Articles | Volume 14, issue 1
https://doi.org/10.5194/tc-14-331-2020
https://doi.org/10.5194/tc-14-331-2020
Research article
 | 
30 Jan 2020
Research article |  | 30 Jan 2020

Comparison of modeled snow properties in Afghanistan, Pakistan, and Tajikistan

Edward H. Bair, Karl Rittger, Jawairia A. Ahmad, and Doug Chabot

Related authors

Do we still need reflectance? From radiance to snow properties in mountainous terrain: a case study with the EMIT imaging spectrometer
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
The Cryosphere, 19, 1279–1302, https://doi.org/10.5194/tc-19-1279-2025,https://doi.org/10.5194/tc-19-1279-2025, 2025
Short summary
Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Chris J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1681,https://doi.org/10.5194/egusphere-2024-1681, 2024
Short summary
How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023,https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
Evaluation of E3SM land model snow simulations over the western United States
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023,https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023,https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Do we still need reflectance? From radiance to snow properties in mountainous terrain: a case study with the EMIT imaging spectrometer
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
The Cryosphere, 19, 1279–1302, https://doi.org/10.5194/tc-19-1279-2025,https://doi.org/10.5194/tc-19-1279-2025, 2025
Short summary
Temporal stability of a new 40-year daily AVHRR land surface temperature dataset for the pan-Arctic region
Sonia Dupuis, Frank-Michael Göttsche, and Stefan Wunderle
The Cryosphere, 18, 6027–6059, https://doi.org/10.5194/tc-18-6027-2024,https://doi.org/10.5194/tc-18-6027-2024, 2024
Short summary
Evaluating snow depth retrievals from Sentinel-1 volume scattering over NASA SnowEx sites
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024,https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Evaluation of the Snow CCI Snow Covered Area Product within a Mountain Snow Water Equivalent Reanalysis
Haorui Sun, Yiwen Fang, Steven Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3213,https://doi.org/10.5194/egusphere-2024-3213, 2024
Short summary
Improved snow property retrievals by solving for topography in the inversion of at-sensor radiance measurements
Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn
The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024,https://doi.org/10.5194/tc-18-5015-2024, 2024
Short summary

Cited articles

Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Correction of global precipitation products for orographic effects, J. Clim., 19, 15–38, https://doi.org/10.1175/JCLI3604.1, 2006. 
Armstrong, R. L., Rittger, K., Brodzik, M. J., A. Racoviteanu, Barrett, A. P., Singh Khalsa, S.-J., Raup, B., Hill, A. F., Khan, A. L., Wilson, A. M., Bhakta Kayastha, R., Fetterer, F., and Armstrong, B.: Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow Reg. Environ. Change, 19, 1249–1261, https://doi.org/10.1007/s10113-018-1429-0, 2018. 
Bair, E. H.: Reconstructed SWE and melt for MODIS tile h23v05, available at: ftp://ftp.snow.ucsb.edu/pub/org/snow/products/reconstruction/h23v05/500m/, 2019. 
Bair, E. H., Simenhois, R., Birkeland, K., and Dozier, J.: A field study on failure of storm snow slab avalanches, Cold Reg. Sci. Technol., 79–80, 20–28, https://doi.org/10.1016/j.coldregions.2012.02.007, 2012. 
Bair, E. H., Rittger, K., Davis, R. E., Painter, T. H., and Dozier, J.: Validating reconstruction of snow water equivalent in California's Sierra Nevada using measurements from the NASA Airborne Snow Observatory, Water Resour. Res., 52, 8437–8460, https://doi.org/10.1002/2016WR018704, 2016. 
Download
Short summary
Ice and snowmelt feed the Indus River and Amu Darya, but validation of estimates from satellite sensors has been a problem until recently, when we were given daily snow depth measurements from these basins. Using these measurements, estimates of snow on the ground were created and compared with models. Estimates of water equivalent in the snowpack were mostly in agreement. Stratigraphy was also modeled and showed 1 year with a relatively stable snowpack but another with multiple weak layers.
Share