Articles | Volume 14, issue 2
The Cryosphere, 14, 673–691, 2020
https://doi.org/10.5194/tc-14-673-2020
The Cryosphere, 14, 673–691, 2020
https://doi.org/10.5194/tc-14-673-2020

Research article 17 Feb 2020

Research article | 17 Feb 2020

Parameter sensitivity analysis of dynamic ice sheet models – numerical computations

Gong Cheng and Per Lötstedt

Related authors

Sensitivity of ice sheet surface velocity and elevation to variations in basal friction and topography in the full Stokes and shallow-shelf approximation frameworks using adjoint equations
Gong Cheng, Nina Kirchner, and Per Lötstedt
The Cryosphere, 15, 715–742, https://doi.org/10.5194/tc-15-715-2021,https://doi.org/10.5194/tc-15-715-2021, 2021
Short summary
A full Stokes subgrid scheme in two dimensions for simulation of grounding line migration in ice sheets using Elmer/ICE (v8.3)
Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 13, 2245–2258, https://doi.org/10.5194/gmd-13-2245-2020,https://doi.org/10.5194/gmd-13-2245-2020, 2020
Short summary
Thermal conductivity of firn at Lomonosovfonna, Svalbard, derived from subsurface temperature measurements
Sergey Marchenko, Gong Cheng, Per Lötstedt, Veijo Pohjola, Rickard Pettersson, Ward van Pelt, and Carleen Reijmer
The Cryosphere, 13, 1843–1859, https://doi.org/10.5194/tc-13-1843-2019,https://doi.org/10.5194/tc-13-1843-2019, 2019
Short summary
Dynamically coupling full Stokes and shallow shelf approximation for marine ice sheet flow using Elmer/Ice (v8.3)
Eef C. H. van Dongen, Nina Kirchner, Martin B. van Gijzen, Roderik S. W. van de Wal, Thomas Zwinger, Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 11, 4563–4576, https://doi.org/10.5194/gmd-11-4563-2018,https://doi.org/10.5194/gmd-11-4563-2018, 2018
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Sensitivity of ice sheet surface velocity and elevation to variations in basal friction and topography in the full Stokes and shallow-shelf approximation frameworks using adjoint equations
Gong Cheng, Nina Kirchner, and Per Lötstedt
The Cryosphere, 15, 715–742, https://doi.org/10.5194/tc-15-715-2021,https://doi.org/10.5194/tc-15-715-2021, 2021
Short summary
Quantifying the effect of ocean bed properties on ice sheet geometry over 40 000 years with a full-Stokes model
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020,https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Bayesian calibration of firn densification models
Vincent Verjans, Amber A. Leeson, Christopher Nemeth, C. Max Stevens, Peter Kuipers Munneke, Brice Noël, and Jan Melchior van Wessem
The Cryosphere, 14, 3017–3032, https://doi.org/10.5194/tc-14-3017-2020,https://doi.org/10.5194/tc-14-3017-2020, 2020
Short summary
A kinematic formalism for tracking ice–ocean mass exchange on the Earth's surface and estimating sea-level change
Surendra Adhikari, Erik R. Ivins, Eric Larour, Lambert Caron, and Helene Seroussi
The Cryosphere, 14, 2819–2833, https://doi.org/10.5194/tc-14-2819-2020,https://doi.org/10.5194/tc-14-2819-2020, 2020
Short summary
Inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological uncertainty
Olalekan Babaniyi, Ruanui Nicholson, Umberto Villa, and Noémi Petra
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-229,https://doi.org/10.5194/tc-2020-229, 2020
Revised manuscript accepted for TC

Cited articles

Baiocchi, C., Brezzi, F., and Franca, L. P.: Virtual bubbles and Galerkin-least-squares type methods (Ga. LS), Comp. Meth. Appl. Mech. Eng., 105, 125–141, 1993. a
Brondex, J., Gagliardini, O., Gillet-Chaulet, F., and Durand, G.: Sensitivity of grounding line dynamics to the choice of the friction law, J. Glaciol., 63, 854–866, 2017. a
Bulthuis, K., Arnst, M., Sun, S., and Pattyn, F.: Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change, The Cryosphere, 13, 1349–1380, https://doi.org/10.5194/tc-13-1349-2019, 2019. a
Cheng, G.: Numerical experiments for FS adjoint, Zenodo, https://doi.org/10.5281/zenodo.3611158, 2020a. a
Cheng, G.: Numerical experiments for SSA adjoint, Zenodo, https://doi.org/10.5281/zenodo.3611154, 2020b. a
Download
Short summary
We present a time-dependent inverse method for ice sheet modeling. By investigating the sensitivity of the observations of the velocity and the height at the surface to the basal conditions of the ice, we show that if the basal parameters are time dependent, then time cannot be ignored in the inversion. By looking at the numerical features, we conclude that adding the height information of an ice sheet in the velocity inversion procedure could improve the robustness of the inference.