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Abstract. The friction coefficient and the base topography
of a stationary and a dynamic ice sheet are perturbed in two
models for the ice: the full Stokes equations and the shal-
low shelf approximation. The sensitivity to the perturbations
of the velocity and the height at the surface is quantified
by solving the adjoint equations of the stress and the height
equations providing weights for the perturbed data. The ad-
joint equations are solved numerically and the sensitivity is
computed in several examples in two dimensions. A trans-
fer matrix couples the perturbations at the base with the per-
turbations at the top. Comparisons are made with analytical
solutions to simplified problems. The sensitivity to perturba-
tions depends on their wavelengths and the distance to the
grounding line. A perturbation in the topography has a di-
rect effect at the ice surface above it, while a change in the
friction coefficient is less visible there.

1 Introduction

The output of isothermal simulations of large ice sheets de-
pends on the ice model, the topography, and the parametriza-
tion of the conditions at the base of the ice. The models are
systems of partial differential equations (PDEs) for the ve-
locity, pressure, and height of the ice. The boundary condi-
tions of the PDEs are given by the topography and the friction
model with its parameters. Of particular interest in the sim-
ulation of ice is the horizontal velocity and the height at the
ice surface. In the inverse problem, the parameters at the base
are inferred from data at the surface by solving adjoint equa-
tions and minimizing the difference between given data and
simulated results. In this paper, we estimate the sensitivity of
the surface observations to changes in the basal conditions

by solving the adjoint equations to the full Stokes (FS) equa-
tions and the shallow shelf (or shelfy stream) approximation
(SSA) (see Greve and Blatter, 2009; MacAyeal, 1989). The
advantage of solving the adjoint equations in a variational
control method is that the effect of many perturbations of
the parameters at the bottom is obtained for one observation
at one point of the surface at a certain time point. If there
are many observations and only one perturbation, then it is
more efficient to compute the sensitivity by solving the for-
ward model PDEs twice in a direct method – firstly with the
unperturbed parameters and secondly with the perturbed pa-
rameters – and then take the difference between the solutions.
The direct method has the advantage that there is no need to
implement a solver for the adjoint equations.

We are interested in the effect of perturbations of the to-
pography and the slipperiness at the ice base on the velocity
of the ice at the surface and its height. By solving the ad-
joint equations, we quantify the sensitivity to perturbations
close to the grounding line and of different wavelengths. The
sensitivity at the upper surface to perturbations in the basal
topography and friction is different, and the separation of the
two contributions appears to be difficult. The transfer func-
tions between the perturbations at the base and the surface
observations are more or less well behaved. A related prob-
lem is to infer the basal geometry and friction coefficients
from observational data by inversion using the adjoint solu-
tion.

Most methods for inversion of ice surface data to compute
parameters in the models at the ice base rely on a solution
of the adjoint stress equation with a given fixed geometry of
the ice as in MacAyeal (1993) for SSA and in Petra et al.
(2012) for FS, where the time-dependent height equation for
the moving upper surface is not included in the inversion.
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The stationary basal friction coefficients have been derived
from satellite data in this way for many glaciers and conti-
nental ice sheets using velocity data in, e.g., Gillet-Chaulet
et al. (2016), Isaac et al. (2015), Schannwell et al. (2019),
and Sergienko and Hindmarsh (2013).

The conditions between the ice and the bedrock vary in
time, and sometimes the friction parameter varies several or-
ders of magnitude in a decade (see, e.g., Jay-Allemand et al.,
2011). In addition, there are variations on seasonal and di-
urnal time scales with examples in Schoof (2010), Shannon
et al. (2013), and Vallot et al. (2017). Other time-dependent
forces are considered in Seddik et al. (2019). The effect of a
seasonal variation of the lubrication at the base of the ice is
studied in Shannon et al. (2013) for the Greenland ice sheet
by solving the FS and other high-order equations. Fast tem-
poral variations in the meltwater under the ice drive the ice
flow in the analysis in Schoof (2010). The spatial and tempo-
ral variations of the basal conditions are inferred from satel-
lite data in Larour et al. (2014) with an inverse method for
SSA and automatic differentiation. Based on observations,
the conclusion in Sole et al. (2011) is also that the annual
change in the water drainage under the ice affects the slid-
ing and the acceleration and deceleration of the ice. Tran-
sient data are included in Goldberg et al. (2015) to find time-
dependent basal parameters by inversion, where the sensi-
tivity is determined by automatic differentiation. The results
differ if the time evolution of the equations is taken into ac-
count or not. The shallow ice approximation (SIA) is the ice
model in Monnier and des Boscs (2017) to determine the
basal properties with time-dependent surface data. Here, we
solve the adjoint equations to both the stress equation and the
time-dependent height equation in FS and SSA to examine
how the dynamics of the models change the sensitivity to the
base parameters. The adjoint equations are derived and ana-
lytical solutions are found to simplified equations in a com-
panion paper by Cheng and Lötstedt (2019). The influence
of the dynamics of the basal conditions is different on the
velocity and the height observations.

The forward advection equation for the height and the
stress equations for the velocity for FS are here solved nu-
merically in two dimensions (2-D) with Elmer/Ice (Gagliar-
dini et al., 2013; Gillet-Chaulet et al., 2012). The solver of
the adjoint stress equation in Elmer/Ice is amended by the
adjoint height equation. The forward and adjoint SSA equa-
tions are solved for a vertical ice in 2-D by a finite difference
method. The perturbations are observed in the velocity and
the height at certain points in space and time. Comparisons
are made for steady-state and time-dependent problems be-
tween a direct calculation of the change at the ice surface and
using the control technique with the adjoint solution. Simpli-
fied adjoint stress equations have been proposed and used in
Martin and Monnier (2014), Morlighem et al. (2013), and
Mosbeux et al. (2016). The sensitivity in the SSA model is
evaluated in this paper for such simplifications in the adjoint
SSA equations. The sensitivity in the numerical solutions is

also compared to the analytical formulas in Cheng and Lötst-
edt (2019). It is observed in Durand et al. (2011) that the sen-
sitivity to changes at the base increases closer to the ground-
ing line in the coastal regions. The basal topography is in-
ferred from the height data in van Pelt et al. (2013) without
solving the adjoint equations. The reason for the increased
sensitivity and why the height method works are explained
by our analytical solutions to the adjoint SSA equations.

There is a transfer matrix between the perturbations in the
parameters at the base and the observations at the surface.
Analytical expressions for time-dependent transfer functions
for FS and SSA are derived in Gudmundsson (2003, 2008) by
linearizing, freezing coefficients, and applying Fourier anal-
ysis and the Laplace transform. The properties of the trans-
fer matrix are evaluated here to see which combinations of
perturbations and observations are well- and ill-conditioned.
In an ill-conditioned problem, the sensitivity at the surface
to perturbations at the base is low. This matrix can also be
used to quantify the uncertainty in the ice flow due to un-
certainties in the model parameters (see, e.g., Bulthuis et al.,
2019; Schlegel et al., 2018; Smith, 2014). Perturbations at the
ice base with short wavelength are propagated to the surface
with a weaker effect on the height and velocity compared to
long wavelengths in Gudmundsson (2003, 2008). These are
the conclusions in calculations with FS in Kyrke-Smith et al.
(2018), where it is difficult to separate the contribution from
the friction and the bed topography from each other. These
effects are confirmed in our analysis.

The structure of the paper is as follows. The ice equations
and the corresponding adjoint equations for FS and SSA are
presented in Sect. 2. The computed sensitivities are com-
pared between the direct method and the control method in
Sect. 3 for steady-state and time-dependent problems in 2-
D. The ice configuration is taken from the MISMIP bench-
mark project in Pattyn et al. (2012). The results are discussed
and conclusions are drawn in Sects. 4 and 5. Formulas from
Cheng and Lötstedt (2019) are found in Appendix A.

Vectors and matrices are written in bold as a and A. The
operations ⊗, :, and ? on vectors a and c, matrices A and C,
and four index tensors A are defined by

(a⊗ c)ij = aicj , a : c = a · c =
∑
i

aici,

(A⊗C)ijkl = AijCkl, A : C=
∑
ij

AijCij ,

(A ?C)ij =
∑
kl

AijklCkl . (1)

The definition of a norm of a vector a is ‖a‖ = (a · a)1/2.

2 Ice models

The equations of two ice models and their adjoint equations
are stated in this section. The FS equations are considered to
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be an accurate model of ice sheets, and the SSA equations
are an approximation of the FS equations suitable, e.g., for
fast flowing ice on the ground and ice floating on water (see
Greve and Blatter, 2009).

2.1 Full Stokes equations

The FS equations are a system of PDEs for the velocity of
the ice u(x, t)= (u1,u2,u3)

T , the pressure p(x, t), and the
height h(x,y, t)with the coordinates x = (x,y,z) and time t .
There is a stress equation satisfied by u and p and an advec-
tion equation for h. The adjoint equation of the stress equa-
tion is derived in Petra et al. (2012), and the adjoint equations
of the stress and the height equations are found in Cheng and
Lötstedt (2019). The sensitivity of observations of the veloc-
ity and the height of the ice surface is derived for perturba-
tions in the friction coefficient at the ice base.

The domain of the ice is � with boundary 0 in three di-
mensions (3-D). The boundary consists of the ice surface at
the upper boundary 0s , the lower boundary at the ice base
0b and 0w, and the vertical and lateral boundaries 0u and
0d , where 0u is the upstream boundary with n ·u≤ 0 and 0d
is the downstream boundary with n ·u> 0. The normal of 0
pointing outward is denoted by n. The projection of 0s and
0b on the horizontal x–y plane is ω and the projections of
0u and 0d are γu and γd , respectively. The z coordinate of
the grounded base 0b is the topography and the bathymetry
b(x,y). The grounding line γGL separates 0b on ω from 0w
floating on water with a moving z coordinate zb(x,y, t). For-
mal definitions of these domains are

�= {x|(x,y) ∈ ω, b(x,y)≤ z ≤ h(x,y, t)},

0s = {x|(x,y) ∈ ω, z= h(x,y, t)},

0b = {x|(x,y) ∈ ω, z= b(x,y),x < xGL(y)},

0w = {x|(x,y) ∈ ω, z= zb(x,y, t),x > xGL(y)},

0u = {x|(x,y) ∈ γu, b(x,y)≤ z ≤ h(x,y, t)},

0d = {x|(x,y) ∈ γd , b(x,y)≤ z ≤ h(x,y, t)}. (2)

Let I be the identity matrix. The projection of a vector on
the tangential plane of 0b is denoted by T= I−n⊗n as in
Petra et al. (2012). In 2-D, x = (x,z)T , ω = [0,L], γu = 0,
and γd = L.

2.1.1 Forward equations

The definitions of the strain rate D and the viscosity η of the
ice are

D= 1
2 (∇u+∇u

T ), η(u)= 1
2A
−

1
n (trD2(u))ν, ν = 1−n

2n .

(3)

The trace of D2 is trD2 and the rate factor A depends on the
temperature of the ice, here assumed to be constant in isother-
mal flow. The material constant n > 0 is given in Glen’s flow

law. Then the stress tensor is

σ (u,p)= 2ηD(u)−pI. (4)

Let ρ be the density of the ice, g be the gravitational ac-
celeration, and a be the accumulation/ablation rate on the
surface 0s . The notation is simplified with the slope vectors
h= (hx,hy,−1)T in 3-D and h= (hx,−1)T in 2-D. A sub-
script x,y,z, or t on a variable denotes a partial derivative
such that hx = ∂h/∂x. Then the forward FS equations for
h,u, and p are

ht +h ·u= a, on 0s,
h(x,0)= h0(x), x ∈ ω, h(x, t)= hγ (x, t), x ∈ γu,

−∇ · σ (u,p)=−∇ · (2η(u)D(u))+∇p = ρg,
∇ ·u= 0, in �(t), σn= 0, on 0s,
Tσn=−Cf (Tu)Tu, n ·u= 0, on 0b. (5)

The initial data for h are h0(x), and hγ (x, t) is specified
on the inflow boundary γu. The expression Cf (Tu) defines
the friction law with variable coefficient C(x, t) and a func-
tion f (·) of the projected velocity Tu, e.g., as in Weertman
(1957), where

f (u)= ‖u‖m−1, m > 0. (6)

The Dirichlet boundary conditions of u on 0u and 0d are set
to be uu and ud .

2.1.2 Adjoint equations

We observe a quantity

F =
T∫

0

∫
0s

F(u,h)dxdt (7)

at the surface 0s when t ∈ [0,T ]. For example, if the ice is in
the steady state and F(u)= u1δ(x−x∗) with the Dirac delta
(δ), then the observation is the x component of u at x∗:

F =
∫
0s

F(u)dx = u1(x∗).

If F(h)= hδ(x− x∗) then the height is observed as

F =
∫
0s

F(h)dx = h(x∗).

The adjoint equations depend on the first variations Fu and
Fh of F(u,h) with respect to u and h. In the first example
above, Fu = (δ(x−x∗),0,0)T and Fh = 0, and in the second
example Fu = 0 and Fh = δ(x− x∗).

The adjoint FS equations form a system of PDEs for the
adjoint height ψ , the adjoint velocity v, and the adjoint pres-
sure q. There is an advection equation for ψ and an adjoint
stress equation for v and q such that
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ψt +∇ · (uψ)−h ·uzψ = Fh+Fu ·uz, on 0s,
ψ(x,T )= 0, ψ(x, t)= 0, on 0d ,
−∇ · σ̃ (v,q)=−∇ · (2η̃(u) ?D(v))+∇q = 0,
∇ · v = 0, in �(t),
σ̃ (v,q)n=−(Fu+ψh), on 0s,
Tσ̃ (v,q)n=−Cf (Tu)(I+Fb(Tu))Tv, on 0b,
n · v = 0, on 0b, (8)

where the adjoint viscosity, adjoint stress, and linearized fric-
tion law in Eq. (8) are according to Petra et al. (2012):

η̃(u)= η(u)

(
I +

1− n
nD(u) : D(u)

D(u)⊗D(u)
)
,

σ̃ (v,q)= 2η̃(u) ?D(v)− qI,

Fb(Tu)=
m− 1

Tu ·Tu
(Tu)⊗ (Tu). (9)

The tensor I with four indices ijkl is 1 when i = j = k = l
and 0 otherwise.

The perturbation of the observation in Eq. (7) with respect
to a perturbation in the friction coefficient C is

δF =
T∫

0

∫
0b

f (Tu)Tu ·Tv δC dx dt, (10)

involving the tangential projections of the forward and ad-
joint velocities Tu and Tv at the grounded ice base 0b. This
expression is derived in Cheng and Lötstedt (2019) and Pe-
tra et al. (2012) via the perturbation of the Lagrangian of the
system of equations and by evaluating it at the forward and
adjoint solutions.

Only perturbations in C are considered here for the FS
model. Via the Lagrangian, the result of perturbations δb in
the topography can be derived, but the complexity of the ad-
joint Eq. (8) would increase considerably.

2.2 Shallow shelf approximation

In the shallow shelf approximation of the FS equations, the
velocity is constant in the vertical direction and the pressure
is given by the cryostatic approximation (Greve and Blatter,
2009; MacAyeal, 1989). The sensitivity of observations of
the velocity at the surface and the height to perturbations in
friction coefficients and the base topography is quantified for
the SSA model.

2.2.1 Forward equations

It is sufficient to solve for the horizontal velocity u=

(u1,u2)
T when x = (x,y) ∈ ω, thus simplifying the 3-D FS

problem Eq. (5) considerably. The viscosity in the SSA is

η(u)=
1
2
A−

1
n

(
u2

1x + u
2
2y +

1
4
(u1y + u2x)

2
+ u1xu2y

)ν
=

1
2
A−

1
n

(
1
2

B : D
)ν
, (11)

where B(u)= D(u)+∇ ·u I. The stress tensor ς(u) in SSA
is defined by

ς(u)= 2HηB(u). (12)

Let n be the outward normal vector of the boundary γ , t
the tangential vector such that n · t = 0, and H = h− b the
thickness of the ice. The friction law is defined as in the FS
case in Eq. (6), where the basal velocity is replaced by the
horizontal velocity since the vertical variation is neglected in
SSA. Under the floating ice shelf on 0w,C = 0 in the friction
law.

The ice dynamics system is

ht +∇ · (uH)= a, 0≤ t ≤ T , x ∈ ω,
h(x,0)= h0(x), x ∈ ω, h(x, t)= hγ (x, t), x ∈ γu,

∇ · ς −Cf (u)u= ρgH∇h, x ∈ ω,

n ·u(x, t)= uin(x, t),x ∈ γu,

n ·u(x, t)= uout(x, t),x ∈ γd ,

t · ςn=−Cγ fγ (t ·u)t ·u, x ∈ γg,

t · ςn= 0, x ∈ γw, (13)

where uin ≤ 0 and uout > 0 are the inflow and outflow normal
velocities on γu and γd of the boundary γ = γu ∪ γd . The
friction on the lateral side of the ice γ = γg ∪ γw depends on
the tangential velocity t ·u there. The friction law Cγ fγ (t ·u)
on γg is not necessarily the same as Cf (u) on ω.

The structure of the SSA system Eq. (13) is similar to
the FS equations in Eq. (5). However, the velocity u is not
divergence-free in SSA and B 6= D due to the cryostatic ap-
proximation.

2.2.2 Adjoint equations

The adjoint SSA equations are derived in Cheng and Lötstedt
(2019) as in Sect. 2.1.2 by forming the Lagrangian and par-
tial integration using the forward equations and the boundary
conditions in Eq. (13). The adjoint viscosity η̃ and adjoint
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stress ς̃ are defined by

η̃(u)= η(u)

(
I +

1− n
nB(u) : D(u)

B(u)⊗D(u)
)
,

ς̃(v)= 2H η̃(u) ?B(v); (14)

cf. η̃ and σ̃ in Eq. (9). The adjoint SSA equations are

ψt +u · ∇ψ + 2ηB(u) : D(v)− ρgH∇ · v
+ ρgv · ∇b = Fh, in ω,
ψ(x,T )= 0, in ω, ψ(x, t)= 0, on γw,
∇ · ς̃(v)−Cf (u)(I+Fω(u))v−H∇ψ =−Fu, in ω,
t · ς̃(v)n=−Cγ fγ (t ·u)(1+Fγ (t ·u))t · v, on γg,
t · ς̃(v)n= 0, on γw,
n · v = 0, on γ. (15)

Compared to Eq. (8), the advection equation depends on v,
and the influence of ψ in the stress equation is different in
Eq. (15). With a Weertman friction law Eq. (6), the terms Fω
and Fγ in the adjoint basal friction and the lateral friction in
Eq. (15) are

Fω(u)=
m− 1
u ·u

u⊗u, Fγ =m− 1.

The friction coefficients on the base and the lateral sides
are perturbed by δC and δCγ , and the topography is per-
turbed by δb in the SSA model. Then the perturbation δF
in the observation F in Eq. (7) is (Cheng and Lötstedt, 2019)

δF =
T∫

0

∫
ω

(2ηB(u) : D(v)+ ρgv · ∇h+∇ψ ·u) δb

− f (u)u · v δC dx dt

−

T∫
0

∫
γg

fγ (t ·u)t ·ut · v δCγ ds dt. (16)

2.2.3 Forward and adjoint SSA in 2-D

In the 2-D model, u2 = 0, derivatives with respect to y van-
ish, and the lateral friction force is neglected,Cγ = 0. The ice
domains are the grounded and floating parts 0b = [0,xGL]

and 0w = (xGL,L], where xGL is the position of the ground-
ing line. The friction coefficient C is positive on 0b and
C = 0 on 0w. The forward and adjoint equations in 2-D are
derived from Eqs. (13) and (15) by letting H and u1 be in-
dependent of y and taking u2 = 0. The notation is simplified
if we let u= u1 and v = v1. The forward equations follow

from Eq. (13):

ht + (uH)x = a, 0≤ t ≤ T , 0≤ x ≤ L,
h(x,0)= h0(x), h(0, t)= hL(t),
(Hηux)x −Cf (u)u− ρgHhx = 0, 0≤ x ≤ L,
u(0, t)= uL(t), u(L, t)= uc(t). (17)

Assume that u > 0 and ux > 0. There is an inflow of ice with
speed uL to the left and a calving rate uc at x = L. The vis-
cosity in Eq. (11) is simplified to η = 2A−1/nuνx . The friction
term is Cf (u)u= Cum with the Weertman law in Eq. (6).

The adjoint variables v and ψ satisfy the adjoint equations
in 2-D:

ψt + uψx + (ηux − ρgH)vx + ρgbxv = Fh,

0≤ t ≤ T , 0≤ x ≤ L,(
1
n
Hηvx

)
x

−Cmf (u)v−Hψx =−Fu,

ψ(x,T )= 0, ψ(L, t)= 0, v(0, t)= 0, v(L, t)= 0, (18)

obtained from Eqs. (14) and (15) or derived from Eq. (17)
with equal result.

Perturbations δb and δC in the topography and the friction
coefficient propagate to the surface as in Eq. (16):

δF =
T∫

0

L∫
0

(ψxu+ vxηux + vρghx) δb− vf (u)uδC dx dt.

(19)

2.2.4 Discretized relations in 2-D

In order to simplify the notation, only a 2-D steady-state
problem for the SSA model is considered here, but the analy-
sis is applicable to 3-D steady-state problems as well as time-
dependent problems with the FS or SSA models.

The time-independent perturbation of F in Eq. (19) for
the steady-state solution is rewritten with Fu = δ(x−x∗) and
weights wub and wuC :

δu(x∗)= δF =
L∫

0

wubδb+wuCδC dx,

wub(x∗,x)= ψxu+ vxηux + vρghx, wuC(x∗,x)

=−vf (u)u. (20)

The weights wub and wuC in Eq. (20) depend on both x∗ and
x. When h is observed the perturbation is

δh(x∗)=

L∫
0

whbδb+whCδC dx, (21)

where the weights whb and whC have the same form as in
Eq. (20) but with different ψ and v.

www.the-cryosphere.net/14/673/2020/ The Cryosphere, 14, 673–691, 2020
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The relation is discretized by observing u at equidistant
x∗i, i = 1,2, . . .,M, with x∗,i+1−x∗i =1x∗, and perturbing
b and C at xj , j = 1,2, . . .,N, with xj+1− xj =1x. The
integral in Eq. (20) is computed by the trapezoidal rule to
have

δu(x∗i)=

N∑
j=1

µj (wub(x∗i,xj )δb(xj )

+wuC(x∗i,xj )δC(xj ))1x,

µ1 =0.5, µj = 1,j = 2,3, . . .,N − 1, µN = 0.5, (22)

or in matrix form

δu=Wubδb+WuCδC, (23)

with the matrix elements

Wubij = µjwub(x∗i,xj ), WuCij = µjwuC(x∗i,xj ),

i = 1,2, . . .,M, j = 1,2, . . .,N.

In the same manner, there are matrices Whb and WhC con-
necting δh with δb and δC:

δh=Whbδb+WhCδC. (24)

The sensitivity of u to changes in b and C on ω is given by
the singular value decomposition (SVD) of Wub and WuC

(Golub and Van Loan, 1989) defined by

Wub = Uub6ubVTub, WuC = UuC6uCVTuC,

where Uub and UuC are of size M×M and Vub and VuC are
of size N ×N . A summary of the properties of the SVD is
found in the Appendix.

Consider the case when δb = 0 in Eq. (23). The rela-
tion between δu and δC is well behaved in Eq. (23) if all
the singular values σuCi of WuC are of similar size, but if
some of them are much smaller than the other ones with
σCi � σC1, i = J,J +1, . . .,min(M,N), then the relation is
ill-conditioned. A large perturbation in C may then result in
a hardly visible perturbation at the surface, and a small ob-
served perturbation in u may correspond to a large pertur-
bation at the base. The same conclusions apply to Wub and
σubi in the relation between δu and δb and to the sensitivity
matrices Whb and WhC when Fh = δ(x− x∗).

The transfer functions in Gudmundsson (2003, 2008) be-
tween perturbations in b and C at the base and the observa-
tions u and h at the top are determined by linearization and
Fourier transformation in a slab geometry. The transfer func-
tion for different wave numbers corresponds to the singular
values in our analysis.

2.2.5 Relation to the inverse problem

The sensitivity problem and the inverse problem are related.
Assume that there are M observations of the velocity uobs at

Figure 1. The initial ice geometry with height h (blue), ice base b
(orange), and ocean bathymetry (black). The domains in Eq. (2) are
the ice domain � between the blue and orange curves, the upper
surface 0s in blue, the lower boundary on the bedrock 0b and on
water 0w in orange, 0u at x = 0, and 0d at x = L= 1.6× 106 m.

the surface of the ice at xi and we want to derive the cor-
responding friction coefficient C at j locations. With C we
observe u at the top at the same coordinates. Then we seek a
correction δC of C at N points such that u+ δu approaches
uobs. Using Eq. (23),

u−uobs = δu=WuCδC, (25)

and δC is chosen such that ‖u−uobs‖ is minimized. This
problem is a linear-least-squares problem. Expressed with
the SVD and the generalized inverse 6−1

uC , the solution is

δC = VuC6−1
uCUTuC(u−uobs); (26)

see Golub and Van Loan (1989) and the Appendix. The so-
lution can be improved iteratively with updates of C and u
by Ck+1 = Ck + δC and uk+1 = uk + δu, computing a new
WuC and so on.

The relation between the transfer matrix and the inversion
problem is illustrated by Eq. (26), but a more efficient op-
timization method is based on the gradient of the objective
function ‖u−uobs‖. It is the standard method for inversion
in, e.g., Gillet-Chaulet et al. (2016), Isaac et al. (2015), and
Petra et al. (2012), and the gradient is computed using the
adjoint solution with F(u)= ‖u−uobs‖

2.

3 Results

In the numerical experiments we use a 2-D constant
downward-sloping bed with an ice profile from the MISMIP
benchmark project in Pattyn et al. (2012). The bedrock ele-
vation in meters is given as

b(x)= 720− 778.5×
x

7.5× 105 . (27)

The initial configuration of the ice is a steady-state solu-
tion achieved by the FS model using Elmer/Ice (Gagliardini
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Table 1. The physical parameters of the ice.

Parameter Quantity

ρw = 1000 kgm−3 Water density
ρi = 900 kgm−3 Ice density
g = 9.8 ms−2 Acceleration of gravity
n= 3 Flow-law exponent
a = 0.3 myr−1 Accumulation rate

et al., 2013) with A= 1.38×10−24 s−1 Pa−3, with a ground-
ing line position at xGL = 1.053×106 m shown in Fig. 1. The
Weertman-type friction law in Eq. (6) in the forward problem
has the exponent m= 1/3 and a constant friction coefficient
C0 = 7.624× 106 m−1/3 s1/3 Pa. The remaining physical pa-
rameters are given in Table 1.

Without losing the generality in the friction law and to
investigate the relation between the basal velocity and the
stress, the friction law exponent in the adjoint problem is as-
sumed to bem= 1, and the coefficient is calculated from the
forward steady-state solution by C(x)= C0‖u‖

−2/3. The re-
sulting friction law becomes Cf (u)= C(x), which can be
viewed as a linearization of the friction law at the steady
state.

3.1 Full Stokes model

A vertically extruded mesh is constructed for the given ge-
ometry with mesh size1x =1 km yielding equidistant nodes
in the horizontal direction. The number of vertical layers is
set to 20 in the whole domain. Only the grounded ice is con-
sidered in the adjoint problem, and Dirichlet boundary con-
ditions on u are used for the lateral boundaries 0d and 0u at
the grounding line x = xGL and the ice divide x = 0.

The forward and adjoint FS problems are solved using the
finite element code Elmer/Ice (Gagliardini et al., 2013) with
a P1–P1 quadrilateral element and Galerkin least-squares sta-
bilization for the Stokes equation and a bubble stabilization
(Baiocchi et al., 1993) for the adjoint advection equation.
The feature to solve the adjoint time-dependent equations has
been added to Elmer/Ice. The Dirac delta is approximated by
a linear basis function with the amplitude 1/1x.

The time-stepping scheme for the forward and adjoint
transient problems is the implicit Euler method with a con-
stant time step 1t = 1 year. The adjoint equation is solved
backward in time from the final time t = T to t = 0. The
steady state of the adjoint equations is computed by neglect-
ing the time derivative term in the adjoint surface equation
Eq. (8) and solving the corresponding linear system of equa-
tions for ψ and v.

Both transient and steady-state simulations are run with
pointwise observations of the horizontal velocity u1 and sur-
face elevation h at different x∗ positions on the top surface.
The time interval for the transient solutions is [0,1], covered

by one forward time step 1t from 0 to 1 and one backward
time step from 1 to 0.

The multiplier ψ only acts as the amplitude of the external
force on 0s , and h is an approximate normal vector pointing
inward on 0s in the adjoint FS equation Eq. (8). The size of
ψh is several orders of magnitude smaller than 1, which is
equivalent to the coefficient in front of δ(x−x∗) in Fu. Con-
sequently, in the u1-response case, the adjoint solution v is
mainly influenced by the observation function Fu. However,
in the h-response case with Fu = 0, the adjoint solution v is
determined by ψh and the solution would be v = 0 if we did
not solve the adjoint advection equation for ψ .

The adjoint solutions v1 at 0b of all the four cases are con-
centrated at the observation points. The vertical component
v2 shares the same feature as v1 due to the boundary condi-
tion n · v = 0 on 0b. Therefore, the weights Tu ·Tv in Fig. 2
are also confined to the neighborhood of x∗. The negative
weights obtained in the u1-response cases imply that an in-
crease in the basal friction coefficient results in a decrease
in the surface velocity. The amplitude of the weights grows
rapidly toward the grounding line in all four cases in the fig-
ure. In fact, the contribution of the weight function to the
observed variables u1 can be viewed as a convolution of the
perturbation in C(x) with a narrow Gaussian wuC(x∗,x) in
Eq. (20) after a proper scaling in the left panels of Fig. 2.

The amplitude of the perturbation at the surface depends
on the wavelength λ of the perturbation at the base. The
shorter λ is, the smaller the amplitude is. Introduce a station-
ary perturbation δC(x)= εC0 cos(2π(x−x∗)/λ) with a con-
stant C0 and a small ε� 1. Then the change in the steady-
state solution u1 at the surface is according to Eq. (10)

δu1(x∗,λ)=

L∫
0

εC0Tu ·Tv cos(
2π(x− x∗)

λ
) dx. (28)

The same relation holds for δh(x∗) but with a different v. Let
% be a measure of the width of the weight function for the
steady state in Fig. 2, which is about 105. When λ is large
compared to % then

δu1(x∗,λ)≈ δu1,∞(x∗)= lim
λ→∞

δu1(x∗,λ)

= εC0

L∫
0

Tu ·Tv dx, (29)

which is a constant value for long λ, and the perturbation
can be observed at the surface. If the wavelength of the
basal perturbation is short compared to %, then it is damped
before it reaches the surface, and the effect of δC on u1
and h is small. In Fig. 3, δu1(x∗,λ) and δu1,∞(x∗) are
compared at x∗ = 0.9× 106. When λ > % then δu1(x∗,λ)≈

δu1,∞(x∗). Suppose that λ= 2× 104. Then δu1(x∗,λ) is
about 0.02δu1,∞(x∗) and probably hard to observe and
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Figure 2. Comparison of the weights Tu·Tv in Eq. (10) for perturbations δC at different observation points x∗ = 0.25×106,0.5×106,0.7×
106, and 0.9× 106 (blue, orange, green, and pink). (a, b) Transient simulations; (c, d) steady states. (a, c) wuC with pointwise u response;
(b, d) whC with pointwise h response.

δh(x∗,λ)≈ 0.2δh∞(x∗). Similar conclusions are drawn the-
oretically in Gudmundsson (2003, 2008) using Fourier anal-
ysis and experimentally in Sun et al. (2014).

We perform a pair of experiments to compare the re-
sults from perturbing the forward equation and the prediction
by the adjoint solutions. A relative 1% perturbation δC(x)
is added at x ∈ [0.9,1.0]× 106 m to the friction coefficient
C(x). The differences between the forward FS solutions with
and without the perturbation after 1 year are shown in Fig. 4
marked as “perturbed”. The predicted perturbations are com-
puted from the solutions of the adjoint equation by varying
x∗ along the x axis and inserting it into Eq. (10). Each red dot
in Fig. 4 corresponds to one single observation at x∗. Both the
u1 and h predictions are in good agreement with the forward
perturbations.

3.2 SSA

The same MISMIP benchmark experiment as in Sect. 3.1 is
solved by the SSA on a one-dimensional uniform grid with
mesh size 1x = 1 km using standard finite difference meth-
ods implemented in MATLAB. The time derivatives are dis-
cretized by the implicit Euler method with a constant time
step 1t = 1 year as in Sect. 3.1. An upwind scheme is used
for the spatial derivatives in the forward and adjoint advec-
tion equations to stabilize the numerical solutions. Replacing
the Dirac delta with a Gaussian distribution function a few
grid points wide in order to smoothen the observation func-

tion and avoid numerical oscillations in the solution has no
major effect on the solutions.

The numerical solution of the forward SSA equations
Eq. (17) is compared to the analytical approximations in the
Appendix Eq. (A1) in Fig. 5. The detailed derivations of the
analytical solutions in the Appendix are found in Cheng and
Lötstedt (2019). The analytical approximation of u is poor
to the right of xGL for the floating ice in Fig. 5, but we are
only interested in the solution for the grounded ice. The rea-
son for the error in the analytical solution of u is that H is
assumed to be constant for x > xGL. The analytical solution
for H catches the fast decrease when x approaches xGL from
the left. Another solution for x > xGL is found in Greve and
Blatter (2009) assuming that the thickness depends linearly
on x.

The weight functionswuC andwhC in Fig. 6 have the same
nonzero pattern as v since they are equal to−vum in Eq. (20).
Each one of these weights wuC or whC corresponds to the
sensitivity of the observation at x∗ with respect to the change
in C(x), which is one row in the weight matrices WuC or
WhC in Eqs. (23) and (24). The analytical weight functions
in Eqs. (A3) and (A5) at x∗ = 0.7× 106 m are included in
the steady-state figures for comparison. In the transient SSA
simulations, the sensitivity is similar to those in the adjoint
FS solutions in Fig. 2 increasing towards the grounding line.
Such an increased sensitivity is also noted in Kyrke-Smith
et al. (2018) and Leguy et al. (2014). However, in the steady-
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Figure 3. The response at 0s with different wavelengths λ in the perturbation of C in Eq. (28). (a) δu1(x∗,λ)/δu1,∞(x∗); (b)
δh(x∗,λ)/δh∞(x∗).

Figure 4. The changes on the horizontal velocity u1 (a) and surface elevation h (b) in FS after 1 year with 1% perturbation on C(x) at
x ∈ [0.9,1.0]× 106 m. Solid lines are the differences between the steady-state and perturbed transient solutions in Eq. (5). Red dots are the
estimated perturbation using Eq. (10)

state cases, the weight functions indicate only an upstream
effect of C(x). In other words, the perturbation in C(x) at
point x can only influence the steady-state solutions to the
left of this point. This is true as long as the effect of the
grounding line migration is neglected. The δC weights for
u responses are all negative, implying that an increase in C
leads to decrease in u, but the steady-state surface elevation
h rises when C is increased. The weights for the transient
problem have a similar shape for the FS and SSA models in
Figs. 2 and 6.

The weight functions wub and whb for δb are localized at
the observation position x∗ in all the four cases in Fig. 7,
which implies that the inverse problems may be well-posed.

The dashed black lines in the two lower panels are the analyt-
ical expressions of the weight functions at x∗ = 0.7× 106 m
in Eqs. (A3) and (A5) with a hat function of width 21x at
the base to approximate the Dirac delta. The analytical so-
lutions almost coincide with the numerical solutions. The
steady-state weight functions are nonzero to the right of x∗,
corresponding to the integral in Eq. (A5). There is a detailed
view of the steady-state δb weights for x > x∗ in Fig. 8.
The weights of δb have similar structures to the δC weights.
The analytical solutions in Eqs. (A3) and (A5) suggest that
wub/wuC ≈ whb/whC ≈ (m+ 1)C/H for x 6= x∗.

The same perturbation on C(x) as in Fig. 4 is imposed
in the SSA simulations. The perturbed solutions after 1 year
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Figure 5. Comparison of the steady-state numerical solutions of the SSA velocity u and the thickness H in Eq. (17) (orange) and the
analytical solutions in Eq. (A1) (blue).

Figure 6. Comparison of the weights wuC and whC for SSA in Eq. (19) for perturbations δC with m= 1 at different observation points
x∗ = 0.25× 106,0.5× 106,0.7× 106, and 0.9× 106 (blue, orange, green, and pink). The dashed black lines in (c, d) are wuC and whC
computed from the analytical solutions of u in Eq. (A1) and v in Eqs. (A2) and (A4) at x∗ = 0.7× 106. (a, b) Transient simulations; (c, d)
steady states. (a, c) wuC for pointwise u response; (b, d) whC for pointwise h response.

and 15 000 years (which is close to a steady state) are com-
puted with the forward equations, and then the reference so-
lutions at the steady state without any perturbation are sub-
tracted. This difference is compared to the perturbations ob-
tained with the adjoint equations as in Fig. 4. In the 1-year
perturbation experiment in Fig. 10, the transient weight func-
tions in the upper panels in Fig. 6 are used for the sensitivity
estimates. The weight functions in the upper panels of Fig. 7
predict the response in Fig. 11.

The corresponding comparisons for the steady-state prob-
lem are made in Figs. 12 and 13 with the weights in the lower

panels of Figs. 6 and 7. The analytical solutions of the steady-
state perturbations from Eqs. (A3) and (A5) are shown with
dashed black lines in these two figures.

The rapid change in δh in Figs. 10 and 11 is explained
by the shape of the weight functions in the upper-right pan-
els of Figs. 6 and 7. The weights can be approximated by
−θ(x, t)δ′(x−x∗) for some θ > 0. Then the surface response
will be
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Figure 7. Comparison of the weights wub and whb for SSA in Eq. (19) for perturbations δb at different observation points x∗ = 0.25×
106,0.5× 106,0.7× 106, and 0.9× 106 (blue, orange, green, and pink). The dashed black lines in (c, d) are the weights of δb in Eqs. (A3)
and (A5) at x∗ = 0.7× 106. (a, b) Transient simulations; (c, d) steady states. (a, c) wub for pointwise u response; (b, d) whb for pointwise
h response.

Figure 8. A close-up view of the steady-state weights in the lower panels of Fig. 7.

δh(x∗)=

T∫
0

L∫
0

−θ(x, t)δ′(x− x∗)δC(x) dxdt

=

T∫
0

(θδC)′(x∗, t) dt,

where δC jumps discontinuously at x = 0.9× 106 and x =
1.0× 106. The same phenomenon is found for FS in Fig. 4
with an explanation in Fig. 2.

The perturbations δu and δh in the steady state in Fig. 12
have discontinuous derivatives δux and δhx where δC has
jumps. This is explained by the integral terms in Eqs. (A3)
and (A5). The discontinuities in the upper panel of Fig. 13
are caused by the jumps in δb at 0.9×106 and 1.0×106 and
the first term in Eq. (A3). The jumps in δh in the lower panel
of Fig. 13 are due to the first term in Eq. (A5).

All the predicted solutions from the adjoint SSA are in
good agreement with the forward perturbation.

The inverse problem of the steady state for the friction co-
efficient may not be well-posed since the weights are all pos-
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Figure 9. The singular values of the transfer matrices WuC , WhC ,
Wub, and Whb.

itive from x∗ to xGL. This is verified by checking the singular
values of the sensitivity matrices WuC and WhC in Fig. 9,
where the largest and smallest singular values of 6uC are
10−4 and 10−12 with a large quotient σuC1/σuCN and the
span of the singular values of 6hC is from 10−4 to 10−8

(which is better).
The singular values of the sensitivity matrices Wub and

Whb in Fig. 9 are in the interval 10−4 to 10−7 from large to
small. They are better conditioned than the sensitivity matri-
ces for C. In particular, 6hb (in pink) in the h-response case
has the lowest variation of the singular values. The inverse
problem of solving for the topography b from the surface el-
evation h in the steady-state setup is a well-posed problem
compared to inferring C from u.

Good approximations of the sensitivity matrices WuC ,
WhC , Wub, and Whb are found in Eqs. (A3) and (A5) at
given x∗i and xj as in Eq. (23). If the basal topography
is unperturbed at the same x coordinate as the observation
point such that δb∗ = 0, then the contributions of δb and
δC cannot be separated since they are both multiplied by
the same weight except for a different scaling factor. This is
in agreement with numerical investigations in Kyrke-Smith
et al. (2018). It is shown in Cheng and Lötstedt (2019) that
the perturbation in δu is proportional to the wavelength of
δC. Perturbations with short wavelengths will not reach the
surface. These conclusions are also drawn in numerical so-
lutions of FS in Kyrke-Smith et al. (2018) and with transfer
functions in the frequency space in Gudmundsson (2008).
The perturbation in u due to δC increases with increasing u
and decreasing H . The sensitivity of δu and δh behaves in a
better way if the observation at x∗ is above the perturbation
at x in the topography in Eqs. (A3) and (A5). Then δb and
its derivative directly affect the perturbations at the top of the
ice. This is in agreement with the computed singular values
in Fig. 9. This property is utilized in van Pelt et al. (2013)

when the bottom topography is inferred from height data. In-
ferring the geometry of the base from such data is easier than
inferring the slipperiness and C because of the first term in
Eq. (A5) and whb in the right column of Fig. 7.

The solution of the adjoint equations is simplified in the
comparison in Fig. 14. In MacAyeal (1993), two simplifica-
tions are made. Firstly, the adjoint viscosity η̃ in Eq. (14) is
approximated by the forward viscosity η in Eq. (11). The fac-
tor 1/n in the viscosity in the 2-D stress equation Eq. (18) is
then replaced by 1. Secondly, the thickness H is fixed and
the advection equation for ψ is not solved, which is equiv-
alent to ∇ψ = 0 in the adjoint stress equation in Eq. (15).
Perturbations are introduced in C and u is observed for the
transient case as in Fig. 10. The perturbed forward solutions
are compared to the predicted perturbations by the simplified
adjoint SSA systems in Fig. 14, where the forward viscos-
ity η is used in both cases. In the upper panel of Fig. 14, the
two equations of ψ and v are solved. In the lower panel, the
advection equation of ψ is excluded from the system. The
differences are small in this case compared to the full adjoint
solution used in Fig. 10. The reason is that ψ,ψx, and Hηux
are small in Eq. (18).

The singular values of the transfer matrices correspond-
ing to the two simplifications are displayed in Fig. 15, where
the two transfer matrices are denoted by W̃uC for the system
coupling ψ and v and by ŴuC for the adjoint equation with-
out ψ with a fixed H . The singular values in 6̃uC are similar
to those in 6uC in Fig. 9 since the influence of the adjoint
viscosity on the system is almost negligible. The transfer ma-
trix ŴuC has a better conditioning than W̃uC , although it is
still worse than the best cases in Fig. 9. This implies that
the inversion of steady-state SSA without the height coupling
may be an ill-posed problem. Regularization is necessary for
penalizing oscillatory behavior at the base as in Gagliardini
et al. (2013) and Petra et al. (2012).

4 Discussion

A few issues are discussed here related to the control method
for estimating the parameter sensitivity.

We solve the FS adjoint problem only one step backward
in time to verify the numerical method due to limitations of
the current framework of Elmer/Ice. It is possible but more
complicated and expensive to solve the adjoint problem nu-
merically for a large number of time steps K . This requires
storing all the forward solutions (ui,pi,hi), i = 1,2, . . .,K,
to be able to compute the adjoint solutions (vi,qi,ψ i), i =
K,K − 1, . . .,1, which may be prohibitive in 3-D. Since the
data to be stored in the SSA model are one dimension lower,
we are able to solve the adjoint problem backward in time for
any number ofK . For a fair comparison, we show the results
for one time step with SSA in this paper.

The equations for the adjoints of FS and SSA in Eqs. (8)
and (15) are generally valid for an ice sheet in 3-D and have
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Figure 10. The changes in the horizontal velocity u (a) and surface elevation h (b) for SSA after 1 year with 1% perturbation of C(x) in
x ∈ [0.9,1.0]×106 m. Solid lines are the differences between the steady-state and the perturbed solutions in Eq. (13). Red dots represent the
estimated perturbation using Eq. (15).

Figure 11. The changes in the horizontal velocity u (a) and surface elevation h (b) for SSA after 1 year with 0.01 m perturbation of b(x) in
x ∈ [0.9,1.0]×106 m. Solid lines are the differences between the steady-state and the perturbed solutions in Eq. (13). Red dots represent the
estimated perturbation using Eq. (15).
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Figure 12. The changes in the horizontal velocity u (a) and surface elevation h (b) for SSA after 15 000 years (close to the steady state) with
1 % perturbation of C(x) in x ∈ [0.9,1.0]× 106. Solid lines are the differences between the steady-state and perturbed solutions in Eq. (13).
Red dots represent the estimated perturbation using Eq. (15).

Figure 13. The changes in the horizontal velocity u (a) and surface elevation h (b) for SSA after 15 000 years (close to the steady state)
with 0.01 m perturbation of b(x) in x ∈ [0.9,1.0]× 106. Solid lines are the differences between the steady-state and perturbed solutions in
Eq. (13). Red dots represent the estimated perturbation using Eq. (15).
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Figure 14. The changes in the horizontal velocity u for SSA after 1 year with 1% perturbation of C(x) in x ∈ [0.9,1.0]× 106 m. Solid
lines are the differences between the steady-state and the perturbed solutions in Eq. (13). Red dots represent the estimated perturbation using
Eq. (15). (a) Forward viscosity. (b) Without advection equation.

Figure 15. The singular values of the transfer matrices of SSA with
simplifications from MacAyeal (1993). 6̃uC corresponds to the for-
ward viscosity case and 6̂uC is from the adjoint SSA without cou-
pling to the ψ equation.

to be solved numerically. The problem with the storage of
the forward solution is the same as in adaptive mesh refine-
ment, where the time step and the mesh are adapted to satisfy
bounds on the numerical error. Selected forward solutions in
time are saved for the adjoint solution to reduce the storage
requirements. Missing values are interpolated in time and the
sensitivity integral in Eqs. (10) and (16) is computed suc-

cessively when the adjoint solution is advanced backward in
time.

The solutions of the horizontal velocity u and the height h
with perturbations in C in the transient FS and SSA models
are similar in Figs. 4 and 10. The weights in the upper panels
in Figs. 2 and 6 are similar, too. The solutions to the forward
equations are also close in the chosen MISMIP configuration.
The reason is that the sliding on the ground in the FS model
is considerable, making SSA a good approximation of FS.

There are many discussions regarding the choice of fric-
tion laws (see, e.g., Gladstone et al., 2017; Tsai et al., 2015;
Brondex et al., 2017). However, assuming a spatial variabil-
ity of the friction coefficient C(x) with a linear relation be-
tween the basal stress and velocity makes this numerical
study independent of the friction law. The friction coefficient
can be viewed as a linearization of the friction law, and a
postprocessing procedure can retrieve the corresponding fric-
tion law.

The transfer relation WuC between small perturbations of
the friction coefficient C at the ice base and the perturba-
tion of the horizontal velocity u at the ice surface is given by
Eq. (23) with δb = 0. The singular values of WuC in Fig. 9
tell how sensitive u is to changes in C. The transfer rela-
tion also describes how the uncertainty in C is propagated
to uncertainty in the velocity at the surface and how uncer-
tainty δu in measurements of u appears as uncertainty δC in
C Eq. (26); see Smith (2014).

The transfer relation is computed by solving the forward
problem once and then the adjoint problem for each one of
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theM observations. An alternative would be to solve the for-
ward equations first for the unperturbed solution and then
perturb C by δCj and solve the forward equations again N
times and subtract to find the relation between δu and δCj .
It is usually more expensive to solve the nonlinear forward
equations than the linear adjoint equations. Suppose that the
computational work to solve the forward problem is WF and
the adjoint problem is WA. If the forward and adjoint equa-
tions are in similar form, such as the FS or SSA problem, and
solving the nonlinear forward problem requires k iterations,
where every nonlinear iteration has the same computational
cost as solving the linear adjoint problem, then WA/WF ≈

1/k. The quotient between the work to determine the trans-
fer relation involving the adjoint equations and the work only
based on the forward equation is (1+MWA/WF )/(1+N).
Since k ≥ 1, it is advantageous to choose the approach in-
volving the adjoint if M < kN . Otherwise, solve N + 1 for-
ward problems to compute WuC . In the inverse problem to
find C given observations of u,h, the functions Fu and Fh
are smooth and M = 1 in the iterative procedure to compute
C with a gradient method. Solving the adjoint equations is
then always favorable.

5 Conclusions

The perturbations δu and δh in the velocity u and the height
h at the ice surface are caused by perturbations δb and δC
in the topography of the ice base b and the basal friction
coefficient C. The sensitivities δu and δh to δb and δC are
evaluated in 2-D by first solving the adjoint equations of the
FS and SSA models including the advection equation for the
height derived in Cheng and Lötstedt (2019). Then weight or
transfer functions are determined for the relation between δu
and δh at the surface and δb and δC at the base. The predic-
tions of δu and δh with the weights are compared to explicit
calculations of perturbed u and h at the surface with good
agreement. It is shown in Cheng and Lötstedt (2019) that if
the base perturbations are time dependent then it is necessary
to have time-dependent weight functions to obtain the correct
behavior at the top of the ice.

Both the height and the stress equations and their adjoints
are solved to find the weight functions here. The inverse
problem at steady state to infer C from observations of u
is usually solved for a fixed ice geometry and with only the
stress equation and its adjoint (see, e.g., MacAyeal, 1993; Pe-
tra et al., 2012). This is possible since the adjoint height ψ
is small when the horizontal part of u is observed and has
little influence on δu. On the contrary, if h is observed then
there is an important effect of ψ on δh in FS and SSA. The
magnitudes of ψ are different depending on whether u or h
is observed. Simplifications of the SSA adjoint in the steady
state by using the forward viscosity or ignoring the adjoint
height equation have minor consequences for the predictions
of u with a perturbed C in Fig. 14.

The sensitivity to perturbations δb and δC is quantified
for steady-state and time-dependent problems with the FS
and SSA models. It increases as the observation point x∗ ap-
proaches the grounding line. This is explained by analytical
expressions for SSA where the sensitivity is proportional to
the velocity u and inversely proportional to the ice thickness
H(x∗). The closer we are to the grounding line the higher
the requirements are on the resolution of the topography and
the friction coefficient to obtain accurate solutions of u and h
there. This is observed numerically in Durand et al. (2011).

A weight is local if its extension in space is close to the
observation point. The weights on δC at the ice base are local
for the steady-state and time-dependent FS model. They are
also local for the time-dependent SSA model and the transfer
from δb to δu and δh in the steady state. The sensitivity of
δu and δh in the steady state of SSA depends on δC from
a larger domain. It is difficult to observe a perturbation δC
with a short wavelength on u and h. In the example in Fig. 3,
a spatial perturbation wavelength λ= 2×104 m (about 10H )
in C is damped by 0.2 in δh and 0.02 in δu compared to a
wavelength λ > 105 where there is no damping due to λ. This
is in agreement with the theory in Gudmundsson (2008).

The perturbations in u and h in the steady state of the SSA
model consist of a direct effect from δb at the observation
point and a nonlocal effect of δb and δC in Figs. 6 and 7.
It follows from the analytical solution in Eq. (A3) that we
cannot distinguish between the nonlocal contributions of δb
and δC in the integral to δu. The same conclusion about the
nonlocal perturbations holds for δh in Eq. (A5). This is also
an observation in Kyrke-Smith et al. (2018).

The transfer matrices from δb and δC to δu and δh are
examined by the singular value decomposition. If the quo-
tient between the largest and the smallest singular values
of the matrix is large then it is ill-conditioned, and if it is
small (but ≥ 1) then the problem is well-conditioned. In an
ill-conditioned problem, some perturbations at the base will
be barely visible at the surface, and a small perturbation at
the top may correspond to a large perturbation at the bottom.
In a well-conditioned problem, all perturbations at the base
have a measurable effect at the surface. The ranking of the
conditioning of the transfers in Fig. 9 from the best to the
worst is

1. δb→ δh, 2. δb→ δu, 3. δC→ δh, 4. δC→ δu.

In the past, the coupling between δu and δC is most fre-
quently used for inference of C from velocity data, but
adding height data would improve the robustness of the in-
ference. The approximated analytical transfer functions for
SSA, yielding explicit dependence of the parameters, have
the same properties as above in which the observed velocity
u and height h are more sensitive to perturbations δb than
δC.
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Appendix A: Some equations

Detailed derivations of the formulas are found in Cheng and
Lötstedt (2019). A variable with index ∗ is evaluated at x∗.

A1 The forward steady-state SSA solution

The analytical steady-state solution to the forward Eq. (17)
without considering the viscosity terms is

H(x)=

(
Hm+2

GL +
m+ 2
m+ 1

Cam

ρg
(xm+1

GL − x
m+1)

) 1
m+2
,

0≤ x ≤ xGL,

H(x)=HGL, xGL < x < L,

u(x)=
ax

H
, 0≤ x ≤ xGL, u(x)=

ax

HGL
, xGL < x < L,

(A1)

where HGL is the thickness of the ice at the grounding line
xGL.

A2 The adjoint steady-state SSA solutions

The analytical steady-state solutions of the SSA adjoint
Eq. (18) with observation of u at x∗ are

ψ(x)=
Camx∗

ρgHm+3
∗

(
xmGL− x

m
)
, x∗ < x ≤ xGL,

ψ(x)=−
1
H∗
+

Camx∗

ρgHm+3
∗

(
xmGL− x

m
∗

)
, 0≤ x < x∗,

v(x)=
ax∗

ρgHm+3
∗

Hm, x∗ < x ≤ xGL,

v(x)= 0, 0≤ x < x∗, (A2)

whereH∗ is the thickness of the ice at x∗. The corresponding
perturbation δu∗ in Eq. (20) has the weights for δC and δb as

δu∗ =

xGL∫
0

(ψxu+ vxηux + vρghx) δb− vu
m δC dx

=
u∗

H∗
δb∗−

u∗

H∗

xGL∫
x∗

C(ax)m

ρgHm+1
∗

(
(m+ 1)

δb

H
+
δC

C

)
dx.

(A3)

If h is observed at x∗, then

ψ(x)=−
Cam−1

ρgHm+1
∗

(
xmGL− x

m
)
, x∗ < x ≤ xGL,

ψ(x)=−
Cam−1

ρgHm+1
∗

(
xmGL− x

m
∗

)
−
δ(x− x∗)η∗

nρgH∗
, 0≤ x ≤ x∗,

v(x)=−
Hm

ρgHm+1
∗

, x∗ < x ≤ xGL,

v(x)= 0, 0≤ x < x∗. (A4)

The weights for δC and δb in Eq. (19) for the perturbation
on h∗ are

δh∗ =
η∗

nρgH∗
(uδb)x(x∗)

+

xGL∫
x∗

C(ax)m

ρgHm+1
∗

(
(m+ 1)

δb

H
+
δC

C

)
dx. (A5)

A3 The singular value decomposition (SVD)

The SVD factorizes a matrix A in the following way (see
Golub and Van Loan, 1989):

A= U6VT . (A6)

If A is an M ×N matrix then U is an M ×M matrix, 6 an
M×N matrix, and V anN×N matrix. The singular values σi
are nonnegative and ordered from large to small for increas-
ing i and i = 1,2, . . .,min(M,N). They form the diagonal of
the diagonal matrix 6 with 6ii = σi . The other two matrices
are orthogonal, satisfying UTU= I and VTV= I. The gen-
eralized inverse 6−1 of 6 is an N ×M matrix with σ−1

i (if
σi is positive) on the diagonal and 0 elsewhere.
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https://doi.org/10.5281/zenodo.3611158 (Cheng, 2020a). The
forward and adjoint SSA solvers are implemented in MATLAB.
The code is available at: https://doi.org/10.5281/zenodo.3611154
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