Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4901-2021
https://doi.org/10.5194/tc-15-4901-2021
Brief communication
 | 
21 Oct 2021
Brief communication |  | 21 Oct 2021

Brief communication: Detection of glacier surge activity using cloud computing of Sentinel-1 radar data

Paul Willem Leclercq, Andreas Kääb, and Bas Altena

Related authors

How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017,https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent
B. Marzeion, P. W. Leclercq, J. G. Cogley, and A. H. Jarosch
The Cryosphere, 9, 2399–2404, https://doi.org/10.5194/tc-9-2399-2015,https://doi.org/10.5194/tc-9-2399-2015, 2015
Short summary
A data set of worldwide glacier length fluctuations
P. W. Leclercq, J. Oerlemans, H. J. Basagic, I. Bushueva, A. J. Cook, and R. Le Bris
The Cryosphere, 8, 659–672, https://doi.org/10.5194/tc-8-659-2014,https://doi.org/10.5194/tc-8-659-2014, 2014

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
Climatic control on seasonal variations in mountain glacier surface velocity
Ugo Nanni, Dirk Scherler, Francois Ayoub, Romain Millan, Frederic Herman, and Jean-Philippe Avouac
The Cryosphere, 17, 1567–1583, https://doi.org/10.5194/tc-17-1567-2023,https://doi.org/10.5194/tc-17-1567-2023, 2023
Short summary
High-resolution debris-cover mapping using UAV-derived thermal imagery: limits and opportunities
Deniz Tobias Gök, Dirk Scherler, and Leif Stefan Anderson
The Cryosphere, 17, 1165–1184, https://doi.org/10.5194/tc-17-1165-2023,https://doi.org/10.5194/tc-17-1165-2023, 2023
Short summary
Automated ArcticDEM iceberg detection tool: insights into area and volume distributions, and their potential application to satellite imagery and modelling of glacier–iceberg–ocean systems
Connor J. Shiggins, James M. Lea, and Stephen Brough
The Cryosphere, 17, 15–32, https://doi.org/10.5194/tc-17-15-2023,https://doi.org/10.5194/tc-17-15-2023, 2023
Short summary
Glacier extraction based on high-spatial-resolution remote-sensing images using a deep-learning approach with attention mechanism
Xinde Chu, Xiaojun Yao, Hongyu Duan, Cong Chen, Jing Li, and Wenlong Pang
The Cryosphere, 16, 4273–4289, https://doi.org/10.5194/tc-16-4273-2022,https://doi.org/10.5194/tc-16-4273-2022, 2022
Short summary
Constraining regional glacier reconstructions using past ice thickness of deglaciating areas – a case study in the European Alps
Christian Sommer, Johannes Jakob Fürst, Matthias Huss, and Matthias Holger Braun
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-157,https://doi.org/10.5194/tc-2022-157, 2022
Revised manuscript accepted for TC
Short summary

Cited articles

Altena, B., Scambos, T., Fahnestock, M., and Kääb, A.: Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data, The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019, 2019. a
Copland, L., Sharp, M. J., and Dowdeswell, J. A.: The distribution and flow characteristics of surge-type glaciers in the Canadian High Arctic, Ann. Glaciol., 36, 73–81, https://doi.org/10.3189/172756403781816301, 2003. a
Gardelle, J., Berthier, E., Arnaud, Y., and Kääb, A.: Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011, The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, 2013. a
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018. a
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.: ITS LIVE Regional Glacier and Ice Sheet Surface Velocities, National Snow and Ice Data Center [data], https://doi.org/10.5067/6II6VW8LLWJ7, 2020. a
Download
Short summary
In this study we present a novel method to detect glacier surge activity. Surges are relevant as they disturb the link between glacier change and climate, and studying surges can also increase understanding of glacier flow. We use variations in Sentinel-1 radar backscatter strength, calculated with the use of Google Earth Engine, to detect surge activity. In our case study for the year 2018–2019 we find 69 cases of surging glaciers globally. Many of these were not previously known to be surging.