (SPIReS),
both of which are gap-filled MODIS products and are also
run on Landsat 8. We assess subpixel snow mapping perfor-
mance while considering the fractional snow-covered area
(fSCA), canopy cover, sensor zenith angle, and other vari-
ables within six global seasonal snow classes. Metrics are
calculated at the pixel and basin scales, including the root-
mean-square error (RMSE), bias, and F statistic (a de-
tection measure). The newer MOD10A1F Version 61 and
VNP10A1F Version 1 product biases (− 7.1 %, −9.5 %)

improve significantly when linear equations developed for
older products are applied (2.8 %, −2.7 %) to convert band
ratios to fSCA. The F statistics are unchanged (94.4 %,
93.1 %) and the VNP10A1F RMSE improves (18.6 % to
15.7 %), while the MOD10A1F RMSE worsens (12.7 % to
13.7 %). Consistent with previous studies, spectral-unmixing
approaches (SCAG, SPIReS) show lower biases (−0.1 %,
−0.1 %) and RMSE (12.1 %, 12.0 %), with higher F statis-
tics (95.6 %, 96.1 %) relative to the band ratio approaches for
MODIS. Landsat 8 products are all spectral-mixture meth-
ods with low biases (−0.4 % to 0.3 %), low RMSE (11.4 %
to 15.8 %), and high F statistics (97.3 % to 99.1 %). Spectral-
unmixing methods can improve snow cover mapping at the
global scale.

1 Introduction

Snow cover is a globally significant climate forcing (Hansen
and Nazarenko, 2004) and provides the water supply for bil-
lions of people (Mankin et al., 2015). Dramatic shifts in wa-
ter availability are projected over the next 50 years due to
climate change (Mankin et al., 2015; Immerzeel et al., 2020,
2010) and resulting from regional disturbances that accel-
erate snowmelt timing (e.g., dust on snow; Deems et al.,
2013a; Skiles et al., 2012). As regions warm, the fraction
of precipitation that falls as rain, rather than as snow, in-
creases (Serquet et al., 2011; Feng and Hu, 2007), and glacial
ice melts increasingly rapidly and disappears (Stewart et al.,
2005; Zemp et al., 2015). Understanding the recent trends in
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Figure 1. Percent of all snow-covered pixels with > 75 % viewable
fSCA in the western USA averaged from 2001 to 2021 from the
spatially and temporally complete MODIS Snow-Covered Area and
Grain Size (STC-MODSCAG) product (Rittger et al., 2020). The
number above each bar represents the snow cover extent in square
kilometers averaged over the month of measurement. Pixels corre-
spond to a 463 m spatial resolution.

Bormann et al. (2018) and trajectory of global snow cover
is critical for comprehending global climate change and its
impacts.

At the regional to global scales, satellite remote sensing
is the best tool for measuring snow cover and snow albedo
across landscapes (Molotch et al., 2004; Lettenmaier et al.,
2015; Bair et al., 2019). The capability to map snow cover
from space was realized early in the era of spaceborne remote
sensing (Dozier et al., 1981; Warren, 1982), and spaceborne
multispectral instruments are now routinely used to monitor
many snow surface properties: the fractional snow-covered
area (fSCA), snow albedo, snow grain size, reduction in
albedo from light-absorbing particles (LAPs), and snow sur-
face temperature (Painter et al., 2009, 2012; Lundquist et al.,
2018; Bair et al., 2019; Nolin, 2010). Furthermore, remotely
sensed snow cover information can be used to derive a vari-
ety of snow metrics that are relevant to the changing climate
and to hydrologic systems (Nolin et al., 2021). These metrics
and snow surface properties have been used to estimate per-
sistent ice cover (Painter et al., 2012), analyze the impacts of
wildfire on snowmelt (Micheletty et al., 2014), evaluate con-
tinental climate models (Minder et al., 2016), force regional
climate models (Oaida et al., 2019), partition snowmelt and
glacier melt (Armstrong et al., 2018), reconstruct snow wa-
ter equivalent (SWE) (Guan et al., 2013; Bair et al., 2016;
Rittger et al., 2016), quantify anthropogenic LAP impacts
on snowmelt timing (Bair et al., 2021b, 2016), and forecast
streamflow (Micheletty et al., 2021).

Fundamental to mapping snow with remote sensing is the
knowledge that snow cover varies at a finer spatial scale than

the scale of the data collected by most current and upcom-
ing spaceborne optical sensors. Thus, relevant studies require
subpixel retrievals. The importance of subpixel snow is well
recognized, as evidenced by the development of fSCA ap-
proaches for application to high-spatial-resolution Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) data in the
early 1990s and to high-resolution commercial satellite data
over the past decade (Nolin and Dozier, 1993; Selkowitz et
al., 2014). At a 463 m spatial resolution (i.e., the sinusoidal
tile product grid cell size of Moderate Resolution Imaging
Spectroradiometer (MODIS) data with a ground sample dis-
tance of 500 m at nadir) (Campagnolo and Montaño, 2014),
many pixels are not fully snow-covered, even in the middle of
winter (Fig. 1). Even at a 30 m spatial resolution (i.e., that of
Landsat 8), 25 %–93 % of pixels in middle-latitude alpine en-
vironments are mixed pixels (Selkowitz et al., 2014). Though
fully snow-covered pixels are more common in some rela-
tively high latitude regions that contain extensive permanent
snow and ice, e.g., Greenland, mixed pixels are pervasive at
the boundaries of ice sheets and caps in these areas. Like-
wise, high-latitude boreal forests contain mixed pixels. To es-
timate fSCA – a critical parameter in snow and terrestrial hy-
drology research – subpixel snow cover estimates are needed,
as snow cover properties (e.g., albedo) differ from whole-
pixel properties when pixels are not fully snow-covered.

Satellites provide consistent global snow cover informa-
tion, yet to date, no comprehensive validation of subpixel
snow cover mapping has been conducted with independent
data covering multiple snow climates. In this study, we eval-
uate and compare snow cover retrievals among multiple
sensors and algorithms. High-spatial-resolution (3 m) snow
depth data derived from airborne light detection and ranging
(lidar) sensors, which can penetrate forest canopies, are used
in this work to create snow cover maps to validate a suite of
snow cover products.

2 Background

We focus on validating snow mapping algorithms that deter-
mine fSCA using either empirical relationships based on the
normalized difference snow index (NDSI, a band ratio tech-
nique) (Salomonson and Appel, 2004) or spectral-mixture
analysis (Nolin et al., 1993). Snow can be distinguished from
other surfaces using NDSI (Eq. 1) (Dozier, 1989) because
snow is highly absorptive (low reflectance) in the shortwave
infrared (SWIR) wavelengths and highly reflective in the vis-
ible (VIS) wavelengths compared to most other land surfaces
(Fig. 2):

NDSI=
RVIS, λ−RSWIR,λ

RVIS,λ+RSWIR,λ
, (1)

where NDSI ranges from −1 to +1 and R is the reflectance
for each band in the subscript. The simplicity of NDSI is
appealing and explains its prevalence (Hall et al., 2002; Sa-
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Figure 2. Hyperspectral measurements of common land surfaces:
average Alfisol soil, Pinus vegetation, and water spectra (Meerdink
et al., 2019; Baldridge et al., 2009) along with a typical dirty moun-
tain snowpack from Mammoth Mountain, CA, on 1 May 2021. The
lower panel shows the bands and spatial resolutions corresponding
to the satellite sensors used in this study. The black asterisks de-
note the NDSI bands, while the spectral-unmixing approaches use
all bands to map snow.

lomonson and Appel, 2004; Hall et al., 2010; Justice et al.,
2013). However, NDSI conveys no information regarding
the spectral signature of snow; various non-snow mixed pix-
els can yield the same NDSI values as snow-covered pix-
els (Stillinger et al., 2019). Additionally, NDSI is often used
with a threshold to create binary snow cover maps. How-
ever, these thresholds have been shown to be both spatially
and temporally nonstationary (Harer et al., 2018; Tong et al.,
2020). Further, the uncertainty in these thresholds increases
with an increased spatial resolution (e.g., those of Landsat
satellites) and in forested areas (Klein et al., 1998). Past
studies have shown that NDSI is less accurate than spectral-
unmixing techniques when estimating fSCA over various ter-
rains and at both middle and high latitudes (Rittger et al.,
2013; Masson et al., 2018; Aalstad et al., 2020).

A more sophisticated and physically based method,
spectral-mixture analysis, is an inversion approach derived
for various surfaces; in this method, the measured reflectance
is matched to a modeled reflectance to estimate the end-
member fractions and surface properties (Adams et al., 1986;
Roberts et al., 1998). Multiple linear equations are simulta-
neously solved for endmembers (Eq. 2), and Rs,λ is the mod-
eled surface reflectance at wavelength λ:

Rs,λ =
∑N

i=1
FiRλ,i + ελ, (2)

where Fi is the fraction of endmember i; Rλ,i is the re-
flectance of endmember i at wavelength λ; N is the number
of endmembers; and ελ is the residual error. The model is run
iteratively to minimize the root-mean-square error (RMSE)
between the modeled and observed surface reflectance val-
ues. This approach was first used to estimate snow prop-
erties from hyperspectral AVIRIS airborne data (Nolin and
Dozier, 1993; Nolin et al., 1993; Painter et al., 1998, 2003).
The MODIS Snow-Covered Area and Grain Size (MOD-
SCAG – or SCAG more generally) algorithm (Painter et al.,
2009) proved that spectral unmixing was a viable approach
to snow mapping when using multispectral satellite data. The
MODSCAG algorithm can map fSCA at larger spatial scales
and with more frequent temporal repeats than those possible
with airborne AVIRIS-derived hyperspectral datasets. MOD-
SCAG solves for each pixel in each image and, in addition to
fSCA, also outputs fractional vegetation and fractional soil
and rock information. A modified version of the SCAG al-
gorithm (Rittger et al., 2021a) is used by the United States
Geological Survey (USGS) in their fSCA Landsat product
(Selkowitz et al., 2014). Developed more recently, the Snow
Property Inversion from Remote Sensing (SPIReS) (Bair et
al., 2021a) spectral-unmixing approach builds on the previ-
ously described spectral-unmixing efforts but uses only two
endmembers (snow and snow-free) plus ideal shade to si-
multaneously solve for fSCA, the snow grain size, and the
snow contaminant concentration. Other research-based ap-
proaches to spectral-mixture analysis have been developed
for multispectral satellite data, such as the MODIS Imagery
Laboratory (MODImLab) (Sirguey et al., 2009) or SnowFrac
(Vikhamar and Solberg, 2003), but these approaches are not
available for the dates or areas considered in this analysis.

Despite the long history of mapping snow from space,
spatial validations of the available standard (produced op-
erationally by an agency) products are limited. Shortly af-
ter MODIS-derived standard snow products were released in
the early 2000s, researchers compared sparse subsets of in-
dividual pixels from these new standard snow products to
point-scale snow depth measurements (Simic et al., 2004;
Ault et al., 2006; Klein and Barnett, 2003; Maurer et al.,
2003). These comparisons were followed by fSCA valida-
tions performed using relatively coarse resolution datasets,
e.g., 463 m pixels compared to 250 m pixels in Hall and
Riggs (2007). More extensive validations were performed for
MOD10A1 binary snow cover, MOD10A1 fSCA, and MOD-
SCAG (Rittger et al., 2013). Using 172 scenes, Rittger et
al. (2013) assessed the accuracies of these products in a num-
ber of regions across the western USA and in the Himalaya
by applying spectral-mixture analysis to the Landsat En-
hanced Thematic Mapper Plus (ETM+) surface reflectance
product at a 30 m scale. The results showed improvements
resulting from using a fractional approach at 30 m compared
to a binary approach, especially when performing validations
in forested regions.
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These past studies assessed only the viewable snow cover,
i.e., the snow cover that is directly measurable from space
with optical sensors during cloud-free overpasses. However,
in forested regions, canopies obstruct snow cover, making
validations under forest canopies difficult. Reference val-
idation data are typically derived either from ground sta-
tions (typically representing point data in open areas) or
from Landsat (limited to viewable fSCA). Recent studies
have provided insights into snow cover mapping in forests
using novel ground-based data and airborne lidar measure-
ments. Raleigh et al. (2013) used gridded soil tempera-
ture networks to evaluate the MODSCAG algorithm using
a static canopy adjustment method against sites exhibiting
a range of canopy cover in the Sierra Nevada. Rittger et
al. (2020) used the same dataset to validate a viewable snow
cover to on-the-ground snow cover adjustment process in-
volving the simultaneously retrieved pixel vegetation frac-
tion in SCAG for pixels with canopy cover fractions up to
0.75. Bair et al. (2021a) compared MODIS- and Landsat-
derived fSCA data to WorldView-2 and WorldView-3 and
Airborne Snow Observatory (ASO) aerial lidar data (Painter
et al., 2016) while focusing their validation on the differ-
ence between the viewable fSCA (WorldView validation)
and canopy-corrected fSCA (the ground snow cover vali-
dated with aerial lidar).

While these past studies advanced validation efforts, the
present study offers two notable improvements: (1) all cur-
rently available snow mapping products (including new gap-
filled products) are compared across (2) a diverse range of
snow climates. With the emergence of new snow mapping
products and available high-spatial-resolution (i.e., meter-
scale) snow depth estimates derived from aerial lidar tech-
nology, the comprehensive evaluation undertaken herein is
critical.

3 Study area

Our study area comprised regions in California and Colorado
in the western USA (Table 1). Validation locations were se-
lected based on the availability of ASO (Painter et al., 2016)
snow depth measurements obtained during snow-covered
and snow-free flights using a lidar instrument (Sect. 4.2.1).
Full-waveform lidar instruments are usually able to penetrate
forest canopies, representing a significant advancement in
aerial snow mapping (Deems et al., 2013a, b). Figure 3 shows
the spatial extents of the validation regions and the Sturm and
Liston (2021) snow type classification scheme (Sect. 4.2.4)
corresponding to each region. Quantifying algorithm perfor-
mance from the perspective of snow types enables a better
understanding of expected performance in geographical re-
gions without validation data or past studies. Additionally,
fSCA can depend on the snow climate (Liston, 2004; Clark
et al., 2011); thus, validating across various snow climates al-
lows a range of subpixel snow distributions and depletion dy-

namics to be sampled, thereby strengthening our confidence
in the global application abilities of these products.

4 Methods

Table 2 lists the seven snow cover products evaluated against
snow cover maps derived from high-resolution airborne li-
dar data. These products include two NDSI-based standard
products, MOD10A1F and VNP10A1F, and five spectral-
mixture products, the USGS Collection 1 Landsat 8 Level-3
fSCA product (USGS FSCA), the SCAG algorithm run on
MODIS (STC-MODSCAG) and Landsat 8 (OLISCAG), and
the SPIReS algorithm run on MODIS and Landsat 8. The
daily products are all gap-filled products. All products are
described in detail in individual sections below.

We selected data from all products that matched the dates
of ASO flights from 2013–2020. On 20 d, an ASO flight oc-
curred on the same day as Landsat 8 data acquisition. Three
of the ASO flights corresponded with extensive thin cloud
cover during the corresponding Landsat 8 overpasses (al-
though not during the ASO overpass) and were thus removed
to validate snow mapping abilities under clear skies. Other
scenes contained small amounts of cloud cover. These pixels
were masked and removed.

Because the MODIS and the Visible Infrared Imag-
ing Radiometer Suite (VIIRS) products have daily tempo-
ral resolutions, corresponding MODIS/VIIRS snow cover
maps are available for all ASO flight dates. ASO some-
times mapped multiple watersheds on the same day, and
these products can be included within the bounds of a sin-
gle MODIS/VIIRS tile. For STC-MODSCAG and MODIS
SPIReS, there are 116 ASO flights. The historical records
of MOD10A1F and VNP10A1F have not been processed
completely (as of May 2022, the time of the analysis), so
we used all currently available products, totaling 87 ASO
flights for VNP10A1F and MOD10A1F. These validation
data provided sufficient coverage for conducting comprehen-
sive analyses of MOD10A1F and VNP10A1F. For MODIS
and VIIRS, all validation scenes were used because all al-
gorithms used to construct these products include temporal
filters that improve the snow mapping ability based on data
collected on adjacent days (a feature that no Landsat 8 prod-
uct has). Including all scenes thus supported the goal of this
work regarding the validation of daily gap-filled products.
The standard VIIRS product, VNP10A1F, was the only VI-
IRS product examined. Both SCAG and SPIReS can run on
VIIRS but have not yet been produced for the dates and ar-
eas considered in this study. We note that VIIRSCAG shows
a nearly identical performance to that of MODSCAG (Rittger
et al., 2021a).
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Table 1. Watershed and snow type characteristics corresponding to each study location.

Watershed State ASO flights Watershed Canopy Snow class fraction

name (no.) area (km2) cover Tundra Boreal forest Maritime Ephemeral Prairie Montane forest

Kings Canyon California 13 3565 25 % 7 % 0 % 19 % 12 % 24 % 39 %
Merced River California 8 835 20 % 6 % 0 % 55 % 2 % 15 % 21 %
San Joaquin California 21 4234 29 % 6 % 0 % 35 % 20 % 14 % 26 %
Tuolumne River California 34 1674 12 % 6 % 0 % 35 % 1 % 30 % 29 %
Kaweah River California 3 1450 37 % 0 % 0 % 14 % 40 % 9 % 37 %
Lakes Basin California 14 28 16 % 19 % 0 % 0 % 0 % 20 % 60 %
Lee Vining Creek California 1 114 8 % 28 % 2 % 0 % 0 % 28 % 41 %
Rush Creek California 1 139 9 % 24 % 1 % 0 % 0 % 27 % 49 %
Reds Lake California 1 2 20 % 1 % 0 % 0 % 0 % 38 % 61 %
Blue River Colorado 4 866 25 % 31 % 44 % 0 % 0 % 6 % 19 %
Crested Butte Colorado 2 178 18 % 31 % 21 % 0 % 0 % 6 % 42 %
Conejos River Colorado 1 729 27 % 13 % 16 % 0 % 0 % 13 % 58 %
Aspen/Castle-Maroon Colorado 2 326 22 % 47 % 27 % 0 % 0 % 1 % 24 %
Gunnison-East River Colorado 2 1670 24 % 21 % 24 % 0 % 0 % 13 % 41 %
Grand Mesa Colorado 5 322 29 % 6 % 64 % 0 % 0 % 1 % 29 %
Gunnison-West River Colorado 3 658 29 % 22 % 38 % 0 % 0 % 6 % 34 %
Rio Grande Colorado 1 1862 16 % 25 % 32 % 0 % 0 % 17 % 27 %

Figure 3. Snow cover types present in the ASO validation flight locations. All six of the Sturm and Liston (2021) seasonal snow type classes
are present in the combined California and Colorado ASO datasets.

4.1 Validated snow cover products

4.1.1 MOD10A1F

From the suite of MOD10 snow products, all of which use the
same snow detection algorithm, MOD10A1F was selected;
this product is the currently available gap-filled Collection 6
MODIS snow product. MOD10A1F is an NDSI-based snow
cover product in which NDSI values are delivered as snow
cover estimates; NDSI values below 0.1 are flagged as no
snow. The product is constructed daily at a 463 m spatial res-
olution and undergoes gap filling to adjust for cloud cover or
poor data by reusing measurements taken on the most recent
clear-sky day. This product is not always spatially or tem-

porally complete as there is no backwards interpolation of
snow cover if the initial days of the water year are cloud cov-
ered. However, NDSI cannot be used as a direct estimate of
the fSCA value of a given pixel. In the deprecated MODIS
MOD10A Collection 5 products, additional processing was
conducted to convert NDSI values to fSCA values; however,
these products are no longer delivered. In addition to com-
paring the Collection 6 NDSI snow cover information con-
tained in MOD10A1F, we estimated fSCA using the Col-
lection 5 MODIS Terra relationship (Eq. 3). This relation-
ship was originally developed using Landsat data, and we
assumed here that the equation parameters and formulation
are still valid for the Collection 6 products (Salomonson and
Appel, 2006, 2004). Notably, with the applied correction, the
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Table 2. Snow cover products validated in this study and their characteristics.

Product Resolution (tempo-
ral/spatial)

Reference Canopy adjustment
method

Minimum snow cover
fraction (besides 0)

Gap-filling method Near real time

MOD10A1F Daily/463 m Hall et al. (2019) None 0.1 NDSI snow cover;
0.135 fSCA

Hall et al. (2010) Yes

VNP10A1F Daily/375 m Riggs et al. (2019) None 0.1 NDSI snow cover;
0.135 fSCA

Hall et al. (2010) Yes

USGS FSCA 16 d/30 m Selkowitz et al. (2017) Spatial replacement
(Selkowitz et al.,
2017; Sect. 4.1.5)

0.15 fSCA None Yes

STC-MODSCAG Daily/463 m Painter et al. (2009),
Rittger et al. (2020)

Rittger et al.
(2020); scaled
adjustment
(Sect. 4.1.3)

None Rittger et al. (2020) Yes

OLISCAG 16 d/30 m Rittger et al. (2021a) Rittger et al.
(2020); scaled
adjustment
(Sect. 4.1.4)

0.1 fSCA None No

SPIReS (MODIS) Daily/463 m Bair et al. (2021a) Viewable gap frac-
tion (Sect. 4.1.6)

0.1 fSCA Bair et al. (2021a) No

SPIReS (Landsat 8) 16 d/30 m Bair et al. (2021a) Scaled adjustment
and spatial interpo-
lation (Sect. 4.1.7)

0.1 fSCA None No

minimum possible fSCA value (besides 0) was 0.135.

fSCA=−0.01+ (1.45×NDSI) (3)

Previous MOD10 collections included processing steps in
which the normalized difference vegetation index (NDVI)
was used to improve the snow detection ability in forested
areas (Klein et al., 1998); however, low NDSI values should
be mapped as snow using the updated fractional method (Sa-
lomonson and Appel, 2004).

4.1.2 VNP10A1F

We accessed the first version of the VIIRS standard snow
product, VNP10A1F (Riggs et al., 2019); this product is
nearly identical to MOD10A1F, but VIIRS obtains surface
reflectance data at slightly different bandpasses and spatial
resolutions (see Fig. 2). All VNP10 snow products use the
same snow detection algorithm as the MOD10 products. The
utilized product was a 375 m resolution daily snow prod-
uct delivered as a gap-filled NDSI product. The same gap-
filling approach used to construct MOD10A1F was applied
to VNP10A1F. As no published adjustments are available for
converting NDSI values to fSCA values, we also reused the
same retrieval algorithm applied to MOD10A1F, shown in
Eq. (3).

4.1.3 STC-MODSCAG

MODSCAG (Painter et al., 2009) is a spectral-mixture anal-
ysis approach that uses a library of endmembers repre-
senting clean snow reflectance, soil/rock, vegetation, and

photometric shade and performs least-squares fitting to ob-
tain fSCA from MODIS Terra surface reflectance products
(MOD09GA). In this approach, the fraction of each of the
endmembers was estimated along with the snow grain size
corresponding to the snow endmember for each pixel in ev-
ery image. Some non-linear effects were incorporated by
including canopy-level vegetation endmembers. The data
were then gap-filled based on spectral and persistence filters
(Rittger et al., 2020) and interpolation while preferentially
weighting nadir views over off-nadir views (Dozier et al.,
2008). This gap-filled product is called the spatially and tem-
porally complete MODSCAG (STC-MODSCAG) product.
Viewable fSCA, fractional vegetation (fVEG), and fractional
soil/rock (fROCK) information available from MODSCAG
is used for STC-MODSCAG. In STC-MODSCAG, vegeta-
tion height maps (Simard et al., 2011), viewable fSCA, and
fVEG are used to estimate snow on the ground. When the
viewable fSCA is greater than 0.1 in forested areas identified
by a vegetation height greater than 2.5 m, fSCA is adjusted
using concurrently observed fVEG. Rittger et al. (2020)
showed the STC-MODSCAG canopy correction method to
be a function of the view angle. Additional post-processing
was conducted to increase the accuracy of the results in
both forested and alpine regions. In forested areas, the max-
imum snow cover is limited using a vertical-to-horizontal
crown radius ratio (Liu et al., 2004) to remove snow where
tree trunks exist. In alpine areas (i.e., areas with vegetation
heights < 2.5 m and elevation > 800 m in this analysis), the
retrieved fSCA was scaled by +10 % of the initial value.
The data utilized in the analyses performed in this paper
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were produced by Snow Today at the National Snow and Ice
Data Center (NSIDC, https://nsidc.org/snow-today, last ac-
cess: 28 June 2022). Snow Today is supported by NSIDC
Distributed Active Archive Center (DAAC) User Services
and has provided freely available daily images in near real
time since 2020. The historical records from earlier STC-
MODSCAG versions are available via file transfer protocol
(FTP) at http://snow.ucsb.edu (last access: 29 June 2022).

4.1.4 OLISCAG

OLISCAG uses the same spectral-mixture analysis approach
as MODSCAG but applies this approach to Landsat 8 Op-
erational Land Imager (OLI) data (Rittger et al., 2021a).
The spectral libraries differ based on the number and size
of bandpasses used by each instrument. The images are not
interpolated temporally or spatially as is performed with the
STC-MODSCAG data (described above). The SCAG model
was generalized for the Landsat ETM+ and TM instruments
(Rosenthal and Dozier, 1996; Painter et al., 2009; Rittger et
al., 2013), and Rittger et al. (2021a) modified the SCAG al-
gorithm to work with the new 12-bit OLI data using spec-
tral libraries updated specifically for OLISCAG. Similarly
to STC-MODSCAG, a canopy adjustment is applied to the
OLISCAG viewable fSCA to obtain on-the-ground fSCA.
The viewable fSCA is adjusted when a minimum fSCA is
detected (0.1) using the concurrently estimated vegetation
fraction and the crown ratio equation in Liu et al. (2004),
which are similar to the processing methods described above
for STC-MODSCAG. OLISCAG has a minimum fSCA de-
tection threshold set at 0.1.

4.1.5 USGS Landsat fSCA

fSCA is available from the Landsat 8 Collection 1 Level-3
products provided by the USGS. The Collection 1 product
is produced for the western USA and Alaska in the Land-
sat Analysis Ready Data tiles and is constructed through
a spectral-mixture analysis based on the SCAG algorithm
(Painter et al., 2009) using spectral libraries from OLISCAG
(Rittger et al., 2021a). This product represents a significant
advancement over the standard snow maps available in the
Level 1 and 2 band quality assessment files delivered with
Landsat 8 reflectance data. The SCAG implementation in-
cludes the application of snow-specific cloud masking, water
masking, and canopy cover adjustments to construct the final
fSCA product (Selkowitz et al., 2017). The primary differ-
ence between OLISCAG and the USGS fSCA product is in
their canopy correction approaches. In the USGS fSCA prod-
uct, snow cover in pixels identified as forest pixels using the
National Land Cover Database (NLCD) (Homer et al., 2004)
is replaced with snow cover from less forested nearby pixels
with similar accumulated solar radiation and elevation. This
product has a minimum fSCA detection threshold set at 0.15.

4.1.6 MODIS SPIReS

SPIReS (Bair et al., 2021a) is an open-source (see “Code
and data availability”) spectral-unmixing approach designed
to map fSCA using pixels from snow-free periods as back-
ground reflectance information and a modeled snow end-
member that contains contaminants (e.g., dust or soot). These
two endmembers are mixtures themselves, thus reducing the
number of unknowns and making the system more highly
overdetermined (Branham, 1990), in turn increasing the ac-
curacy and computational speed. Additionally, the back-
ground endmember mixtures account for some pixel-specific
non-linear effects, such as canopy effects. SPIReS clusters
pixels within a tolerance and then simultaneously solves for
fSCA, the grain size, and the contaminate concentration at
the surface of the snowpack for each cluster and applies the
solution to all pixels in each cluster. This process typically
results in a 10–100× reduction in the number of unmixing
model runs required compared to solving for every pixel.
The latter two properties are then used to estimate snow
albedo (Bair et al., 2019). SPIReS adjusts the viewable snow
cover to account for shading, permanent ice, and snow hid-
den by forest canopies. Following the initial publication of
the SPIReS method by Bair et al. (2021a), SPIReS was ad-
justed to better handle specific snow mapping situations. If
a pixel is fully snow-covered, no snow-free background sur-
faces should be visible. SPIReS accounts for this issue by
solving for pixels twice, first with the standard method in-
cluding a “snow-free” background reflectance and then again
with no background. If this second solution is within 2 % of
the original solution, the new “no-background” solution is
used. The goal of this double-solving approach is to signifi-
cantly reduce the biases that arise for pixels with high fSCA
values.

In MODIS SPIReS, the canopy correction step is based
on the viewable gap fraction (VGF) estimated for each pixel,
i.e., an estimate of the fraction of the pixel that comprises
viewable ground. This fraction is a function of the canopy
cover, topography, and satellite view angle. VGF adjustments
are performed when constructing MODIS SPIReS to account
for the satellite view angle based on the Geometrical Opti-
cal Model (Liu et al., 2004). For MODIS SPIReS, persis-
tence filters based on both the snow cover and the minimum
snow grain size alongside temporal smoothing with weighted
splines (Dozier et al., 2008) are used to generate daily, gap-
free snow cover and surface snow property estimates cor-
responding to each pixel. While Bair et al. (2021a) found
through an F -statistic analysis that the fSCA detection abili-
ties were maximized at 0.01 for MODIS and 0.07 for Landsat
OLI, the minimum fSCA threshold for SPIReS was set to 0.1
in this study, the current default setting.
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4.1.7 Landsat SPIReS

Landsat SPIReS is constructed by applying the same ap-
proach as MODIS SPIReS, with a few differences. Because
Landsat is a nadir-looking push-broom instrument, the Ge-
ometrical Optical Model is not used. Instead of a VGF ad-
justment, for pixels with canopy cover fractions above 0.5,
fSCA is ignored and spatial interpolation is used to spread
snow into these pixels in which the direct snow cover mea-
surements are unreliable. Similarly to the OLISCAG and
USGS fSCA products, no gap-filling procedures (apart from
the canopy correction step described above) are used to con-
struct the Landsat SPIReS product.

4.2 Validation datasets

4.2.1 ASO snow depth

ASO produces snow depth and SWE products that are
archived at NSIDC (2013–2019) and at the ASO, Inc., web-
site (2019–present) for use by researchers and water man-
agers (Painter et al., 2016). We obtained all available ASO
data from water years 2013–2020. In this study, the 3 m snow
depth products were first converted into a binary snow map
and then coarsened into an fSCA product matching the spa-
tial resolution and projection of MODIS, VIIRS, or Landsat
(as described below); these fSCA products were then used to
validate the satellite-derived snow products (Sect. 4.3).

The 3 m ASO snow depth data represent an intermediate
ASO product without the same level of quality control as
the final 50 m SWE products. The 3 m datasets are associ-
ated with extensive data representation issues; for example,
“zero” is used as both a fill value and a snow-free classifier.
To convert the 3 m snow depth data to high-quality 3 m snow
cover maps, additional data cleaning was thus mandatory. To
improve the quality of the 3 m snow depth data and to ensure
the use of valid measurements, the data extent was limited
to the basin boundaries and to the 3 m depth measurements
co-located with valid measurements in the 50 m SWE dataset
derived during the same flights. The validation datasets were
cropped to the basin boundaries even when the flight lines
extended past these boundaries, as the data collected outside
the basin boundaries were often unreliable. At certain times
late in the melt season, when snow was present only at the
highest elevations in the studied basins, flights did not extend
across the whole basins; under these conditions, we used the
50 m SWE datasets with snow-free, snow, and missing-value
representations to select valid spatial regions from the 3 m
snow depth products.

To convert the ASO snow depths to fSCA maps, the
cleaned ASO-derived 3 m snow depth data were first rela-
beled as snow-free, snow-covered, or filled data. The mean
absolute error (MAE) of the 3 m snow depth product has been
reported to be less than 8 cm (Painter et al., 2016); hence,
these snow depth measurements were converted into a 3 m

binary snow cover mask in which the snow cover was consid-
ered true when the snow depth was greater than 8 cm; “snow-
free” areas referred to measured snow depths of 8 cm or less;
and “fill” data were established where the 3 m depth product
had missing data, the 50 m SWE product had missing data,
or the analyzed pixels were located outside the basin bound-
aries. Only 1.9 % of ASO snow depths had values less than
8 cm. These binary 3 m snow cover maps were then coars-
ened to the same spatial resolution as each fSCA satellite
product for the subsequent validation. The 3 m binary snow
cover maps were coarsened via Gaussian pyramid reduction
to reach the significantly coarser validation resolutions, and
then bilinear interpolation was used to reproject the coars-
ened ASO-derived snow cover validation data to the native
projection and spatial grid of each snow product. In addition
to reducing geolocation issues between datasets, this coars-
ening method further reduced the possible influence of spu-
rious misclassifications of thin snow as false negatives in
the ASO validation dataset. Any reprojected validation pix-
els with fSCA values less than 0.01 were assumed to be
snow-free (i.e., fSCA= 0). The goal of the chosen thresh-
olds was to eliminate artifacts resulting from upscaling the
3 m data to coarser resolutions (i.e., 120 m for Landsat and
2 km for MODIS/VIIRS validation; Sect. 4.3.1) while com-
paring as many pixels as possible. False positive snow cover
measurements arising due to thin snow measured within the
uncertainty range of the ASO lidar data were thus effectively
removed. During our analysis, we tested different thresh-
olds, and a change in the threshold value did not signifi-
cantly change the results in any meaningful way. Some previ-
ous validation efforts ignored low-snow-cover-fraction pixels
(Painter et al., 2009; Rittger et al., 2013), but newer (Masson
et al., 2018) studies have also examined the low snow cover
fractions. ASO, like any validation source, is imperfect. ASO
may not map all rock outcrops correctly in alpine regions
and may instead consider those locations to be fully snow-
covered. Additionally, in regions with steep terrain and dense
forests, depending on the orientation of the flight line relative
to the underlying surface, the lidar retrieval quality may vary.
Even given these concerns, comparisons between ASO and
WorldView-2 and WorldView-3 high-resolution optical im-
agery derived in snowy mountainous terrain have shown that
ASO is a high-quality validation source (Bair et al., 2016,
2021a), and we treated these data as validation truth in this
paper.

4.2.2 Canopy cover

The static NLCD 2016 tree canopy cover dataset (Wickham
et al., 2021) with a 30 m spatial resolution was used to deter-
mine the canopy cover locations and fractions (0–1) within
the validation regions. NLCD 2016 uses spectral and geo-
graphical information to determine land cover types and was
chosen due to its operational availability and 30 m spatial res-
olution. These NLCD canopy cover files were cropped and
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stored with the ASO dataset representing the correspond-
ing day and then reprojected alongside the ASO validation
datasets to the native projection and resolution of each prod-
uct. These coarsened canopy cover maps were then used to
categorize pixels into canopy cover bins for the subsequent
statistical analysis across the full range of existing canopy
cover fractions in the study areas.

4.2.3 View angle

MODIS and VIIRS are both scanning whisk-broom sensors
that have sufficiently wide fields of view with variations in
the sizes of individual pixels across a given swath (Dozier
et al., 2008). In addition to these pixel size variations, off-
nadir views, especially those obtained in pixels with canopy
cover, cause variations in the fraction of the surface under the
canopy that is visible to the satellite in each pixel (Rittger et
al., 2020; Bair et al., 2021a). For both MODIS and VIIRS,
NDSI-based approaches do not adjust for the view angle,
whereas the SCAG and SPIReS approaches do account for
the view angle (see above). To understand how well these al-
gorithms map snow cover when high-view-angle acquisitions
have occurred, we took the per-pixel satellite view zenith
angle information from the top layer in the MOD09GA or
VNP09GA surface reflectance product corresponding to the
date and location of the target snow cover estimate and
binned the derived statistical results by the viewing geometry
in 5◦ bins ranging from 0◦ (nadir) to 70◦ (edge of scan). As
Landsat carries a push-broom sensor, it acquires near-nadir
images across all pixels, so no view angle analyses were per-
formed for the Landsat 8 datasets.

4.2.4 Global seasonal snow classifications

The study area considered herein was classified into seasonal
snow cover types using the Sturm and Liston (2021) classi-
fication scheme, which includes six snow categories (tundra,
boreal forest, maritime, ephemeral, prairie, and montane for-
est snow) on a 1 km global classification map. These data
are available at the NSIDC website (https://nsidc.org/data/
NSIDC-0768/versions/1, last access: 3 January 2022). For
each product, the derived error statistics were binned into the
snow class corresponding to each fSCA pixel using a nearest-
neighbor resampling approach.

4.3 Validation

4.3.1 Upscaling

In the validation process, the ground-truth snow cover maps
derived from ASO were compared to each fSCA product.
The abilities of each algorithm to detect snow (Sect. 4.3.2)
and correctly estimate the fSCA values in each pixel and in
each watershed basin (Sect. 4.3.3) were evaluated separately.
To account for geolocational uncertainty in the satellite prod-
ucts, we upscaled the fSCA values obtained from each prod-

uct before the validation. The Landsat 8 products were val-
idated at a 120 m spatial resolution, and the MODIS/VIIRS
products were validated at a 2 km spatial resolution. Both the
ASO validation data and the satellite data were coarsened
to the spatial resolution and original projection of the cor-
responding satellite products. This same approach has been
adopted in past validation studies in which snow products
were compared to relatively high spatial resolution valida-
tion data (Stillinger et al., 2019; Bair et al., 2021a, 2016;
Rittger et al., 2013, 2020). While VIIRS data are available
at a 375 m spatial resolution compared to the 463 m resolu-
tion of MODIS data, both products were validated herein at a
2 km spatial resolution. Each product is validated as it is de-
livered to users; thus, no additional thresholds were applied
to set a minimum snow cover.

4.3.2 Snow detection

To validate the snow detection results, a binary mask of
ASO-derived snow cover (ASO fSCA> 0) was compared
to binary masks of the product-derived snow cover (product
fSCA> 0), and snow cover was considered a true positive
(TP) in all cases where fSCA> 0. Four pixel classes were
generated from the comparison: TPs, false positives (FPs),
true negatives (TNs), and false negatives (FNs). TNs and,
subsequently, the commonly used “accuracy” statistic that
includes TNs were not used in the subsequent validation as-
sessments as they can skew the results when large swaths of
easily classified snow-free areas exist in an image. From the
remaining three pixel classes (TPs, FPs, and FNs), the preci-
sion, recall, and F -statistic values were calculated (Eqs. 4, 5,
and 6).

Precision=
TP

(TP+FP)
(4)

Recall=
TP

(TP+FN)
(5)

F =
(2× precision× recall)
(precision+ recall)

(6)

Precision is a measure of how few FPs a product generates,
characterizing the ability of an algorithm to include only
snow in its snow classification results. A high precision of
99 % means that 99 % of the pixels mapped as snow were ac-
tually snow-covered according to the ground-truth data. Re-
call is a measure of how few FNs a product generates, char-
acterizing the ability of the algorithm to map all the snow
in an image. A high recall of 99 % means that 99 % of the
snow-covered pixels in an image were included in the snow
mask produced by the algorithm. The F statistic, the har-
monic mean of precision and recall, is a way to balance these
two independent algorithm performance metrics and ranges
from 0 % to 100 %, as do precision and recall. A high F
statistic means that the algorithm correctly mapped the snow
in an image and did not include other land surface types in
the produced snow maps.
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4.3.3 Per-pixel and per-basin fSCA

The upscaled ASO fractional snow cover validation data
discussed in Sect. 4.3.1 were compared to the fSCA esti-
mates obtained from each product at the given validation-
step spatial resolution. The evaluation approach described in
Sect. 4.3.2 provides a measure of the snow detection abil-
ity of an algorithm but does not measure the ability of the
algorithm to correctly estimate fSCA in a pixel. A product-
derived fSCA estimate of 0.2 compared to a true fSCA esti-
mate of 0.95 would result in a TP snow detection but would
suggest a large bias and error in terms of the accuracy of the
fSCA estimate. To determine how accurate the analyzed al-
gorithms are in terms of their produced fSCA estimates, the
bias and RMSE values were calculated to evaluate how well
each product performed when estimating fSCA at both the
pixel and basin scales. Bias is the average overall difference
in the fractional snow cover estimate between a product and
the ASO snow cover fraction truth map at the analysis reso-
lution. RMSE is a measure of the average error in individual-
pixel fractional snow cover estimates compared to the ASO
snow cover fraction truth map at the analysis resolution.

The hydrological boundaries of basins were used when
planning the ASO flights from which validation data were
collected; assessing the snow cover mapping performance at
this scale enables us to evaluate the ability of each product to
calculate the total fSCA of a watershed. At the basin scale,
the snow fractions of all validation pixels (TPs, FPs, FNs)
in each basin were calculated for each product and the ASO
snow cover truth map by summing the per-pixel fractional
cover estimates and dividing by the number of validation
pixels. The snow products were then compared to the same
measurement calculated from the ASO data. The basin-wide
product and ASO-derived, basin-scale fSCA were compared
in each basin on each day. Past error analyses have focused
on per-pixel errors, which can be used to improve confidence
when fSCA data are used for high-resolution, spatially ex-
plicit models working to better understand processes. The
new basin-wide error estimates derived herein provide in-
formation for larger-scale, coarser models like those used in
global and regional climate simulations.

4.3.4 Specific pixel subcategories

Understanding the snow mapping performances of various
algorithms under specific conditions is crucial for building
confidence in algorithm quality and providing insight into
scenarios that require further development to improve snow
mapping abilities. In this work, the pixels in each prod-
uct were separated into categories, and the statistics derived
across gradients in each category were evaluated. The pixels
in the Landsat 8 and MODIS/VIIRS datasets were grouped
by seasonal snow class and canopy cover fraction, and the
MODIS/VIIRS dataset pixels were additionally grouped by
satellite view angle. Additionally, visual representations of

the error patterns were generated (see Fig. 6) by mapping the
combination of the per-pixel snow cover bias from −99 % to
+99 % alongside the TNs, replacing the −100 % bias mea-
surements with FNs and replacing the +100 % bias mea-
surements with FPs. These errors, when displayed alongside
ASO fSCA maps (representing the truth) and canopy cover
maps, help deliver insights into the performances of the ana-
lyzed algorithms.

5 Results

5.1 Overall statistical assessment

Table 3 highlights the results obtained from the snow detec-
tion validation analysis performed while applying the ASO
data as the truth dataset. The per-pixel fSCA and basin-wide
fSCA results were assessed for each product in terms of the
bias, RMSE, precision, recall, and F -statistic metrics. The
per-scene median, minimum, and maximum values corre-
sponding to each statistical measure and to each product are
listed in Table 3. Notably, the minimum bias and minimum
recall statistics for a single product can be obtained on two
different dates.

The STC-MODSCAG, OLISCAG, USGS FSCA, SPIReS
Landsat, and SPIReS MODIS products all had median bi-
ases of ∼ 0 %. The standard snow mapping products from
MOD10 and VNP10 had biases of −7.1 % and −9.5 %, re-
spectively, but these biases were reduced to +2.8 % and
−2.7 % when the Collection 5 fractional snow cover correc-
tion (Eq. 3) was applied to the standard Collection 6 prod-
ucts, a step not taken in the archived data at NSIDC. When
multiple products have no bias, the product with the lower
RMSE can be considered the better-performing product. The
median RMSE values (Table 3) derived herein ranged from
11.4 % (OLISCAG) to 19 % (VNP101AF).

The precision, recall, and F -statistic metrics measure
the ability of the analyzed products to detect snow cover
(Table 3). The median precision values derived herein
ranged from 89.4 % (VNP101AF) to 99.4 % (SPIReS Land-
sat). In this work, the median recall values ranged from
96.2 % (MOD10A1F) to 100 % (SPIReS MODIS and STC-
MODSCAG). For Landsat products, the F statistic ranged
from 97.3 % (USGS) to 99.1 % (SPIReS Landsat and
OLISCAG), while for MODIS and VIIRS, the F statistics
were lower, ranging from 93.1 % (VNP101AF) to 96.1 %
(SPIReS MODIS). For all snow cover detection measures,
the algorithm performances associated with the worst scene
exhibited wide variabilities; the minimum F -statistic values
ranged from 83.2 % (USGS fSCA) to 0 % (VNP10A1F).

The basin-wide fSCA RMSE and bias validation results
are presented at the bottom of Table 3. OLISCAG, USGS
Landsat, SPIReS Landsat, and SPIReS MODIS had overall
basin-wide biases of ∼ 0 %. The standard NDSI snow cover
products (MOD10A1F and VNP10A1F) had higher overall
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biases of−9.2 % and−11.9 %, respectively. The RMSE val-
ues obtained at the per-basin scale were lower than those
obtained at the per-pixel scale, as the overestimates and un-
derestimates balanced each other out in the basin-wide sum-
mation. The median RMSE values derived at the basin scale
ranged from 4.7 % (SPIReS Landsat) to 15 % (VNP101AF).

When the Collection 6 MOD10A1F and Collection 1
VNP10A1F NDSI snow cover products were corrected with
the Collection 5 fractional cover linear correction (Eq. 3), the
precision, recall, and F -statistic metrics were unchanged as
the snow detection ability was unchanged, but the bias and
RMSE values improved for both products at the per-pixel
and basin scales as the fractional values were adjusted by the
linear equation. All spectral-unmixing methods showed com-
parable snow-identification performances (i.e., similar preci-
sion, recall, and F -statistic values) across the satellite plat-
forms and outperformed the NDSI products. The per-pixel
bias and RMSE values were comparable among all Land-
sat 8 products. Among the MODIS products, SPIReS and
STC-MODSCAG exhibited lower median bias (∼ 0 %) and
RMSE (12 %) values than the standard MOD10A1F product.

5.2 Product performances under specific conditions

In addition to the overall statistical assessment, the ability
of each product to map snow under specific conditions was
assessed. Figures 4 and 5 and Table 4 display the results ob-
tained when the validation datasets were classified by canopy
cover fraction, snow cover fraction, satellite view angle, and
snow class. Figure 6 displays how error images were gener-
ated to highlight the spatial performance patterns at the basin
scale. There were a different number of samples in each dis-
cretized bin of the four assessment categories, and the data
distributions varied among the Landsat 8 products and MOD-
IS/VIIRS products. All snow classes were represented in the
MODIS data, with the lowest number of pixels available for
the ephemeral snow class. No ephemeral snow class pixels
corresponded to snow in the Landsat 8 validation dataset.
The VNP101AF product was not available for the dates on
which ephemeral snow was mapped by MODIS. The view
angle analysis was performed only for MODIS and VIIRS, as
Landsat acquires only near-nadir observations. In this study,
our sample of snow pixels was representative of all possible
MODIS and VIIRS view angles. All snow cover fractions
were present in all products. There were a sufficient number
of data points available across all snow cover classes to calcu-
late error statistics across the full range of snow cover frac-
tions. Snow cover fractions lower than the minimum snow
cover fractions employed by a product (Table 2) were possi-
ble because the product and validation datasets were coars-
ened to account for geolocational uncertainties, and adjacent
pixels with no snow cover could be included in this coars-
ening procedure. The snow cover distributions obtained for
Landsat and MODIS/VIIRS were similar.

Figure 4. Snow cover mapping statistics: RMSE (a, b), bias (c, d),
and F -statistic (e) values calculated for pixels binned by canopy
cover fraction (a, c, e) and by ASO-derived snow cover fraction (b,
d) from Landsat 8 fractional snow cover products (SPIReS, USGS,
and OLISCAG). No F -statistic graph is displayed for the snow-
covered area due to the low F -statistic variability associated with
the snow cover fraction.

The canopy cover distributions differed between the
MODIS/VIIRS and Landsat products. The Landsat products
contained significant numbers of canopy-free pixels. The rel-
atively coarse spatial resolution daily products from MODIS
and VIIRS blended canopy-free with canopy-covered areas,
thus reducing the number of canopy-free pixels relative to
those in the Landsat products. Very few or no data points
were available for the highest possible canopy cover frac-
tions. In the MODIS/VIIRS dataset, only 3 pixels corre-
sponded to canopy cover fractions above 0.7, so the subse-
quent analysis was constrained to canopy cover fractions of
0.7 and lower. For the Landsat analysis, only 380 pixels ex-
hibited canopy cover fractions above 0.7. These pixels were
used to calculate the F statistic for the Landsat product under
high-canopy-cover conditions; however, due to the poor de-
tection ability (Fig. 4e), the bias and RMSE measures were
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Table 4. Heat maps of the algorithm performance results (colored by RMSE, bias, and F statistic) corresponding to seasonal snow cover
types. The Landsat algorithms are denoted in the first three rows. The black boxes indicate instances of insufficient validation data.

Figure 5. Snow cover mapping statistics: RMSE (a–c), bias (d–f), and F -statistic (g, h) values calculated for pixels binned by canopy cover
fraction (a, d, g), view angle (b, e, h), and snow cover fraction (c, f) using the MODIS and VIIRS snow cover products. The standard products
(MOD10 and VNP10) are colored so that each standard product is shown as a solid line, while the fSCA correction is shown in the same
color with a dashed line (the F statistic is unchanged by the correction process). No F -statistic graph is displayed for the snow cover fraction
due to the low variability in the F statistic induced by the snow cover fraction.
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Figure 6. Merced River watershed, Sierra Nevada, California, on 7 May 2020; Yosemite Valley is approximately in the middle of these
images displaying the 835 km2 watershed. Panel (a) shows the canopy cover fraction. Panel (b) shows the fSCA information obtained from
ASO at a 120 m pixel resolution. Panels (c)–(e) show comparisons of the Landsat products against the reference snow cover data from ASO
at a 120 m pixel resolution. Panels (f)–(k) display comparisons of the MODIS/VIIRS products at a 2 km pixel resolution. The red, white,
and blue pixels indicate locations where a product accurately detected snow cover (TP) but, compared to the ASO truth data, was found to
have generated a positively biased result (red), an unbiased result (white), or a negatively biased result (blue). The orange pixels denote FNs
(omission errors) in which the product did not correctly detect snow in the indicated location, while yellow pixels indicate FPs (commission
errors) in which the algorithm incorrectly identified the presence of snow cover compared to the ASO truth dataset. The gray pixels (not-a-
number (NaN) cells, outside the Merced basin) and green pixels (TNs) were not included in the analysis or used in any of the error statistic
calculations performed in this paper. Note that the spatial projections differ (UTM for Landsat 8 vs. sinusoidal for MODIS and VIIRS) among
the products in the panels, but all panels display the same area.
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not reliable, nor were they representative of the snow fraction
mapping capability of this product under such high canopy
cover conditions. The bias and RMSE statistics were con-
strained to pixels with canopy cover fractions below 0.65,
where the products could reliably detect per-pixel snow frac-
tions.

Because the pixel distributions were not consistent across
all of the analyzed categories, the statistical results obtained
in this section were not directly comparable to the overall
results presented in Table 3. Most pixels were found to be
highly snow-covered, with minimal forest canopies; thus,
this pixel type represented a relatively large fraction in the
validation dataset applied in the overall validation step, the
results of which are listed in Table 3. In this section, we
aim to understand how well the assessed algorithms perform
in specific situations that may not be representative of their
overall performances but are still important for understand-
ing their capabilities and limitations.

Figure 4 displays the snow mapping performances of
all Landsat 8 products, showing similar trends associated
with the canopy cover and snow cover fractions. All prod-
ucts obtained relatively high RMSE values under dense
canopy cover conditions. The OLISCAG and SPIReS Land-
sat products exhibited similar RMSE trends associated with
canopy cover fractions up to 0.5, while the USGS product
showed relatively high RMSEs at low canopy cover frac-
tions (Fig. 4a). The USGS product showed positive biases
across all canopy cover conditions (Fig. 4b). OLISCAG and
SPIReS Landsat products not only were relatively unbiased
and maintained zero biases under denser canopy cover con-
ditions than USGS fSCA but also exhibited positive and neg-
ative biases, respectively, at the highest canopy cover frac-
tions (Fig. 4c). We found that no method utilizing Landsat
data could reliably map snow cover at the highest canopy
cover fractions available in this study; this finding was clearly
shown by the F statistic decreasing to near zero as the canopy
cover increased to 0.7 (Fig. 4e).

The products all exhibited relatively high RMSE values
at the lowest snow cover fractions (Fig. 4b). All three prod-
ucts showed similar declining RMSE trends at high snow
cover fractions, but the USGS product had higher RMSE val-
ues by approximately 5 %–15 % at low snow cover fractions.
All three products exhibited similar but offset bias trends as
the snow cover fraction increased; however, the USGS prod-
uct had relatively high biases at fSCA values from 0 to 0.6
(Fig. 4d). All products overestimated the snow cover frac-
tions corresponding to pixels with relatively low snow cover
fractions and underestimated the snow cover fractions corre-
sponding to the pixels with the highest snow cover fractions.

More variability was observed between the MODIS and
VIIRS algorithm performances (Fig. 5) than among the
Landsat 8 products. In the canopy cover analysis (Fig. 5a),
SPIReS had the lowest RMSE when no canopy cover was
present and at canopy cover fractions up to approximately
0.2, with similar errors observed across the 0.2 to 0.45 range.

STC-MODSCAG exhibited a similar but slightly worse per-
formance up to a canopy cover fraction of 0.35 but performed
slightly better at fractions from 0.35 to 0.55, when both
SPIReS and VNP10 produced lower RMSE values. SPIReS
and STC-MODSCAG showed the lowest biases among the
analyzed canopy cover range, while the standard MODIS and
VIIRS products exhibited consistent negative biases of ap-
proximately −10 % under all but the densest canopy cover
conditions (Fig. 5d). The snow detection ability was poor
at the highest canopy cover fractions (i.e., > 0.65), so the
RMSE and bias results were less reliable and are not shown.
The VNP10 snow detection performance dropped off the
most under dense canopy cover conditions, with MOD10,
SPIReS, and STC-MODSCAG all showing similar perfor-
mances as the canopy cover fraction increased (Fig. 5g).

The satellite view angle analysis results showed that the
RMSE values of the snow fraction estimates were consis-
tent among all products (except VNP10A1F) and among all
view angles. For VNP10A1F, the high RMSE values derived
at high viewing angles were significantly reduced when the
Collection 5 linear correction was applied (Fig. 5b). The Col-
lection 6 MOD10 and Collection 1 VNP10 products showed
consistent negative biases across all viewing angles, but these
biases were greatly reduced with the implementation of the
Collection 5 linear correction step (Fig. 5e). The snow detec-
tion ability (i.e., F statistic) was generally unaffected by the
satellite viewing angle (Fig. 5h).

The statistical analysis examining algorithm performances
across the range of pixel-scale snow cover fractions showed
that, overall, STC-MODSCAG and SPIReS had lower RMSE
values and less bias than the standard products (MOD10 and
VNP10) (Fig. 5c and f). At the highest snow cover fractions,
the RMSE values obtained for the VNP10 and MOD10 prod-
ucts were high, in the 0.15–0.30 range, and the negative bi-
ases were large, in the −0.15 to −0.25 range (Fig. 5c and f).

All algorithms were compared to each other in terms
of their performances using the global snow classification
scheme shown in Table 4. Maritime snow corresponded to
the largest RMSE values across all products, whereas boreal
forest snow had the lowest RMSE values overall, apart from
ephemeral snow regions where data were not available for all
products. SPIReS Landsat, SPIReS MODIS, OLISCAG, and
STC-MODSCAG consistently produced small biases across
all snow types, with OLISCAG outperforming SPIReS Land-
sat, while the performances of SPIReS MODIS and STC-
MODSCAG were virtually identical. The snow detection
ability (i.e., F statistic) was high (> 0.98) among all prod-
ucts for tundra, boreal forest, and prairie snow, but the prod-
ucts performed worse for maritime, ephemeral, and montane
forest snow. The spectral-mixture methods outperformed the
NDSI-based methods in these challenging areas.
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6 Discussion

NDSI snow cover mapping algorithms and spectral-mixture
analysis models designed for use with Landsat, MODIS, and
VIIRS products were validated using snow cover maps de-
rived from all available ASO snow depth measurements col-
lected in California and Colorado over water years 2013–
2020. The spatial extent of these ASO validation data en-
abled the snow mapping algorithms to be validated over a
wide range of conditions. Our insights extended past the
overall algorithm performances to explore how well the an-
alyzed products perform in specific situations in which ac-
curate snow cover mapping is important but systematic bi-
ases or errors may emerge; these situations included consid-
erations of the canopy cover conditions, per-pixel fractional
snow cover, satellite view angle, and global snow type clas-
sification. In addition, we qualitatively assessed the overall
spatial snow cover patterns at the river-basin scale.

Landsat data have traditionally been used in spatial valida-
tions of MODIS snow products (Rittger et al., 2013; Hall and
Riggs, 2007) or for calibration tasks (Salomonson and Ap-
pel, 2004, 2006). In this study, we showed that while Land-
sat data have generally high snow detection and fSCA map-
ping capabilities, they are imperfect and do not show the
same patterns as the coarser-spatial-resolution MODIS and
VIIRS products. The RMSE and bias values decreased as
the snow cover fraction increased for all Landsat products.
The RMSE values increased and the F statistics decreased
as the canopy cover density increased. Thus, for these im-
portant pixel categories, Landsat products are an imperfect
measure of the fractional snow cover on the ground, while
aerial lidar-based approaches can deliver improved satellite
product validations.

6.1 Comparison between standard products and
spectral-mixing methods

Many users rely on standard snow cover products. For Land-
sat 8, the USGS Collection 1 canopy-corrected fractional
snow cover product exhibited a slightly worse performance
than OLISCAG and SPIReS across snow cover types (Ta-
ble 4) and across the analyzed canopy cover and snow cover
ranges (Fig. 4). The largest difference between this stan-
dard product and OLISCAG or SPIReS was the bias met-
ric, as neither OLISCAG nor SPIReS produced significant
overall biases when mapping the snow cover fraction. The
USGS Collection 1 product is available only as a canopy-
corrected version over the western USA and Alaska. How-
ever, the USGS Collection 2 product expands to include a
viewable snow cover product and covers the northern portion
of the USA and the Aleutian Islands. Both OLISCAG and
SPIReS can be run for any region globally. While OLISCAG
will be released publicly in 2024 pending a processing trans-
fer to the NSIDC DAAC, the SPIReS algorithm is currently
open-source (https://github.com/edwardbair/SPIReS, last ac-

cess: 29 June 2022) and a viable alternative for creating high-
quality snow cover fraction maps globally.

While STC-MODSCAG is produced operationally for the
western USA and the Indus River basin (Rittger and Raleigh,
2022), the standard NASA global MODIS and VIIRS snow
products (MOD10 and VPN10) no longer output fractional
snow cover data, as NDSI values are produced instead.
The results of this study suggest that the standard (NDSI-
based) MODIS and VIIRS products should not be inter-
preted as fractional snow cover estimates. We found the now-
decommissioned Collection 5 linear correction method to be
effective for improving the quality of these standard prod-
ucts across all metrics for which they were assessed, though
spectral-mixture approaches performed better in every met-
ric assessed. The results obtained in this study support the
application of the Collection 5 conversion of NDSI to fSCA
(Eq. 3) in the Collection 6 standard snow products derived
from MODIS or VIIRS. This conversion method does not
seem to consistently cause large errors, even when applied
to VNP101AF, for which this correction was not designed.
A VIIRS-specific correction method may yield further im-
provements to the VIIRS products, as VNP10A1F performed
worst across all metrics assessed in this study.

The poor performance of the VIIRS product may have
stemmed from the different bandpasses used by VIIRS to
calculate NDSI compared to the MODIS-utilized bandpasses
(Fig. 2). The VIIRS visible band is centered on a relatively
long wavelength compared to the MODIS visible band, and
snow reflectance is impacted by both the fraction of the
pixel covered by snow and the grain size of the snow, thus
supporting simultaneous solutions for the snow fraction and
grain size, as is performed with spectral-mixture approaches.
A significant limitation to NDSI methods is their need to
be recalibrated to achieve relative accuracy when new sen-
sors are introduced. The VIIRS recall and precision metrics,
which were unaffected by the linear correction applied to
the snow cover fraction, were worse than the correspond-
ing SPIReS MODIS and STC-MODSCAG values. Newer
spectral-mixture analysis methods consistently performed as
well as or better than the standard MODIS and Landsat prod-
ucts across all measures considered in this study. Spectral-
unmixing approaches have already been shown to be robust
when transitioning between sensors like MODIS and VI-
IRS (Rittger et al., 2021a). Based on this work, we expect
SPIReS to have similar performances on VIIRS and expect
these spectral-unmixing algorithms to be insensitive to band-
pass differences among other sensors such as Sentinel-2a
and Sentinel-2b (Bair et al., 2022) and the upcoming Ther-
mal infraRed Imaging Satellite for High-resolution Natural
resource Assessment (TRISHNA) mission. Global standard
MODSCAG and VIIRSCAG products are currently being
developed by the NSIDC DAAC, and SPIReS MODIS will
be produced operationally for North America, Greenland,
and High-Mountain Asia as part of Snow Today at NSIDC
(Rittger and Raleigh, 2022).
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6.2 Snow class insights

Mountainous regions contain some of the most diverse as-
semblages of snow classes among any biome around the
world. In this work, we assumed that the snow class map-
ping performance of each product exhibited in our vali-
dation scenes was similar to the expected performance of
the corresponding algorithm when assessing the same snow
classes in different geographical regions. This logic enables
us to use this validation method to assess algorithm per-
formances in other global regions where high-quality, high-
spatial-resolution validation data (e.g., airborne lidar-derived
snow depths) are not available.

Across all snow types, the spectral-unmixing approaches
SCAG and SPIReS performed as well as or better than the
standard products currently available to global users. This
finding gives credence to the assertion that spectral unmix-
ing is a viable approach for mapping snow globally and that
this method can improve our ability to map numerous sea-
sonal snow cover types at the global scale. In prior decades,
the computational requirements associated with spectral un-
mixing were seen as a barrier to operationalizing the meth-
ods into global products. Recent improvements in computing
power and significant advances in algorithms have reduced
the number of calculations required by 10–100× (Bair et al.,
2021a), thus furthering spectral-mixture analysis methods to
a point where it is no longer a barrier to run these algorithms
on global datasets.

For all products assessed in this work, detecting snow
(see F -statistic results) was most challenging in relatively
warm, forested areas (e.g., montane forest and maritime re-
gions). For the Landsat products, the RMSE values were
highest for forested snow types. Ephemeral snow and for-
est snow were the most challenging snow types to detect
(based on the F -statistic results). Because of the internal
fSCA detection thresholds established for some products, it
was difficult to map low-fSCA ephemeral snow. The assessed
spectral-unmixing approaches, apart from STC-MODSCAG,
do not map snow at the lowest fSCA values (Table 2) be-
cause the probability of obtaining FP detections character-
ized by bright non-snow surfaces increases substantially at
very low (< 0.08–0.1) fSCA values. FPs create the need for
persistence filters, thus hindering the ability of these algo-
rithms to map ephemeral snow. Ephemeral snow was also
the least-represented snow cover type in our analysis, and
additional investigations are needed to better characterize
ephemeral snow mapping capabilities involving multispec-
tral satellites. Geostationary satellites such as the Geosta-
tionary Operational Environmental Satellite R series (GOES-
R), Himawari, or Korean Multi-purpose Satellite (Komp-
SAT) provide better temporal sampling for ephemeral snow
detection than the once-daily detection abilities of polar-
orbiting satellites. However, the snow mapping approach uti-
lized by the National Oceanic and Atmospheric Administra-
tion (NOAA), while technically an application of spectral-

mixture analysis, uses only a single band and a background
endmember (Romanov et al., 2003). In forests, we observed
significant declines in the performances of all algorithms
compared to their snow mapping abilities observed when the
satellites had a clear view of the ground from space.

6.3 Canopy cover insights

This study augments prior evaluations of satellite-based
snow mapping performances under dense canopy cover.
STC-MODSCAG was validated under a dense canopy by
Rittger et al. (2020) and Raleigh et al. (2013) with ground-
based temperature sensors. While those studies considered
fewer study sites than were assessed herein, their evaluations
were more temporally continuous. In this study, the results
showed a lower F statistic at the highest canopy cover den-
sity than that obtained at the site with the highest canopy
cover density in Rittger et al. (2020). This was probably due
to the temporal distribution of the ASO validation dataset;
flights are temporally focused after peak SWE occurs, when
snow is more likely to be only on the ground and no longer
on top of the canopy as is observed following storm events.
SPIReS was also validated by Bair et al. (2021a) using an
ASO dataset smaller than that used herein, and the results
showed that the F statistic fell to approximately 80 % for
dense canopies; the dataset utilized in that study contained
scenes representing only California.

The three Landsat approaches validated in this study all
involve the use of different canopy correction methods.
SPIReS and OLISCAG produced nearly identical RMSE
variabilities associated with the canopy cover density, ex-
hibiting relatively low RMSE values at low canopy cover
densities and high RMSE values at the highest canopy cover
densities compared to those obtained with the USGS Col-
lection 1 fSCA product. SCAG had the most robust canopy
cover correction for the Landsat products when ranked based
on the minimum snow cover estimate bias and RMSE across
all canopy cover densities. From the example shown in Fig. 6,
SPIReS Landsat showed the lowest snow cover fraction bias
under a forest canopy, though Fig. 4 indicates the near-equal
performances of SPIReS Landsat and OLISCAG. The USGS
product employs a spatial replacement step different from
that of SPIReS Landsat (Sect. 4.1.5). This approach is the
likely reason behind the higher F statistics observed for the
USGS product at relatively high canopy cover densities be-
fore its snow detection ability dropped off, which is simi-
lar to the trends observed for the other products. Above a
canopy cover fraction of approximately 0.65, none of the
Landsat algorithms reliably mapped snow cover under the
forest canopy, though few pixels were available for testing
the algorithm performances under very dense canopy cover
conditions. At canopy cover fractions ranging from 0.5 to
0.6, viewable snow cover mapping from multispectral opti-
cal satellite data becomes challenging if the mapping pro-
cess is conducted based only on the spectral characteristics of
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individual pixels. Ancillary spatial or other data are needed
to improve snow cover estimates in pixels containing dense
canopy cover. At these extremely high canopy cover densi-
ties, it is not only difficult to detect snow but also difficult to
correct the actual fractional amount of snow present on the
ground.

All approaches considered herein estimated more snow
cover in pixels with dense canopy cover than the lidar valida-
tion dataset. It is unclear if these overestimates were caused
by the canopy correction methods inherent to the remote
sensing products, an issue associated with a lack of ground
returns from the lidar in some dense forest canopy locations
skewing the analysis, or both. At the meter scale, airborne
lidar with typical point densities do not receive ground re-
turns from all pixels covered by dense forest canopy (Zheng
et al., 2016). ASO is also known to not always receive ground
returns for all grid cells, and this issue is most prevalent
for heavily forested locations. Cao et al. (2018) acknowl-
edge that ASO ground point densities decrease non-linearly
as canopy cover and vegetation height increase. Across all
forested locations analyzed by Currier et al. (2019), 17 % of
the forested ASO pixels have no ground returns. It is likely
that some of the positive biases reported herein for snow
cover mapping under dense canopies by the remote sensing
products are due to the FN ASO snow depth returns at the
3 m scale reducing the ASO fSCA values at the validation
resolution.

The USGS Level-3 fSCA canopy correction method pre-
dated recent studies that have shown that forest snow cover is
dependent on both the time of year and the type of forest. For-
est dynamics are complex; different accumulation and melt
patterns can be observed depending on specific forest char-
acteristics (Dickerson-Lange et al., 2021), and variabilities
arise in the relationship between forest fSCA values and ad-
jacent open-area fSCA values due to various forest dynamics
controlled by the canopy cover density, temperature, and as-
pect (Safa et al., 2021). Both of these past studies observed
sparser late-season snow cover in denser canopy-covered ar-
eas. ASO usually performs springtime data acquisitions; at
this time, the forest snow cover is more variable than that
in mid-winter. Our study highlights and confirms that fSCA
values below 1 are pervasive under forest canopies and that
more complex canopy correction methods are needed if esti-
mates of snow cover on the ground under forest canopies are
to be improved. Additionally, snow present on the ground
is simply not detectable under canopy cover fractions above
0.65, though snow in the canopy can often result in pos-
itive snow detections. Additional spatial data and ancillary
snow information may help significantly improve our ability
to map snow on the ground under dense forest canopies.

Regarding the MODIS and VIIRS products, due to their
canopy correction methods and ability to integrate surface
information from multi-day measurements obtained at var-
ious sensor zenith angles, the spectral-unmixing approaches
showed improved snow detection abilities under high canopy

cover fractions compared to the standard products and the
Landsat products. Additionally, the larger pixel sizes in the
MODIS and VIIRS products allow canopy gap areas where
snow detection for fSCA> 0.1 is trivial to be integrated in
many pixels that contain canopy cover. In the Landsat prod-
ucts, varying bias patterns associated with the canopy cover
density were observed under the same approaches; this find-
ing may have been influenced by scale-dependent differences
in the canopy cover distribution across the study area. There
is a tradeoff between the aggressiveness (i.e., correcting to
fSCA= 1) of the canopy correction method employed and
the overall bias level observed in the results derived across
the entire scene, potentially inducing major spatial issues
when estimating snow cover fractions. Raleigh et al. (2013)
and Rittger et al. (2020) previously reported a similar issue,
which was particularly problematic when the canopy cover
density exceeded the viewable snow cover fraction.

Full-waveform lidar data can be used to parameterize the
viewable gap fraction in forests (Liu et al., 2008; Xin et al.,
2012) to set an a priori expectation of the maximum view-
able snow for a canopy correction step. While we used only
a lidar snow depth product with a spatial resolution of 3 m,
as no full-waveform dataset was available, good models ex-
ist for understanding what nadir and off-nadir sensors can
see while considering a theoretical maximum. With original,
full-waveform lidar data, one can also derive the necessary
parameters for gap fraction modeling (Morsdorf et al., 2006;
Zhao et al., 2012). SPIReS enables users to make parameter-
ization adjustments for various canopy crown sizes and tree
sizes in the fSCA canopy correction step, a procedure not
possible with the SCAG or USGS products. Analyses with
lidar datasets constructed in ranges like the Olympic Moun-
tains could also shed more light on snow cover conditions in
dense forests.

6.4 Snow-covered area insights

All of the spectral-unmixing approaches considered herein
exhibited significant negative biases at high snow cover frac-
tions. We posit that this finding can be attributed to two
issues. First, it is impossible to obtain positive biases for
fully snow-covered pixels, as snow cover cannot exceed
fSCA= 1. Second, it is difficult to find a spectral-unmixing
solution for fSCA= 1 that is substantially better than the so-
lutions available for slightly lower snow cover fractions when
dealing with many pixels. This is especially true when shad-
ing is present in the pixels, as shading has been shown to
significantly lower the apparent albedo and snow cover re-
flectance (Bair et al., 2022).

The combination of systematic snow cover overestimates
in forested areas with systematic underestimates of alpine
snow cover led to the overall bias estimates being close to
zero for all spectral-unmixing products. The spectral-mixture
analysis methods, when applied to the Landsat and MODIS
products, exhibited the best performances by achieving snow
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cover products with low bias and with the best results across
the assessed snow cover and canopy cover ranges. Error im-
ages, like those shown in Fig. 6, enabled us to identify sys-
tematic errors in snow cover fraction estimates and update
the models, thus supporting a continuous-development ap-
proach to snow mapping. For example, we discovered that
the opposing highly biased estimates derived in pixels with
dense canopy cover and high fractional snow cover condi-
tions can offset each other to generate an overall low bias.
Figure 6 shows a spatial pattern in which underestimates
(blue) are generally located in canopy-free areas and overes-
timates (red) are generally located in canopy-covered areas.
The Landsat products consistently overestimated the snow
cover fraction under dense canopy cover conditions and in-
correctly detected snow around the snowpack boundaries
near the lowest snow cover fractions. A possible explana-
tion for this finding is that the interactions among the ground
instantaneous field of view (GIFOV), point spread function,
and pixel size led to pixel overlaps in these regions and to
snow being identified within the GIFOV but outside the final
pixel ground sample distance, thus causing FP detections and
snow fraction overestimates; alternatively, the ASO snow de-
tection map may be negatively biased.

6.5 View angle insights

A surprising result obtained from this study is the insen-
sitivity of the snow mapping algorithms to the view angle
of the MODIS or VIIRS sensor, given previous findings of
MODSCAG view angle sensitivities with respect to forests
(Rittger et al., 2020). However, Rittger et al. (2020) investi-
gated raw or initial retrievals from MODSCAG, while both
STC-MODSCAG and SPIReS MODIS incorporate pixel-
based weighting schemes designed in consideration of the
sensor view angle (Dozier et al., 2008). The VNP10 prod-
uct showed some increasing RMSE values as the view angle
increased, but this trend was not monotonic, and the low-
est RMSE values were observed in the view angle range of
∼ 20–30◦. However, both the corrected and the uncorrected
VNP10 and MOD10 results exhibited relatively large biases
at the largest view angles compared to the STC-MODSCAG
and SPIReS results. We expected to see a stronger rela-
tionship between the view angle and errors in the standard
products than in the products constructed using spectral-
unmixing algorithms. A possible explanation is that the band
ratio method experiences reduced view angle impacts be-
cause (1) both the VIS and the SWIR observations are af-
fected and (2) dividing the VIS/SWIR reflectance difference
by the sum of the VIS/SWIR reflectance (originally designed
as a way to account for atmospheric differences when NDSI
is applied to derived top-of-atmosphere reflectance) compen-
sates for the view-angle-related errors.

Both STC-MODSCAG and SPIReS include temporal
weighting and smoothing routines that weight data collected
at nadir view angles higher than data collected at off-nadir

view angles. The fact that the view angle was not found to be
strongly or consistently related to the error statistics indicates
that these weighting schemes are effective. The coarsening of
the MODIS and VIIRS products to the 2 km scale for use in
our evaluations may have also minimized the view angle ef-
fect by increasing the pixel size.

6.6 Landsat vs. MODIS insights

In the study area, the Landsat-derived data contained signif-
icantly more canopy-free pixels than canopy-covered pixels
compared to the coarser-resolution MODIS and VIIRS prod-
ucts (Fig. 4d). The 30 m scale observations lend credence to
the value of techniques that can leverage canopy-free obser-
vations corresponding to locations at which MODIS cannot
obtain canopy-free observations, thus improving our ability
to detect various snow properties from space (Rittger et al.,
2021b). However, as the canopy cover increases, all available
algorithms face challenges when mapping snow; the detec-
tion abilities of these algorithms deteriorate rapidly with in-
creasing canopy cover conditions. The F -statistic values de-
creased with increasing canopy cover densities for all Land-
sat products (Fig. 5g), implying that Landsat cannot identify
all snow in forested landscapes and is thus an imperfect vali-
dation measure for coarser-resolution products. The ability of
lidar instruments to both penetrate forest canopies and mea-
sure snow at sufficiently fine spatial scales to eliminate the
need for fSCA and instead produce binary snow maps pro-
vides lidar-based methods with the improved ability to val-
idate other snow products, such as those derived from mul-
tispectral sensors in forested areas. Prior studies have also
shown that high-spatial-resolution commercial satellite data
with spatial scales ranging from 0.5–4.0 m, the same spatial
scales as those of lidar data, can be used to reliably map snow
cover fractions for use in validations performed in canopy-
free areas and to reliably detect snow cover presence under
canopies; however, high-spatial-resolution commercial satel-
lite data cannot be used to measure snow cover fractions
under moderate canopy cover conditions (Bair et al., 2016,
2021a). Airborne lidar data and spaceborne high-resolution
commercial data provide alternative validation solutions to
using standard multispectral satellite data (e.g., Landsat and
Sentinel-2 data).

7 Conclusion

The process by which snow cover is mapped using data col-
lected by multispectral satellites has matured through the de-
velopment of a variety of methods. Snow cover varies at
a finer spatial resolution than that captured by multispec-
tral sensors; thus, understanding how well various methods
work across a range of snow cover fractions and in a variety
of landscapes is critically important for recognizing global
snow mapping capabilities. In this study, we examined how
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well various products perform across various canopy cover
densities, per-pixel fractional snow cover conditions, satel-
lite view angles, and global snow type classifications. Sup-
porting previous work, we found that spectral-unmixing al-
gorithms perform better than standard NDSI-based products.
Aerial lidar retrievals indicated that this finding holds true
across a diverse range of snow and forest cover conditions
and among all global seasonal snow cover classifications.
Spectral-unmixing methods have reached a level of readi-
ness that allows them to be deployed with modern comput-
ing techniques to advance snow cover mapping at the global
scale.

Code and data availability. All Airborne lidar datasets were
obtained from NSIDC (https://nsidc.org/data/aso; Painter et al.,
2016) and ASO, Inc. (https://data.airbornesnowobservatories.com/;
Painter et al., 2016). The key tables which match individual ASO
lidar flights to the MODIS and VIIRS tiles, Landsat path/rows,
and Landsat ARD tiles are available as a Supplement to this
paper. The canopy cover data used in the validation are pub-
licly available at https://www.mrlc.gov/data (Coulston et al.,
2012). The sensor view angle data came from publicly available
MOD09GA and VNP09GA datasets from NASA DAACs. The
VNP10A1F (https://doi.org/10.5067/VIIRS/VNP10A1F.001;
Riggs et al., 2019) and MOD10A1F
(https://doi.org/10.5067/MODIS/MOD10A1F.061; Hall and
Riggs, 2020) datasets were downloaded from NSIDC in
May 2022. The SPIReS datasets used in this analysis are
permanently stored with DOIs: MODIS WUS SPIReS DOI
(https://doi.org/10.21424/R4H05T, Bair and Stillinger, 2022)
and Landsat 8 SPIReS DOI (https://doi.org/10.21424/R4C62H,
Stillinger and Bair, 2022). The SPIReS codebase is publicly avail-
able on GitHub with a tag for the version used in this validation
analysis (https://github.com/edwardbair/SPIRES/releases/tag/v1.1,
last access: 29 June 2022). The STC-MODSCAG and OLISCAG
data from this paper are permanently stored on Zenodo with the
following DOI (https://doi.org/10.5281/zenodo.7510861, Rittger,
2023). The SCAG code is currently closed-source; however,
the MODSCAG data have been accepted by the NSIDC User
Working Group and are supported by NSIDC user services
(nsidc@nsidc.org).
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