Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-127-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-127-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Nicole Keeney
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Alex Cabaj
Department of Physics, University of Toronto, Toronto, Canada
Paul Kushner
Department of Physics, University of Toronto, Toronto, Canada
Marco Bagnardi
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
ADNET Systems Inc., Bethesda, MD, USA
Related authors
Alex Cabaj, Paul J. Kushner, and Alek A. Petty
The Cryosphere, 19, 3033–3064, https://doi.org/10.5194/tc-19-3033-2025, https://doi.org/10.5194/tc-19-3033-2025, 2025
Short summary
Short summary
The output of snow-on-sea-ice models is influenced by the choice of snowfall input used. We ran such a model with different snowfall inputs and calibrated it to observations, produced a new calibrated snow product, and regionally compared the model outputs to outputs from another snow-on-sea-ice model. The two models agree best on the seasonal cycle of snow in the central Arctic Ocean. Observational comparisons highlight ongoing challenges in estimating the depth and density of snow on Arctic sea ice.
Alek Aaron Petty, Christopher Cardinale, and Madison Smith
EGUsphere, https://doi.org/10.5194/egusphere-2025-766, https://doi.org/10.5194/egusphere-2025-766, 2025
Short summary
Short summary
We put global climate models to the test against NASA’s ICESat-2 satellite to see how well they simulate global sea ice cover. By adding fancy laser data from ICESat-2, we can better assess how well the models are performing compared to the standard assessments of sea ice area. Overall the models do a good job but there’s room for improvement, especially across the Southern Ocean. We should think a bit more about sea ice density if we want more reliable freeboard comparisons.
Siqi Liu, Shiming Xu, Wenkai Guo, Yanfei Fan, Lu Zhou, Jack Landy, Malin Johansson, Weixin Zhu, and Alek Petty
EGUsphere, https://doi.org/10.5194/egusphere-2025-1069, https://doi.org/10.5194/egusphere-2025-1069, 2025
Short summary
Short summary
In this study, we explore the potential of using synthetic aperture radars (SAR) to predict the sea ice height measurements by the airborne campaign of Operation IceBridge. In particular, we predict the meter-scale sea ice height with the statistical relationship between the two, overcoming the resolution limitation of SAR images from Sentinel-1 satellites. The prediction and ice drift correction algorithms can be applied to the extrapolation of ICESat-2 measurements in the Arctic region.
Youngmin Choi, Alek Petty, Denis Felikson, and Jonathan Poterjoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-301, https://doi.org/10.5194/egusphere-2025-301, 2025
Short summary
Short summary
In this study, we combined numerical models with satellite data using the ensemble Kalman filter to improve predictions of glacier states and their basal conditions. Simulations showed that adding more data enhances prediction accuracy. We also tested the effect of various data types and found that the high-resolution data improve model performance. This method could inform the design of better observation systems and refine future projections of ice sheet behavior.
Jack C. Landy, Claude de Rijke-Thomas, Carmen Nab, Isobel Lawrence, Isolde A. Glissenaar, Robbie D. C. Mallett, Renée M. Fredensborg Hansen, Alek Petty, Michel Tsamados, Amy R. Macfarlane, and Anne Braakmann-Folgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2904, https://doi.org/10.5194/egusphere-2024-2904, 2024
Short summary
Short summary
In this study we use three satellites to test the planned remote sensing approach of the upcoming mission CRISTAL over sea ice: that its dual radars will accurately measure the heights of the top and base of snow sitting atop floating sea ice floes. Our results suggest that CRISTAL's dual radars won’t necessarily measure the snow top and base under all conditions. We find that accurate height measurements depend much more on surface roughness than on snow properties, as is commonly assumed.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, https://doi.org/10.5194/tc-15-821-2021, 2021
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
Short summary
Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
Alex Cabaj, Paul J. Kushner, and Alek A. Petty
The Cryosphere, 19, 3033–3064, https://doi.org/10.5194/tc-19-3033-2025, https://doi.org/10.5194/tc-19-3033-2025, 2025
Short summary
Short summary
The output of snow-on-sea-ice models is influenced by the choice of snowfall input used. We ran such a model with different snowfall inputs and calibrated it to observations, produced a new calibrated snow product, and regionally compared the model outputs to outputs from another snow-on-sea-ice model. The two models agree best on the seasonal cycle of snow in the central Arctic Ocean. Observational comparisons highlight ongoing challenges in estimating the depth and density of snow on Arctic sea ice.
Stephen Howell, Alex Cabaj, David Babb, Jack Landy, Jackie Dawson, Mallik Mahmud, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2025-2029, https://doi.org/10.5194/egusphere-2025-2029, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The Northwest Passage provides a shorter transit route connecting the Atlantic Ocean to the Pacific Ocean but ever-present sea ice has prevented its practical navigation. Sea ice area in the northern route of the Northwest Passage on September 30, 2024 fell to a minimum of 4x103 km2, the lowest ice area observed since 1960. This paper describes the unique processes that contributed to the record low sea ice area in the northern route of the Northwest Passage in 2024.
Zhihong Zhuo, Xinyue Wang, Yunqian Zhu, Ewa M. Bednarz, Eric Fleming, Peter R. Colarco, Shingo Watanabe, David Plummer, Georgiy Stenchikov, William Randel, Adam Bourassa, Valentina Aquila, Takashi Sekiya, Mark R. Schoeberl, Simone Tilmes, Wandi Yu, Jun Zhang, Paul J. Kushner, and Francesco S. R. Pausata
EGUsphere, https://doi.org/10.5194/egusphere-2025-1505, https://doi.org/10.5194/egusphere-2025-1505, 2025
Short summary
Short summary
The 2022 Hunga eruption caused unprecedented stratospheric water injection, triggering unique atmospheric impacts. This study combines observations and model simulations, projecting a stratospheric water vapor anomaly lasting 4–7 years, with significant temperature variations and ozone depletion in the upper atmosphere lasting 7–10 years. These findings offer critical insights into the role of stratospheric water vapor in shaping climate and atmospheric chemistry.
Alek Aaron Petty, Christopher Cardinale, and Madison Smith
EGUsphere, https://doi.org/10.5194/egusphere-2025-766, https://doi.org/10.5194/egusphere-2025-766, 2025
Short summary
Short summary
We put global climate models to the test against NASA’s ICESat-2 satellite to see how well they simulate global sea ice cover. By adding fancy laser data from ICESat-2, we can better assess how well the models are performing compared to the standard assessments of sea ice area. Overall the models do a good job but there’s room for improvement, especially across the Southern Ocean. We should think a bit more about sea ice density if we want more reliable freeboard comparisons.
Siqi Liu, Shiming Xu, Wenkai Guo, Yanfei Fan, Lu Zhou, Jack Landy, Malin Johansson, Weixin Zhu, and Alek Petty
EGUsphere, https://doi.org/10.5194/egusphere-2025-1069, https://doi.org/10.5194/egusphere-2025-1069, 2025
Short summary
Short summary
In this study, we explore the potential of using synthetic aperture radars (SAR) to predict the sea ice height measurements by the airborne campaign of Operation IceBridge. In particular, we predict the meter-scale sea ice height with the statistical relationship between the two, overcoming the resolution limitation of SAR images from Sentinel-1 satellites. The prediction and ice drift correction algorithms can be applied to the extrapolation of ICESat-2 measurements in the Arctic region.
Youngmin Choi, Alek Petty, Denis Felikson, and Jonathan Poterjoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-301, https://doi.org/10.5194/egusphere-2025-301, 2025
Short summary
Short summary
In this study, we combined numerical models with satellite data using the ensemble Kalman filter to improve predictions of glacier states and their basal conditions. Simulations showed that adding more data enhances prediction accuracy. We also tested the effect of various data types and found that the high-resolution data improve model performance. This method could inform the design of better observation systems and refine future projections of ice sheet behavior.
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
The Cryosphere, 19, 201–218, https://doi.org/10.5194/tc-19-201-2025, https://doi.org/10.5194/tc-19-201-2025, 2025
Short summary
Short summary
We evaluate and rank 23 different datasets on their ability to accurately estimate historical snow amounts. The evaluation uses new a set of surface snow measurements with improved spatial coverage, enabling evaluation across both mountainous and nonmountainous regions. Performance measures vary tremendously across the products: while most perform reasonably in nonmountainous regions, accurate representation of snow amounts in mountainous regions and of historical trends is much more variable.
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
The Cryosphere, 18, 4955–4969, https://doi.org/10.5194/tc-18-4955-2024, https://doi.org/10.5194/tc-18-4955-2024, 2024
Short summary
Short summary
We look at three commonly used snow depth datasets that are produced through a combination of snow modelling and historical measurements (reanalysis). When compared with each other, these datasets have differences that arise for various reasons. We show that a simple snow model can be used to examine these inconsistencies and highlight issues. This method indicates that one of the complex datasets should be excluded from further studies.
Jack C. Landy, Claude de Rijke-Thomas, Carmen Nab, Isobel Lawrence, Isolde A. Glissenaar, Robbie D. C. Mallett, Renée M. Fredensborg Hansen, Alek Petty, Michel Tsamados, Amy R. Macfarlane, and Anne Braakmann-Folgmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2904, https://doi.org/10.5194/egusphere-2024-2904, 2024
Short summary
Short summary
In this study we use three satellites to test the planned remote sensing approach of the upcoming mission CRISTAL over sea ice: that its dual radars will accurately measure the heights of the top and base of snow sitting atop floating sea ice floes. Our results suggest that CRISTAL's dual radars won’t necessarily measure the snow top and base under all conditions. We find that accurate height measurements depend much more on surface roughness than on snow properties, as is commonly assumed.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Steven Fons, Nathan Kurtz, and Marco Bagnardi
The Cryosphere, 17, 2487–2508, https://doi.org/10.5194/tc-17-2487-2023, https://doi.org/10.5194/tc-17-2487-2023, 2023
Short summary
Short summary
Antarctic sea ice thickness is an important quantity in the Earth system. Due to the thick and complex snow cover on Antarctic sea ice, estimating the thickness of the ice pack is difficult using traditional methods in radar altimetry. In this work, we use a waveform model to estimate the freeboard and snow depth of Antarctic sea ice from CryoSat-2 and use these values to calculate sea ice thickness and volume between 2010 and 2021 and showcase how the sea ice pack has changed over this time.
Chih-Chun Chou, Paul J. Kushner, Stéphane Laroche, Zen Mariani, Peter Rodriguez, Stella Melo, and Christopher G. Fletcher
Atmos. Meas. Tech., 15, 4443–4461, https://doi.org/10.5194/amt-15-4443-2022, https://doi.org/10.5194/amt-15-4443-2022, 2022
Short summary
Short summary
Aeolus is the first satellite that provides global wind profile measurements. The mission aims to improve the weather forecasts in the tropics, but also, potentially, in the polar regions. We evaluate the performance of the instrument over the Canadian North and the Arctic by comparing its measured winds in both cloudy and non-cloudy layers to wind data from forecasts, reanalysis, and ground-based instruments. Overall, good agreement was seen, but Aeolus winds have greater dispersion.
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, https://doi.org/10.5194/tc-15-821-2021, 2021
Lu Zhou, Julienne Stroeve, Shiming Xu, Alek Petty, Rachel Tilling, Mai Winstrup, Philip Rostosky, Isobel R. Lawrence, Glen E. Liston, Andy Ridout, Michel Tsamados, and Vishnu Nandan
The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, https://doi.org/10.5194/tc-15-345-2021, 2021
Short summary
Short summary
Snow on sea ice plays an important role in the Arctic climate system. Large spatial and temporal discrepancies among the eight snow depth products are analyzed together with their seasonal variability and long-term trends. These snow products are further compared against various ground-truth observations. More analyses on representation error of sea ice parameters are needed for systematic comparison and fusion of airborne, in situ and remote sensing observations.
Cited articles
Aagaard, K. and Carmack, E. C.:
The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res., 94, 14485–14498, https://doi.org/10.1029/JC094iC10p14485, 1989.
Bagnardi, M., Kurtz, N. T., Petty, A. A., and Kwok, R.:
Sea Surface Height Anomalies of the Arctic Ocean From ICESat-2: A First Examination and Comparisons With CryoSat-2, Geophys. Res. Lett., 48, e2021GL093155, https://doi.org/10.1029/2021GL093155, 2021.
Barrett, A. P., Stroeve, J. C., and Serreze, M. C.:
Arctic Ocean Precipitation From Atmospheric Reanalyses and Comparisons With North Pole Drifting Station Records, J. Geophys. Res.-Oceans, 125, e2019JC015415, https://doi.org/10.1029/2019JC015415, 2020.
Batrak, Y. and Müller, M.:
On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice, Nat. Commun., 10, 4170, https://doi.org/10.1038/s41467-019-11975-3, 2019.
Breivik, L. A., Eastwood, S., and Lavergne, T.:
Use of C-Band Scatterometer for Sea Ice Edge Identification, IEEE T. Geosci. Remote, 50, 2669–2677, https://doi.org/10.1109/TGRS.2012.2188898, 2012 (data available at: ftp://osisaf.met.no/prod/ice/type/, last access: 1 May 2021).
British Antarctic Survey: Year-round Arctic sea ice thickness from CryoSat-2 Baseline-D Level 1b observations 2010–2020, British Antarctic Survey [data set], https://doi.org/10.5285/D8C66670-57AD-44FC-8FEF-942A46734ECB, 2022.
Bunzel, F., Notz, D., and Pedersen, L. T.:
Retrievals of Arctic Sea-Ice Volume and Its Trend Significantly Affected by Interannual Snow Variability, Geophys. Res. Lett., 45, 11751–11759, https://doi.org/10.1029/2018GL078867, 2018.
Cabaj, A., Kushner, P. J., Fletcher, C. G., Howell, S., and Petty, A. A.:
Constraining Reanalysis Snowfall Over the Arctic Ocean Using CloudSat Observations, Geophys. Res. Lett., 47, e2019GL086426, https://doi.org/10.1029/2019GL086426, 2020.
Cabaj, A., Kushner, P., and Petty, A.: Observationally Calibrating Free Parameters for a Snow-on-Sea-Ice Model Using a Markov Chain Monte Carlo Method, in: AGU Fall Meeting Abstracts, AGU Fall Meeting 2021, New Orleans, LA, id. C33A-02, 2021.
SIMIP Community: Arctic Sea Ice in CMIP6, Geophys. Res. Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749, 2020.
Cooley, S. W., Ryan, J. C., Smith, L. C., Horvat, C., Pearson, B., Dale, B., and Lynch, A. H.:
Coldest Canadian Arctic communities face greatest reductions in shorefast sea ice, Nat. Clim. Change, 1–6, https://doi.org/10.1038/s41558-020-0757-5, 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kahler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.:
The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Eicken, H.:
Ocean science: Arctic sea ice needs better forecasts, Nature, 497, 431–433, https://doi.org/10.1038/497431a, 2013.
Giles, K. A., Laxon, S. W., Wingham, D. J., Wallis, D. W., Krabill, W. B., Leuschen, C. J., McAdoo, D., Manizade, S. S., and Raney, R. K.:
Combined airborne laser and radar altimeter measurements over the Fram Strait in May 2002, Remote Sens. Environ., 111, 182–194, https://doi.org/10.1016/j.rse.2007.02.037, 2007.
Glissenaar, I. A., Landy, J. C., Petty, A. A., Kurtz, N. T., and Stroeve, J. C.:
Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness, The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, 2021.
Granskog, M. A., Rösel, A., Dodd, P. A., Divine, D., Gerland, S., Martma, T., and Leng, M. J.:
Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard, J. Geophys. Res.-Oceans, 122, 2539–2549, https://doi.org/10.1002/2016JC012398, 2017.
Hendricks, S. and Ricker, R.:
User guide – AWI CryoSat-2 sea ice thickness data product (v1.2), Alfred Wegener Institute, http://epic.awi.de/41242/ (last access: 1 May 2019), 2016 (data available at: https://data.seaiceportal.de/data/cryosat2/, last access: 1 May 2019).
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.:
The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Kacimi, S. and Kwok, R.:
Arctic Snow Depth, Ice Thickness, and Volume From ICESat-2 and CryoSat-2: 2018–2021, Geophys. Res. Lett., 49, e2021GL097448, https://doi.org/10.1029/2021GL097448, 2022a.
Kacimi, S. and Kwok, R.: ICESat-2 and CryoSat-2 L4 Monthly Arctic Snow Depth and Sea Ice Thickness, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA [data set], https://doi.org/10.5067/04YYIKXW0GJS, 2022b.
King, J., Howell, S., Derksen, C., Rutter, N., Toose, P., Beckers, J. F., Haas, C., Kurtz, N., and Richter-Menge, J.:
Evaluation of Operation IceBridge quick-look snow depth estimates on sea ice, Geophys. Res. Lett., 42, 2015GL066389, https://doi.org/10.1002/2015GL066389, 2015.
King, J., Skourup, H., Hvidegaard, S. M., Rösel, A., Gerland, S., Spreen, G., Polashenski, C., Helm, V., and Liston, G. E.:
Comparison of Freeboard Retrieval and Ice Thickness Calculation From ALS, ASIRAS, and CryoSat-2 in the Norwegian Arctic, to Field Measurements Made During the N-ICE2015 Expedition, J. Geophys. Res.-Oceans, 123, 1123–1141, https://doi.org/10.1002/2017JC013233, 2018.
Koenig, L. S., Ivanoff, A., Alexander, P. M., MacGregor, J. A., Fettweis, X., Panzer, B., Paden, J. D., Forster, R. R., Das, I., McConnell, J. R., Tedesco, M., Leuschen, C., and Gogineni, P.:
Annual Greenland accumulation rates (2009–2012) from airborne snow radar, The Cryosphere, 10, 1739–1752, https://doi.org/10.5194/tc-10-1739-2016, 2016.
Krishfield, R. A., Proshutinsky, A., Tateyama, K., Williams, W. J., Carmack, E. C., McLaughlin, F. A., and Timmermans, M.-L.:
Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle, J. Geophys. Res.-Oceans, 119, 1271–1305, https://doi.org/10.1002/2013JC008999, 2014 (data available at: https://www2.whoi.edu/site/beaufortgyre/data/mooring-data/2018-2021-mooring-data-from-the-bgep-project/, last access: 1 December 2022).
Kurtz, J. C. and Harbeck, J.:
CryoSat-2 Level 4 Sea Ice Elevation, Freeboard, and Thickness, Version 1, NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.5067/96JO0KIFDAS8, 2017.
Kurtz, N. T., Markus, T., Cavalieri, D. J., Sparling, L. C., Krabill, W. B., Gasiewski, A. J., and Sonntag, J. G.:
Estimation of sea ice thickness distributions through the combination of snow depth and satellite laser altimetry data, J. Geophys. Res., 114, C10007, https://doi.org/10.1029/2009JC005292, 2009.
Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G.:
Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data, The Cryosphere, 7, 1035–1056, https://doi.org/10.5194/tc-7-1035-2013, 2013.
Kwok, R.:
Sea ice convergence along the Arctic coasts of Greenland and the Canadian Arctic Archipelago: Variability and extremes (1992–2014), Geophys. Res. Lett., 42, 7598–7605, https://doi.org/10.1002/2015GL065462, 2015.
Kwok, R.:
Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018), Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018.
Kwok, R. and Cunningham, G. F.:
ICESat over Arctic sea ice: Estimation of snow depth and ice thickness, J. Geophys. Res., 113, C08010, https://doi.org/10.1029/2008JC004753, 2008.
Kwok, R. and Cunningham, G. F.:
Variability of Arctic sea ice thickness and volume from CryoSat-2, Philos. T. R. Soc. Lond. A, 373, https://doi.org/10.1098/rsta.2014.0157, 2015.
Kwok, R., Cunningham, G. F., Hoffmann, J., and Markus, T.:
Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission, Remote Sens. Environ., 183, 13–25, https://doi.org/10.1016/j.rse.2016.05.011, 2016.
Kwok, R., Kurtz, N. T., Brucker, L., Ivanoff, A., Newman, T., Farrell, S. L., King, J., Howell, S., Webster, M. A., Paden, J., Leuschen, C., MacGregor, J. A., Richter-Menge, J., Harbeck, J., and Tschudi, M.:
Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge, The Cryosphere, 11, 2571–2593, https://doi.org/10.5194/tc-11-2571-2017, 2017.
Kwok, R., Kacimi, S., Markus, T., Kurtz, N. T., Studinger, M., Sonntag, J. G., Manizade, S. S., Boisvert, L. N., and Harbeck, J. P.:
ICESat-2 surface height and sea-ice freeboard assessed with ATM lidar acquisitions from Operation IceBridge, Geophys. Res. Lett., 44, 11228–11236, https://doi.org/10.1029/2019GL084976, 2019a.
Kwok, R., Markus, T., Kurtz, N. T., Petty, A. A., Neumann, T. A., Farrell, S. L., Cunningham, G. F., Hancock, D. W., Ivanoff, A., and Wimert, J. T.:
Surface Height and Sea Ice Freeboard of the Arctic Ocean From ICESat-2: Characteristics and Early Results, J. Geophys. Res.-Oceans, 124, 6942–6959, https://doi.org/10.1029/2019JC015486, 2019b.
Kwok, R., Kacimi, S., Webster, M. A., Kurtz, N. T., and Petty, A. A.:
Arctic Snow Depth and Sea Ice Thickness From ICESat-2 and CryoSat-2 Freeboards: A First Examination, J. Geophys. Res.-Oceans, 125, e2019JC016008, https://doi.org/10.1029/2019JC016008, 2020.
Kwok, R., Petty, A., Cunningham, G., Markus, T., Hancock, D., Ivanoff, A., Wimert, J., Bagnardi, M., and Kurtz, N.:
ATLAS/ICESat-2 L3A Sea Ice Freeboard, Version 5, National Snow and Ice Data Center, Boulder, Colorado, USA [data set], https://doi.org/10.5067/ATLAS/ATL10.005, 2021a.
Kwok, R., Petty, A., Cunningham, G., Markus, T., Hancock, D., Ivanoff, A., Wimert, J., Bagnardi, M., and Kurtz, N.:
ATLAS/ICESat-2 L3A Sea Ice Heights, Version 5, NSIDC: National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.5067/ATLAS/ATL07.005, 2021b.
Kwok, R., Petty, A., Wimert, J., Bagnardi, M., Cuningham, G., Hancock, D., Ivanoff, A., and Kurtz, N.:
Ice, Cloud, and Land Elevation Satellite-2 Project: Algorithm Theoretical Basis Document (ATBD) for Sea Ice Products, Release 005, https://icesat-2.gsfc.nasa.gov/science/data-products (last access: 1 December 2022), 2021c.
Kwok, R., Petty, A. A., Bagnardi, M., Kurtz, N. T., Cunningham, G. F., Ivanoff, A., and Kacimi, S.:
Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products, The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, 2021d.
Kwok, R., Petty, A. A., Cunningham, G., Markus, T., Hancock, D., Ivanoff, A., Wimert, J., Bagnardi, M., Kurtz, N., and the ICESat-2 Science Team: ATLAS/ICESat-2 L3A Sea Ice Freeboard, Version 4, National Snow and Ice Data Center, Boulder, Colorado USA [data set], https://doi.org/10.5067/ATLAS/ATL10.004, 2021e.
Labe, Z., Magnusdottir, G., and Stern, H.:
Variability of Arctic sea-ice thickness using PIOMAS and the CESM Large Ensemble, J. Climate, 31, 3233–3247, https://doi.org/10.1175/JCLI-D-17-0436.1, 2018.
Landy, J. C., Bouffard, J., Wilson, C., Rynders, S., Aksenov, Y., and Tsamados, M.:
Improved Arctic Sea Ice Freeboard Retrieval From Satellite Altimetry Using Optimized Sea Surface Decorrelation Scales, J. Geophys. Res.-Oceans, 126, e2021JC017466, https://doi.org/10.1029/2021JC017466, 2021.
Landy, J. C., Dawson, G. J., Tsamados, M., Bushuk, M., Stroeve, J. C., Howell, S. E. L., Krumpen, T., Babb, D. G., Komarov, A. S., Heorton, H. D. B. S., Belter, H. J., and Aksenov, Y.:
A year-round satellite sea-ice thickness record from CryoSat-2, Nature, 609, 517–522, https://doi.org/10.1038/s41586-022-05058-5, 2022.
Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H., and Breivik, L.-A.:
Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic, J. Geophys. Res., 115, C10032, https://doi.org/10.1029/2009JC005958, 2010.
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.:
CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732–737, https://doi.org/10.1002/grl.50193, 2013 (data available at: http://www.cpom.ucl.ac.uk/csopr/seaice.html, last access: 1 May 2019).
Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S., Pedersen, S. H., Reinking, A. K., and Elder, K.:
A Lagrangian Snow-Evolution System for Sea-Ice Applications (SnowModel-LG): Part I—Model Description, J. Geophys. Res.-Oceans, 125, e2019JC015913, https://doi.org/10.1029/2019JC015913, 2020.
Magruder, L. A., Brunt, K. M., and Alonzo, M.:
Early ICESat-2 on-orbit Geolocation Validation Using Ground-Based Corner Cube Retro-Reflectors, Remote Sens.-Basel, 12, 3653, https://doi.org/10.3390/rs12213653, 2020.
Mallett, R. D. C., Stroeve, J. C., Tsamados, M., Landy, J. C., Willatt, R., Nandan, V., and Liston, G. E.:
Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover, The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, 2021.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S., Popescu, S., Shum, C., Schutz, B. E., Smith, B., Yang, Y., and Zwally, J.:
The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation, Remote Sens. Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017.
Meier, W., Perovich, D., Ferrell, S., Haas, C., Hendricks, S., and Petty, A.:
Sea Ice, NOAA Arctic Report Card 2021, edited by: Moon, T. A., Druckenmiller, M. L., and Thoman, R. L., https://doi.org/10.25923/y2wd-fn85, 2021.
Meier, W. N., and Stewart, J. S.: Arctic and Antarctic Regional Masks for Sea Ice and Related Data Products, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA [data set], https://doi.org/10.5067/CYW3O8ZUNIWC, 2023.
Meier, W. N., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., and Stroeve, J.:
NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3, National Snow and Ice Data Center, Boulder, Colorado USA [data set], https://doi.org/10.7265/N59P2ZTG, 2017.
Meier, W. N., Fetterer, F., Windnagel, A. K., and Stewart, J. S.:
NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4 [September 2018 to April 2021], NSIDC: National Snow and Ice Data Center, Boulder, Colorado, USA [data set], https://doi.org/10.7265/efmz-2t65, 2021.
Moore G. W. K., Schweiger A., Zhang J., and Steele M.:
Collapse of the 2017 Winter Beaufort High: A Response to Thinning Sea Ice?, Geophys. Res. Lett., 45, 2860–2869, https://doi.org/10.1002/2017GL076446, 2018.
Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S., King, J., Ricker, R., and Else, B.:
Effect of Snow Salinity on CryoSat-2 Arctic First-Year Sea Ice Freeboard Measurements, Geophys. Res. Lett., 44, 10419–10426, https://doi.org/10.1002/2017GL074506, 2017.
Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T., Hancock, D. W., Harbeck, K., Lee, J., Kurtz, N. T., Luers, P. J., Luthcke, S. B., Magruder, L., Pennington, T. A., Ramos-Izquierdo, L., Rebold, T., Skoog, J., and Thomas, T. C.:
The Ice, Cloud, and Land Elevation Satellite – 2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System, Remote Sens. Environ., 233, 111325, https://doi.org/10.1016/j.rse.2019.111325, 2019.
OSI SAF: Global Low Resolution Sea Ice Drift – Multimission, EUMETSAT SAF on Ocean and Sea Ice [data set], https://doi.org/10.15770/EUM_SAF_OSI_NRT_2007, 2010.
Parkinson, C. L. and DiGirolamo, N. E.:
Sea ice extents continue to set new records: Arctic, Antarctic, and global results, Remote Sens. Environ., 267, 112753, https://doi.org/10.1016/j.rse.2021.112753, 2021.
Petty, A.: akpetty/ICESat-2-sea-ice-thickness: Version 1 (v1.0.2), Zenodo [code], https://doi.org/10.5281/zenodo.7474254, 2022.
Petty, A. and Cabaj, A.: akpetty/NESOSIM: Version 1.1 (v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.4448356, 2021a.
Petty, A. and Cabaj, A.: NASA Eulerian Snow On Sea Ice Model Version 1.1 (NESOSIMv1.1) data: 1980–2021 (September to April) (v1.1), Zenodo [code and data set], https://doi.org/10.5281/zenodo.5164314, 2021b.
Petty, A. and Keeney, N.: akpetty/icesat2-book: v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.7474217, 2022.
Petty, A. A., Hutchings, J. K., Richter-Menge, J. A., and Tschudi, M. A.:
Sea ice circulation around the Beaufort Gyre: The changing role of wind forcing and the sea ice state, J. Geophys. Res.-Oceans, 121, 3278–3296, https://doi.org/10.1002/2015JC010903, 2016.
Petty, A. A., Webster, M., Boisvert, L., and Markus, T.:
The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis, Geosci. Model Dev., 11, 4577–4602, https://doi.org/10.5194/gmd-11-4577-2018, 2018a.
Petty, A. A., Holland, M. M., Bailey, D. A., and Kurtz, N. T.:
Warm Arctic, Increased Winter Sea Ice Growth?, Geophys. Res. Lett., 45, 12,922-12,930, https://doi.org/10.1029/2018GL079223, 2018b.
Petty, A. A., Kurtz, N. T., Kwok, R., Markus, T., and Neumann, T. A.:
Winter Arctic Sea Ice Thickness From ICESat-2 Freeboards, J. Geophys. Res.-Oceans, 125, e2019JC015764, https://doi.org/10.1029/2019JC015764, 2020.
Petty, A. A., Bagnardi, M., Kurtz, N. T., Tilling, R., Fons, S., Armitage, T., Horvat, C., and Kwok, R.:
Assessment of ICESat-2 Sea Ice Surface Classification with Sentinel-2 Imagery: Implications for Freeboard and New Estimates of Lead and Floe Geometry, Earth and Space Science, 8, e2020EA001491, https://doi.org/10.1029/2020EA001491, 2021.
Petty, A. A., Kurtz, N., Kwok, R., Markus, T., and Neumann, T. A.:
ICESat-2 L4 Along-Track Sea Ice Thickness, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA [data set], https://doi.org/10.5067/JTI5YG3S6VAJ, 2022a.
Petty, A. A., Kurtz, N., Kwok, R., Markus, T., Neumann, T. A., and Keeney, N.:
ICESat-2 L4 Monthly Gridded Sea Ice Thickness, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA [data set], https://doi.org/10.5067/OE8BDP5KU30Q, 2022b.
Post, E., Bhatt, U. S., Bitz, C. M., Brodie, J. F., Fulton, T. L., Hebblewhite, M., Kerby, J., Kutz, S. J., Stirling, I., and Walker, D. A.:
Ecological Consequences of Sea-Ice Decline, Science, 341, 519–524, https://doi.org/10.1126/science.1235225, 2013.
Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C.:
A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data, The Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-1607-2017, 2017 (data available at: https://spaces.awi.de/pages/viewpage.action?pageId=291898639, last access: 1 September 2022).
Sallila, H., Farrell, S. L., McCurry, J., and Rinne, E.:
Assessment of contemporary satellite sea ice thickness products for Arctic sea ice, The Cryosphere, 13, 1187–1213, https://doi.org/10.5194/tc-13-1187-2019, 2019.
Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D., and DiMarzio, J. P.:
Overview of the ICESat Mission, Geophys. Res. Lett., 32, L21S01, https://doi.org/10.1029/2005GL024009, 2005.
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.:
Uncertainty in modeled Arctic sea ice volume, J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084, 2011.
Schweiger, A. J., Steele, M., Zhang, J., Moore, G. W. K., and Laidre, K. L.:
Accelerated sea ice loss in the Wandel Sea points to a change in the Arctic's Last Ice Area, Commun. Earth Environ., 2, 1–11, https://doi.org/10.1038/s43247-021-00197-5, 2021.
Serreze, M. C., Barrett, A. P., Slater, A. G., Steele, M., Zhang, J., and Trenberth, K. E.:
The large-scale energy budget of the Arctic, J. Geophys. Res., 112, D11122, https://doi.org/10.1029/2006JD008230, 2007.
Smith, M. M., Holland, M. M., Petty, A. A., Light, B., and Bailey, D. A.:
Effects of Increasing the Category Resolution of the Sea Ice Thickness Distribution in a Coupled Climate Model on Arctic and Antarctic Sea Ice Mean State, J. Geophys. Res.-Oceans, 127, e2022JC019044, https://doi.org/10.1029/2022JC019044, 2022.
Stroeve, J., Liston, G. E., Buzzard, S., Zhou, L., Mallett, R., Barrett, A., Tschudi, M., Tsamados, M., Itkin, P., and Stewart, J. S.:
A Lagrangian Snow Evolution System for Sea Ice Applications (SnowModel-LG): Part II—Analyses, J. Geophys. Res.-Oceans, 125, e2019JC015900, https://doi.org/10.1029/2019JC015900, 2020.
Tilling, R., Kurtz, N. T., Bagnardi, M., Petty, A. A., and Kwok, R.:
Detection of Melt Ponds on Arctic Summer Sea Ice From ICESat-2, Geophys. Res. Lett., 47, e2020GL090644, https://doi.org/10.1029/2020GL090644, 2020.
Tilling, R. L., Ridout, A., Shepherd, A., and Wingham, D. J.:
Increased Arctic sea ice volume after anomalously low melting in 2013, Nat. Geosci., 8, 643–646, https://doi.org/10.1038/ngeo2489, 2015.
Tilling, R. L., Ridout, A., and Shepherd, A.:
Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data, Adv. Space Res., 62, 1203–1225, https://doi.org/10.1016/j.asr.2017.10.051, 2018.
Tschudi, M., Meier, W., Stewart, J. S., Fowler, C., and Maslanik, J.:
Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA [data set], https://doi.org/10.5067/INAWUWO7QH7B, 2019.
Wagner, D. N., Shupe, M. D., Cox, C., Persson, O. G., Uttal, T., Frey, M. M., Kirchgaessner, A., Schneebeli, M., Jaggi, M., Macfarlane, A. R., Itkin, P., Arndt, S., Hendricks, S., Krampe, D., Nicolaus, M., Ricker, R., Regnery, J., Kolabutin, N., Shimanshuck, E., Oggier, M., Raphael, I., Stroeve, J., and Lehning, M.:
Snowfall and snow accumulation during the MOSAiC winter and spring seasons, The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, 2022.
Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M. A.:
Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution, The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, 2019.
Wang, X., Key, J., Kwok, R., and Zhang, J.:
Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data, Remote Sens.-Basel, 8, 713, https://doi.org/10.3390/rs8090713, 2016.
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. N., Aleksandrov, Y. I., and Colony, R.:
Snow Depth on Arctic Sea Ice, J. Climate, 12, 1814–1829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2, 1999.
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D. W.:
CryoSat: A mission to determine the fluctuations in Earth's land and marine ice fields, Adv. Space Res., 37, 841–871, 2006.
Yu, Y., Xiao, W., Zhang, Z., Cheng, X., Hui, F., and Zhao, J.:
Evaluation of 2-m Air Temperature and Surface Temperature from ERA5 and ERA-I Using Buoy Observations in the Arctic during 2010–2020, Remote Sens.-Basel, 13, 2813, https://doi.org/10.3390/rs13142813, 2021.
Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates, Mon. Weather Rev., 131, 845–861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2, 2003.
Zhou, L., Stroeve, J., Xu, S., Petty, A., Tilling, R., Winstrup, M., Rostosky, P., Lawrence, I. R., Liston, G. E., Ridout, A., Tsamados, M., and Nandan, V.:
Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval, The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, 2021.
Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrud, L. H.:
Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends, The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014, 2014.
Short summary
We present upgrades to winter Arctic sea ice thickness estimates from NASA's ICESat-2. Our new thickness results show better agreement with independent data from ESA's CryoSat-2 compared to our first data release, as well as new, very strong comparisons with data collected by moorings in the Beaufort Sea. We analyse three winters of thickness data across the Arctic, including 50 cm thinning of the multiyear ice over this 3-year period.
We present upgrades to winter Arctic sea ice thickness estimates from NASA's ICESat-2. Our new...