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Abstract. Ice and snowmelt feed the Indus River and Amu
Darya in western High Mountain Asia, yet there are lim-
ited in situ measurements of these resources. Previous work
in the region has shown promise using snow water equiva-
lent (SWE) reconstruction, which requires no in situ mea-
surements, but validation has been a problem. However, re-
cently we were provided with daily manual snow depth mea-
surements from Afghanistan, Tajikistan, and Pakistan by the
Aga Khan Agency for Habitat (AKAH). To validate SWE re-
construction, at each station, accumulated precipitation and
SWE were derived from snow depth using the numerical
snow cover model SNOWPACK. High-resolution (500 m) re-
constructed SWE estimates from the Parallel Energy Balance
Model (ParBal) were then compared to the modeled SWE
at the stations. The Alpine3D model was then used to cre-
ate spatial estimates at 25 km resolution to compare with es-
timates from other snow models. Additionally, the coupled
SNOWPACK and Alpine3D system has the advantage of
simulating snow profiles, which provides stability informa-
tion. The median number of critical layers and percentage of
faceted layers across all of the pixels containing the AKAH
stations were computed. For SWE at the point scale, the re-
constructed estimates showed a bias of − 42 mm (−19 %) at
peak SWE. For the coarser spatial SWE estimates, the var-
ious models showed a wide range, with reconstruction be-
ing on the lower end. A heavily faceted snowpack was ob-
served in both years, but 2018, a dry year, according to most
of the models, showed more critical layers that persisted for
a longer period.

1 Introduction

There are many parts of the world where little is known
about the snowpack. This lack of knowledge presents a
challenge for water managers and for avalanche forecasters.
Afghanistan is particularly austere in this respect, as there
have been no snow measurements available since the early
1980s. This lack of information about the snowpack poten-
tially creates a humanitarian crisis, as snowmelt-fed streams
run dry in the fall without warning (USAID, 2008). Accu-
rate historical estimates of basin-wide snow water equivalent
(SWE) are crucial for creating a baseline of climatological
conditions, which can then aid in predicting today’s SWE.
For example, SWE climatology is the most important pre-
dictor in machine-learning statistical models for this region
(Bair et al., 2018a).

To improve our knowledge about the snowpack in these
areas, we have developed an approach that requires no in situ
measurements. Using satellite-based estimates of the frac-
tional snow-covered area (fSCA) and downscaled forcings
in an energy balance model, we build up the snowpack in
reverse, from melt out to its peak, using a technique called
SWE reconstruction (Martinec and Rango, 1981). This tech-
nique has been shown to accurately estimate SWE in moun-
tain ranges across the world, including the Sierra Nevada,
USA (Rittger et al., 2016; Bair et al., 2016); the Rocky
Mountains, USA (Jepsen et al., 2012; Molotch, 2009); and
the Andes of South America (Cornwell et al., 2016) – all
areas with relatively abundant independent ground valida-
tion measurements. For the so-called Third Pole of High
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Mountain Asia, and especially the northwestern parts of this
region, e.g., Afghanistan, Tajikistan, and Pakistan, ground-
based validation is challenging.

2 Aga Khan Agency for Habitat (AKAH) stations

In 2017, we received daily manual snow depth and other me-
teorological measurements from nearly 100 stations (Fig. 1)
in an operational avalanche network (Chabot and Kaba,
2016). These stations are funded by the Aga Khan Agency
for Habitat (AKAH) and are the first snowpack measure-
ments available, at least that we are aware of, in Afghanistan
in nearly 40 years. Hence, we refer to the region as the
AKAH study region and the weather stations as the AKAH
stations. The AKAH stations contain manual daily snow
depth (also called height of snow), height of new (24 h) snow,
daily high and low air temperature, instantaneous wind speed
and direction, rainfall, and some text fields on weather and
avalanche conditions. For mountainous areas, precipitation
is the most uncertain term in the water balance (Milly and
Dunne, 2002; Adam et al., 2006) because it exhibits high
spatial variability and is difficult to measure with traditional
gauges. Measuring snow on the ground has many advantages
compared to using precipitation gauges, which suffer from
undercatch, especially in the windy and treeless areas (Lehn-
ing et al., 2002a; Kochendorfer et al., 2017; Goodison et al.,
1998) typical of this part of the world. Likewise, a strength of
the SWE reconstruction technique is that it does not depend
on precipitation measurements to build the snowpack.

Additionally, many of the AKAH stations are at high ele-
vation, with 64 stations above 2500 m and 17 stations above
3000 m. Unfortunately, most of these stations are located in
deep valleys, where the villages are, rather than on the moun-
tains above, and the daily resolution is too coarse to use in
a snow model without temporal interpolation. Additionally,
many of the stations are near glacierized areas, which com-
plicates spatially interpolated snow estimates, as some of the
snow is on top of ice. The area covered by glaciers in Fig. 1
is 7.8 %.

Although there have been a large number of studies ex-
amining the glaciers of High Mountain Asia, there are fewer
studies examining snowfall in High Mountain Asia, which is
odd, since hydrologically in this region, snow on land melt
provides the vast majority of runoff compared to snow on
ice and melting glacier ice (Armstrong et al., 2018). Many
of these studies are focused on the region to the east of the
AKAH study area, shown in Fig. 1. To our knowledge, there
have been no studies on snowpack stratigraphy in the AKAH
study area, and we were unable to obtain any snow pit mea-
surements from this area.

Figure 1. Study region with AKAH stations (green dots) overlaid
on a MODIS true-color image from 13 April 2018. Also shown are
the country boundaries (red) and glacierized areas (light blue) from
the Global Land Ice Measurements from Space dataset (Raup et
al., 2007). All of the stations in Afghanistan and Tajikistan are in
areas that eventually flow into the Amu Darya. All of the stations
in Pakistan are in areas that eventually flow into the Indus River.
Imagery courtesy of NASA Worldview.

3 Literature review

A few studies have specifically examined snowfall in larger
regions that include some of the AKAH stations, mostly for
stations in the southern basins that flow into the Indus River
– that is, all of the stations in Pakistan. The rest of the sta-
tions in Afghanistan and Tajikistan are in basins that flow
into the Amu Darya. The most comparable study (Shakoor
and Ejaz, 2019) examines the Passu catchment in the Hunza
River basin, on the right in Fig. 1. As in this study (Sect. 5.1),
Shakoor and Ejaz (2019) also use the SNOWPACK and
Alpine3D models. Model parameters were calibrated using a
single weather station, Urdukas, at 3926 m elevation near the
Baltoro Glacier (Ev-K2-CNR, 2014), with 1 year of precip-
itation measurements, using snow depth for validation. The
authors report overestimation of the measured snow depth at
the calibration station, even after questionable adjustments to
the snow albedo and other model parameters. For example,
the snow and ice albedo is given as 0.20 to 0.30 (Table 3,
Shakoor and Ejaz, 2019), which would make it 0.10 to 0.20
lower than some of the lowest measured broadband albedo
values for dirty snow (Bair et al., 2019b; Skiles and Painter,
2016). They attribute the overestimation to problems with the
precipitation measurements, common for high-elevation sta-
tions. One problem with the Urdukas station in particular is
that the tipping-bucket precipitation gauge is unheated, mak-
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ing it unusable for measuring solid precipitation. Tempera-
tures at this station were well below freezing for the winter
and most of the spring, which explains why no precipitation
was recorded from January until sometime in March during
2012, the calibration year.

Viste and Sorteberg (2015) study several gridded precip-
itation products throughout High Mountain Asia, including
the Indus Basin. They report that while total precipitation
was similar across the products – including MERRA (Rie-
necker et al., 2011), APHRODITE (Yatagai et al., 2012),
TRMM (Huffman et al., 2007), and CRU (Harris et al., 2014)
– the total snowfall varied by a factor of 2 to 4. Smith and
Bookhagen (2018) used 24 years (1987 to 2009) of satellite-
based passive microwave SWE estimates to examine trends
throughout High Mountain Asia, including the Amu Darya
and Indus basins. Their SWE estimates show most 25 km
pixels in this region in the 50–100 mm range for Decem-
ber through February, with a few over 100 mm in the Amu
Darya basin (i.e., all the AKAH stations in Afghanistan and
Tajikistan) and none over 100 mm in the Indus Basin (i.e.,
all the AKAH stations in Pakistan), likely too low by an or-
der of magnitude for some pixels given our previous recon-
structed SWE values and limited climate measurements in
Afghanistan (Bair et al., 2018a).

For the AKAH stations in Tajikistan, the most compre-
hensive snow measurements come from Soviet snow surveys
(mostly depth, but with some SWE and density measure-
ments) that have been digitized (Bedford and Tsarev, 2001).
Most of these measurements begin in the late 1950s and end
around the fall of the Soviet Union, in either 1990 or 1992,
making them useful for climatological studies but not for val-
idation of modern satellite-based estimates.

The sole source of accessible snow measurements in
Afghanistan was a table of outdated World Meteorologi-
cal Organization (WMO) monthly climatological data from
Kabul (elevation 1791 m) and North Salang (elevation
3366 m), showing the maximum monthly snow depth and
the mean number of days with snow (Table 1 in Bair et al.,
2018a). Again, these measurements are not useful for vali-
dating more modern snow estimates.

There have been many other studies that have attempted
to estimate basin-wide precipitation (including snowfall) for
larger areas that include the AKAH region, especially in the
Indus. Several climate studies of the Indus have focused on
using lower-elevation precipitation gauges, which are then
used to spatially interpolate basin-wide precipitation. Dahri
et al. (2016) and Dahri et al. (2018) have assembled perhaps
the largest collection of climatological measurements cov-
ering the AKAH region, mostly based on gauge measure-
ments, as part of a study on the hydrometeorology of the
Indus Basin. Using undercatch corrections based on wind,
often from reanalysis, they increased precipitation estimates
by 21 % on average throughout the Indus Basin (Dahri et al.,
2018). For example, in the Gilgit sub-basin, they find an un-
adjusted precipitation estimate of 582 mm yr−1, adjusted to

787 mm yr−1, a 35 % increase. Although some of the mea-
surements are taken from publicly available sources, as with
most publications for this region, the comprehensive data
used are not publicly accessible.

A similar but less sophisticated approach was used by Lutz
et al. (2014), who used a constant increase of 17 % across the
APHRODITE precipitation dataset, which covers all of High
Mountain Asia. Immerzeel et al. (2015) used glacier mass
balance estimates with streamflow measurements as valida-
tion to show that high-altitude precipitation in the upper In-
dus Basin is 2 to 10 times what is shown using gridded pre-
cipitation products like APHRODITE. Bookhagen and Bur-
bank (2010) estimate that snowmelt contributes 66 % of an-
nual discharge to the Indus and averages 424 mm across the
basin.

In summary, quite a few studies have produced varying
precipitation and snowfall estimates for the AKAH region,
with no recent in situ snow measurements from Afghanistan
or Tajikistan.

4 Previous work with AKAH snow measurements

Our previous work (Bair et al., 2018a) used a simple den-
sity model (Sturm et al., 2010) based on snow climatology
(Sturm et al., 1995) and day of year to model SWE from the
manual snow depth measurements. The density model itself
has −12 % to 26 % bias in predicting SWE. When taking
into account geolocational uncertainty of the reconstructed
SWE estimates and uncertainty in the density model, errors
are on the order of 11 %–13 % mean absolute error (MAE)
and −2 % to 4 % bias, depending on the date. However, we
only examined 1 year of the AKAH station data (2017), and
the high uncertainty in the density model itself begs a more
sophisticated approach.

From recent work (Bair et al., 2018b), we have shown
that the SNOWPACK (Lehning et al., 2002a, b; Bartelt and
Lehning, 2002) model is capable of accurate SWE prediction
when supplied only with snow depth for precipitation as well
as the other requisite forcings (i.e., radiation, snow albedo,
temperatures, and wind speed). Over a 5-year period using
hourly in situ measured energy balance forcings and a snow
pillow for validation at a high-elevation site in the western
US, the SWE modeled by the numerical snow cover model
SNOWPACK showed a bias of −17 mm, or 1 % (Bair et al.,
2018b). Likewise, the success of the Airborne Snow Obser-
vatory (Painter et al., 2016) has demonstrated that given ac-
curate snow depth measurements, SWE can be well modeled.

5 Methods

Our modeling approach consisted of (a) downscaling forc-
ings in the Parallel Energy Balance Model (ParBal) and re-
constructing SWE, (b) combining the downscaled forcings
for each AKAH station with temporally interpolated man-
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ual snow measurements, (c) running SNOWPACK for each
of the AKAH stations with the downscaled and interpolated
measurements from (a) and (b), and (d) running Alpine3D
using the output from SNOWPACK, notably the hourly pre-
cipitation. In addition to predicting SWE, the SNOWPACK–
Alpine3D coupled model also predicts stratigraphic param-
eters useful for avalanche forecasting, thereby giving us an
idea of the layering and stability in this region. For compari-
son, we also ran the Noah-Multiparameterization (Noah-MP)
land surface model over the region with widely used forcings.
We also compared spatial estimates of SWE from GLDAS-
2. Methods are summarized in Table 1 and explained below,
with more detail provided in Appendix A.

5.1 SNOWPACK and Alpine3D

SNOWPACK and Alpine3D are freely available (https://
models.slf.ch, last access: 15 May 2019) point and spatially
distributed snow models, courtesy of the Swiss Snow and
Avalanche Research Institute SLF. SNOWPACK is the older
of the two and uses finite elements to model all of the layers
in snowpack at a point.

SNOWPACK has shown promising results in both opera-
tional (e.g., Lehning et al., 1999; Nishimura et al., 2005) and
research applications (e.g., Bellaire et al., 2011; Hirashima
et al., 2010). Previous results with SNOWPACK (Bair et
al., 2018b) show high model sensitivity to precipitation but
only a 1 % error in modeled SWE when using snow depth
only (not total precipitation) as a forcing. Thus, given reli-
able snow depth measurements at each AKAH station (see
Sect. 5.5), modeled SWE during the accumulation season is
treated as having negligible uncertainty. During the ablation
season (after peak SWE), uncertainty is higher. Unlike dur-
ing snow accumulation events, SNOWPACK does not force
its modeled snow ablation to match the measured snow depth
decreases. Uncertainty in SWE during the ablation season
is then largely dependent on radiative forcings (Marks and
Dozier, 1992) and the broadband snow albedo (Bair et al.,
2019b). Here, 5 % uncertainty is used, based on the MAE
from SWE reconstructions using the same remotely sensed
forcings at a continental subalpine site (Bair et al., 2019b).
In the same study, a small (3 %) bias in SWE was also found,
but this is likely due to shortcomings with the reconstruction
method and not applicable to SWE modeled with SNOW-
PACK. Thus, the small bias was ignored. We acknowledge
that these uncertainty estimates are themselves uncertain;
e.g., the reanalysis forcings could be especially poor for this
region compared to those available in the western US.

Alpine3D (Lehning et al., 2006) is essentially a spatially
distributed version of SNOWPACK with a number of ad-
ditional modules, including terrain-based radiation model-
ing, blowing snow, and hydrologic modeling. Integral to
Alpine3D is SNOWPACK, which is run for each pixel, as
well as the MeteoIO library (Bavay and Egger, 2014), which
provides a large number of temporal and spatial interpola-

tion functions that can be used on forcings for Alpine3D and
SNOWPACK.

5.2 The Parallel Energy Balance Model

ParBal was created at UC Santa Barbara and designed for
reconstruction of SWE. It is also publicly available (https://
github.com/edwardbair/ParBal/releases/tag/v1.0). Currently,
ParBal is designed to use downscaled temperature, pressure,
and humidity from version 2 of the Global or National Land
Data Assimilation System (GLDAS-2 and NLDAS-2; Xia et
al., 2012; Rodell et al., 2004), shortwave and longwave radi-
ation from Edition 4A of the Clouds and the Earth’s Radiant
Energy System (CERES; Rutan et al., 2015) SYN product,
and time–space-smoothed (Dozier et al., 2008; Rittger et al.,
2020) snow surface properties from MODIS Snow Covered
Area and Grain Size (MODSCAG; Painter et al., 2009) and
MODIS Dust and Radiative Forcing in Snow (MODDRFS;
Painter et al., 2012). ParBal is run hourly at 500 m spatial
resolution, and forcings are adjusted for terrain and eleva-
tion. The main output is the residual energy balance term,
which is assumed to go into melt when positive during the
ablation phase after cold content is overcome (Jepsen et al.,
2012). This residual melt term is then summed in reverse dur-
ing periods of contiguous snow cover and multiplied by the
fSCA to spread the snow spatially. The errors in SWE from
ParBal are mostly from fSCA and the radiative forcings. Er-
rors and details on ParBal are covered extensively in Bair et
al. (2016) and Rittger et al. (2016). In the supplement for
Bair et al. (2018a), the errors arising from using GLDAS-2
and CERES 4A (available worldwide but at coarser spatial
resolution) vs. NLDAS-2 are specifically evaluated. Using
3 years of basin-wide SWE estimated by the Airborne Snow
Observatory in the upper Tuolumne basin, California, USA,
the MAE for ParBal was 25 mm, or 26 % (Bair et al., 2018a).

5.3 Global Data Assimilation System 2 (GLDAS-2)

For comparison, we also include the SWE estimates from
GLDAS-2 (Noah). SWE from GLDAS-2 has been shown to
be comparable to estimates from other reanalysis datasets but
negatively biased by about 60 % in comparison to higher spa-
tial datasets with assimilation from snow station measure-
ments (Broxton et al., 2016).

5.4 Noah-Multiparameterization (MP)

The Noah-MP v3.6 (Niu et al., 2011; Ek et al., 2003) land
surface model, forced using MERRA-2 (Gelaro et al., 2017),
was used to simulate the hydrologic cycle over the study
area and provide SWE estimates for comparison with Par-
Bal and the Alpine3D output. Noah-MP was selected due to
its detailed representation of the snowpack relative to other
land surface models. The model subdivides the snowpack
into up to three layers with associated liquid water storage
and melt and refreeze capability (Yang and Niu, 2003; Niu
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Table 1. Summary of models used. See Sect. 5 and Appendix A for an explanation of acronyms and further details.

Model Point
comparison

Spatial
comparison

Version Forcings Output

ParBal
√ √

1.0 CERES 4A (radiation);
GLDAS-2 (meteo-
rological); MOD-
SCAG–MODDRFS
(snow surface
properties)

Daily reconstructed
SWE at 500 m; hourly
downscaled forcings at
500 m, both for entire
AKAH study area

SNOWPACK
√

3.5 AKAH station snow
measurements; down-
scaled forcings from
ParBal

Hourly SWE, precipita-
tion, and other forcings
for each AKAH station

Alpine3D
√

3.1 AKAH station output
from SNOWPACK

Daily SWE at 25 km
for entire AKAH study
area

Noah-MP
√

3.6 MERRA-2 Daily SWE at 25 km
for entire AKAH study
area

GLDAS
√

Noah
2.1

Various Daily SWE at 25 km
for entire AKAH study
area

and Yang, 2004). It incorporates the exchange of heat and
moisture through the snowpack between the land surface and
the atmosphere. In a model intercomparison study using a
2 km spatial resolution regional climate model for forcings,
Chen et al. (2014) show that Noah-MP modeled peak SWE
at SNOTEL sites in Colorado, USA, with a −7 % bias.

5.5 Use of AKAH station measurements

We modeled daily SWE at the AKAH stations during the
2017 and 2018 water years (WYs) primarily using the man-
ually measured height of snow (HS), also called snow depth,
combined with our downscaled energy balance parameters
(for downscaling methodology, see Rittger et al., 2016; Bair
et al., 2016, 2018a). To our knowledge, no quality control
was performed on the AKAH station measurements before
we received them. We choose the manual HS and new (24 h)
snow (HN) as the only variables to use from the AKAH sta-
tions. The HS appeared to be the most reliably measured,
as that only requires reading a value from a master snow
depth stake. Apart from spurious drops or missing values
(see below), the HS measurement appeared consistent and
believable at most of the stations, implying an accurate snow
depth record. The HN was used to correct a data entry prob-
lem in 2017 that we discuss below. The reliability of the
other measurements (instantaneous wind speed and direc-
tion, maximum and minimum temperature, and rainfall) was
questionable. For example, we were not provided with sensor
or measurement metadata, e.g., sensor make and model, mea-

surement height, and whether or not the temperature sensor
was shielded from shortwave radiation. These other measure-
ments taken daily were also of limited value for interpolation
to hourly values (see item 3 below). Thus, these other mea-
surements were not used.

The AKAH dataset had a number of shortcomings that we
list here along with how we addressed them.

1. Some of the stations recorded no snow at all, especially
in the dry 2018 year, or had obvious problems, such as
weeks of missing measurements, so they were excluded.
For 2017, 52 (54 %) of stations were used. For 2018, 41
(46 %) stations were used.

2. There were spurious drops in the HS measurements.
The drops were clearly cases of missing values being
filled with zeros. These measurements were manually
flagged and converted to null values for interpolation
(see below).

3. The daily measurements had to be interpolated to hourly
values. For the most part we used linear interpolation,
although this is not ideal during snow accumulation,
since it is almost never the case that snowfall is uni-
form over a 24 h period. This is a problem that affects
the accuracy of snow settlement estimated by SNOW-
PACK. There were two cases where other interpolation
methods were used. If there were several days of miss-
ing values, we used a nearest-neighbor interpolation to
fill in the missing daily values, followed by a linear in-
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terpolation from daily to hourly measurements such that
we assumed that all the new snow fell in a 24 h period.
The other case was for days where the linear interpola-
tion would yield a value below the minimum threshold
hard-coded into SNOWPACK (0.5 cm h−1) for the first
accumulating snowfall on bare ground. In this case, a
previous neighbor interpolation was used in such a way
that the entire snowfall occurred in the last hr prior to
the next day’s measurement.

4. We found the AKAH stations suitable for snow on the
ground measurements but not for rainfall or total (solid
plus liquid) precipitation. This was only an issue for the
Alpine3D snow modeling, as snow measurements were
being extrapolated to higher elevations than the AKAH
stations (Sect. 6.2); thus at these higher elevations, snow
accumulated earlier and melted later than at the lower
AKAH stations.

Given the near-total lack of canopy cover in the region,
we suspected substantial undercatch from rain gauges. Using
the wind speed, an undercatch correction would have been
possible given more information on the gauges (e.g., orifice
opening diameter and whether or not a shield was present);
however these instrument metadata were not available to us.
Likewise, we did not know if the gauges were heated or not.

Further, the time period for recording measurements from
the stations was not consistent. In WY 2017, measurements
began being reported on 10 November 2016 and were re-
ported until 24 November 2017. However, in WY 2018, mea-
surements were not reported until 1 December 2017, and no
station measurements were reported past 1 April 2017. The
reporting period likely covered all the snowfall events but not
all the precipitation events.

To address the rainfall measurement and reporting issues,
we used GLDAS Noah v2.1 (Rodell et al., 2004) rainfall and
snowfall from the nearest grid cell (1/4◦ spatial by 3 h tem-
poral resolution) to fill in precipitation prior to the first mea-
surements in each water year and after 1 April for both water
years. We did not account for rain from 10 November 2016
to 1 April 2017 and from 1 December 2017 to 1 April 2018;
instead we relied on the modeled precipitation from SNOW-
PACK using snow depth. The AKAH station observations
show that rain during this time period was rare.

5. A database problem prevented snow heights >100 cm
from being entered into the database for a few days in
2017. This problem became apparent during February
2017, when the Nuristan avalanches took place (United
Nations, 2017), as that is the first time that most sta-
tions recorded values >100 cm. Values were shown as
100 cm on multiple days, followed by values >100 cm.
To address this issue, we flagged all the values equal
to 100 cm prior to peak snow depth in 2017 and then
marked those as null values. We then filled those null

values using the cumulative sum of new snow during
that time.

5.6 Analysis of modeled snow profiles

For holistic measures of the snow profiles modeled in
Alpine3D, we used two metrics from Bellaire et al. (2018):
(1) the fraction of facets and (2) the number of critical layers.
The fraction of facets is the height of all the layers containing
faceted crystals, i.e., International Classification for Seasonal
Snow on the Ground primary codes FC, DH, and SH (Fierz et
al., 2009), divided by the height of the snowpack. The num-
ber of critical layers was computed using a threshold sum ap-
proach (Schweizer and Jamieson, 2007) with modifications
for simulated profiles (Monti et al., 2014, Table 1). In each
profile, six different variables (grain size, difference in grain
size, hardness, difference in hardness, grain type, and depth)
in the top meter of the snowpack (from the surface) were
checked against threshold values. Layers exceeding five or
more thresholds were classified as critical.

The fraction-of-facets metric does not have a validation
study, but faceted layers are a weak crystal form and are re-
sponsible for 43 % (Bair et al., 2012) to 67 % (Schweizer and
Jamieson, 2001) of investigated avalanches. Layers classi-
fied as critical using the threshold sum approach above cor-
responded to failure layers about half of the time to failure
layers found with compression tests (Monti et al., 2014), an
in situ snowpack stability test (van Herwijnen and Jamieson,
2007; Jamieson, 1999).

5.7 Spatial scale for comparisons

Because ParBal is the only model run at 500 m spatial res-
olution and all the other models were run at ∼ 25 km, it is
the only model appropriate for point comparisons, although
point-to-area problems are still an issue. To address the ge-
olocational uncertainty for the gridded MODIS products,
which can be up to one ∼ 500 m pixel (Tan et al., 2006; Xi-
aoxiong et al., 2005) and spatial variability of the snow, we
used a 9-pixel neighborhood centered on each AKAH station
and chose the best fit to the SNOWPACK-modeled SWE.
This approach has been used in previous work (Bair et al.,
2018a; Rittger et al., 2016). We also include the high and
low SWE values in that surrounding 9-pixel neighborhood to
bound the uncertainty.

For all of the other model comparisons, we resampled all
of the model output to a UTM (Zone 43S) grid with 25 km
pixels, close to the native resolution of the Noah-MP and
GLDAS2 grid used (0.25◦). This yielded a study area of
105 625 km2 (13 pixels×13 pixels, each 25 km2 in area). The
ParBal output had to be significantly upscaled from 500 m to
25 km using Gaussian pyramid reduction (Burt and Adelson,
1983) in steps, with bilinear interpolation for the final step.
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Figure 2. Summary of relationships between the various compo-
nents. Forcings are shown in red, models and selected outputs are
shown in blue, and the comparisons discussed below are shown in
green. The black arrows show the direction of inputs.

Figure 3. Peak SWE dates, modeled by SNOWPACK for 2017 (a)
and 2018 (b) for each of the AKAH stations. The median peak SWE
dates are 19 February 2017 and 26 February 2018. N = 52 and 41
AKAH stations used for 2017 and 2018.

6 Results and discussion

The relationships between the components are summarized
in Fig. 2. The results discussed below are comparisons of (1)
SWE and (2) snow stratigraphy across (a) all of the AKAH
stations (points) and (b) the entire study region.

6.1 Point comparisons between SNOWPACK and
reconstructed SWE

A first step for any SWE reconstruction comparison is to de-
termine when the ablation season starts. This varies for dif-
ferent years and at different sites (e.g., Margulis et al., 2016).
Using the SNOWPACK-modeled SWE, we can examine the
peak SWE dates for both years for all of the AKAH stations
(Fig. 3a, b). Peak SWE dates vary across the stations and
years, but the median values between years are a week apart,
19 February 2017 and 26 February 2018. Thus, we use those
dates for our comparisons.

To create a holistic comparison for all the stations across
the ablation period, mean SWE values were computed and

Figure 4. Mean SWE for 2017 (a) and 2018 (b) modeled at all of
the AKAH stations using SNOWPACK (blue lines) compared to
reconstructed SWE from ParBal using a best-of-9-pixel approach
(red lines). Also plotted is the median peak SWE date. The high–
low (hi/lo) bounds (filled areas) represent uncertainty. For ParBal,
uncertainty is expressed as the range of values in the 9-pixel neigh-
borhood. For SNOWPACK, uncertainty is 5 % of the modeled SWE
during the ablation season. See Sect. 5.1 and 5.2 for details. The
modeled SWE values end abruptly on 1 April 2018 because the
AKAH stations stopped reporting due to drought conditions. The
number of stations used is the same as in Fig. 3.

plotted for each day during the ablation season (Fig. 4). For
the reconstructed SWE on 19 February 2017, the bias is
−77 mm (−28 %). For the reconstructed SWE on 26 Febru-
ary 2018, the bias is −6 mm (−9 %). Thus, together these
biases average to −42 mm (−19 %). The high–low values in
the 9-pixel neighborhood show the wide spatial variation in
SWE estimates and are to be expected in these deep valley
sites (Sect. 6.2). The increases in reconstructed SWE during
the ablation season are caused by differences in how melt is
summed for any given pixel. In ParBal, melt is only summed
during periods of contiguous snow cover. This means that
if a pixel containing an AKAH station has no snow on it at
some point during the ablation season, but then snow is de-
tected, it causes an increase in the mean SWE. This is called
an ephemeral snow event, i.e., snow that disappears and reap-
pears. For a more in-depth examination of the error at indi-
vidual stations, a box plot is shown for the median peak SWE
dates for both years (Fig. 5). The median bias of the recon-
structed SWE is −11 mm (−14 %).

6.2 Four model spatial comparisons

The AKAH stations are lower than the average elevation for
the region. The average elevation of the AKAH stations is
2619 m (1735 to 3410 m). But when the 500 m DEM (digital
elevation model) is upscaled to 25 km, the average elevation
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Figure 5. Bias (a) and relative bias (b) for ParBal reconstructed
SWE vs. Alpine3D-modeled SWE at AKAH stations on the median
peak SWE date for both years, where bias here is ParBal SWE and
Alpine3D SWE.

of the pixels containing the AKAH station is 3858 m, with
a range of 2517 to 4764 m. This has two important implica-
tions: (1) much of the higher elevation snowfall is being ex-
trapolated and (2) the higher elevation causes the peak SWE
date to move forward in time. The median peak SWE dates
for the (N = 169) 25 km pixels encompassing the study area
are 5 May 2018 and 3 May 2018. Thus, we use the median of
the two to compare our reconstructed SWE values (Fig. 6a,
b; Fig. 7a–d; and video in the Supplement).

The range between models is striking. Noah-MP has the
highest peaks (562 mm in 2017 and 331 mm in 2018) but is
among the first to melt out. The reconstructed SWE from
ParBal only shows minor variation between the 2017 peak
(240 mm) and the 2018 peak (206 mm). ParBal and GLDAS-
2 melt snow out latest in both years. This is especially true
for ParBal in 2017, where the Supplement video shows that
ParBal has snow cover over more pixels that persists for
longer into the melt season but is lower in SWE than the
other models. The Alpine3D model shows the second highest
peak SWE in 2017 (469 mm) but the lowest peak (165 mm)
in 2018. The comparatively higher values from Noah-MP
could result from relatively high precipitation estimates from
its MERRA2 precipitation forcings. Similarly, Viste and Sor-
teberg (2015) report that MERRA (version 1) showed higher
snowfall in the Indus Basin than any other reanalysis or
observation-based forcing dataset.

Since Alpine3D relies heavily on extrapolation of SWE,
we suggest that its mean SWE values plotted in Fig. 6 could
have higher uncertainty than some of the other models. For
example, the Alpine3D pixels seem to melt out early com-
pared to the other models, especially ParBal, which is the
only model that relies on satellite-based estimates of fSCA
(see Supplement video). Thus, Alpine3D may computing too
little SWE in cold, high-elevation areas that melt slowly.
These problems are all indicative of stations that are located
in valley bottoms and that only cover the lowest elevations
across these 25 km pixels.

Figure 6. Time series of mean SWE for four snow models across
the study area (13 pixels ×13 pixels, each 25 km2) shown in Fig. 1
for 2017 (a) and 2018 (b). The reconstructed SWE from ParBal
(yellow) goes back to 4 May, the median peak SWE date for both
years, since reconstruction is only valid during the ablation season.

Figure 7. Four-model (a–d) spatial comparison for the study area
on 4 May 2018. The white letters represent the following: AFG –
Afghanistan; TJK – Tajikistan; and PAK – Pakistan. Also shown in
(a) are the locations of the AKAH stations (orange points). This is
a frame from a video sequence available in the Supplement.

The ParBal results are confounding given that the agree-
ment between the modeled SWE from ParBal and SNOW-
PACK at individual AKAH stations (Fig. 4a, b) is much bet-
ter for both 2017 and 2018.

For insight into potential biases in the modeled spatial
SWE from ParBal, we carefully studied the snow-covered
area (SCA; not just for 2017 and 2018 but since 2001), the
potential melt (i.e., the melt if a pixel were 100 % snow
covered), and the melt from glacierized areas (light blue in
Fig. 1). We did not find any errors in the model, its parame-
ters, or its forcings. Thus, it is possible that the ParBal SWE
is biased low in 2017 for reasons that we could not discern or
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Figure 8. Time series of snow covered area from spatially and tem-
porally interpolated MODSCAG (Rittger et al., 2020), an input for
ParBal, for 4 selected years across the region. Years 2008 and 2009
had the lowest and highest values on 1 July over the period of record
from 2001 to 2018, while 2017 and 2018 comprise the AKAH sta-
tion study period.

that the other models are biased high. To note is that the 2017
and 2018 SCA (Fig. 8; purple and orange) is very similar for
both years during the ablation period, especially at the end of
the ablation season.

Since pixels do not contribute uniformly to melt, SCA
alone cannot be used to predict SWE, but in general years
with less snow they have lower SCA values towards the end
of the ablation season. Figure 8 shows that 2017 and 2018
were similar in terms of SCA from April to melt out. Thus,
the large difference between 2017 and 2018 for the AKAH
station SWE, but small differences in SCA and spatially av-
eraged reconstructed SWE suggest that 2017 may have been
a larger snow year at the lower elevations where the AKAH
stations are but similar to 2018 at the higher elevations.

6.3 Stratigraphy and stability

The simulated snow profiles from the AKAH stations
(Fig. 9a, b) and the 25 km pixels containing the AKAH sta-
tions (Fig. 10a, b) show very different snowpacks. Because
of the induced increase in elevation from scaling (e.g., from
an average of 2619 to 3858 m; Sect. 6.2), the 25 km pixels
show a deeper but more faceted snowpack with critical lay-
ers that persist for a month or longer. In 2017, for the median
AKAH station values, the snowpack reaches a maximum of
76 % facets on 21 January (Fig. 9a). In 2018, the snowpack
reaches a maximum of 71 % facets (Fig. 9b). There were no
critical layers simulated. In contrast, for the median values
in the 25 km pixels for both years, the height of snow (HS)
is approximately 2 times that for the stations (Fig. 10a, b).
The snowpack reaches a maximum of 94 % facets in 2017,
with one critical layer persisting for 35 d (Fig. 10a). The
snowpack in 2018 reaches 95 % facets, with one or two crit-
ical layers persisting for 80 d (Fig. 10b). During the Nuris-

Figure 9. Stratigraphy summary of the AKAH stations for 2017 (a)
and 2018 (b). Plotted are the median values of the following: height
of snow (HS), fraction of the snowpack containing facets, and num-
ber of critical layers. The number of stations used to compute the
medians varied due to snow coverage.

tan avalanches on 4 to 7 February 2017 that killed over 100
people (United Nations, 2017), the AKAH stations show the
largest 3 d snowfall of the study period (Fig. 9a), and the re-
sults for the 25 km pixels show large snowfall occurring on
top of the only critical layer of the season (Fig. 9b). That is
a classic avalanche scenario, i.e., a large snowfall on a weak
snowpack.

In lieu of any type of snow profile from this region, these
profiles paint the best picture of the snow conditions avail-
able. A relatively stable snowpack seems to be present in
the valleys, where the AKAH stations are located. But at the
higher elevations, the simulated profiles show a more critical
snowpack. This is especially serious, considering that these
villages are in the run-out zones of these potentially unstable
snowpacks. In some cases, several thousand meters of ver-
tical relief loom above the villages. For example, Yarkhun
Lasht (36.795◦ N 73.022◦ E; elevation of 3249 m) in Pakistan
is flanked by 6500 m peaks on both sides of its valley.

7 Conclusions

Knowledge of the snowpack in northwestern High Moun-
tain Asia is poor. This area is subject to droughts and threat-
ened by snow avalanches. Both problems can be aided by
improved knowledge of the snowpack. Thanks to a novel op-
erational avalanche observation network, there are now daily
snow measurements at a number of operational weather sta-
tions in this austere region. In this study, 2 years of daily
snow depth measurements from these stations were com-
bined with downscaled reanalysis and remotely sensed mea-
surements to force a point and spatially distributed snow
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Figure 10. Stratigraphy summary of the (13×13) 25 km pixels con-
taining AKAH stations for 2017 (a) and 2018 (b). Plotted are the
median values of the following: height of snow (HS), fraction of the
snowpack containing facets, and number of critical layers.

model. Compared to a previous effort (Bair et al., 2018a), this
study represents a substantial improvement in SWE model-
ing for the region and a first attempt to characterize region-
wide snow stratigraphy. At the point scale, SWE estimates
from a reconstruction technique that does not use precipi-
tation or in situ measurements compared favorably. At the
regional scale, four models showed a wide spread in both
peak SWE and melt timing. For the models that rely on in
situ precipitation measurements, a major challenge is spatial
extrapolation, as many of the stations are located in deep val-
leys. Adding measurements from the mountains above would
facilitate more realistic lapse rates, but these measurements
do not currently exist, although they would be beneficial both
for operational avalanche safety and for scientific studies.

In the regional comparison, SWE estimates from ParBal
were on the low end, but given the model spread it is diffi-
cult to form a consensus estimate. We plan additional in situ
validation at other sites in High Mountain Asia to continue
to assess the performance of ParBal there.

The simulated profiles showed very different snowpacks.
At the point scale at lower elevations in the valleys, profiles
showed fewer facets and almost no critical layers, while at
the regional scale for higher elevations, the profiles showed
heavily faceted snowpacks with critical layers that persisted
throughout the winter and spring.

The Cryosphere, 14, 331–347, 2020 www.the-cryosphere.net/14/331/2020/



E. H. Bair et al.: Snow properties in Afghanistan, Pakistan, and Tajikistan 341

Appendix A: Detailed model forcings and parameters

A1 ParBal

ParBal was configured and forced as described in Bair et
al. (2018a) and Bair et al. (2016). The model time step was
1 h. The DEM used was the ASTER GDEM version 2 at
1 arcsec (NASA JPL, 2011), while the canopy type and frac-
tion were taken from the Global Land Survey at 30 m (USGS,
2009). The shortwave and longwave forcings were down-
scaled from the CERES SYN Edition 4A 1◦ by 1 h prod-
uct (Rutan et al., 2015), while the air temperature, specific
humidity, air pressure, and wind speeds were downscaled
from the GLDAS Noah version 2.1 0.25◦ by 3 h product
(Cosgrove et al., 2003). Time–space-smoothed (Dozier et al.,
2008; Rittger et al., 2020) fSCA and grain size from MOD-
SCAG (Painter et al., 2009) was combined with the visible
albedo degradation from dust in MODDRFS (Painter et al.,
2012) to produce snow hourly snow albedo.

A2 Noah-MP

Noah-MP v3.6 was run in retrospective mode within the
NASA Land Information System (LIS) framework. A state
vector ensemble (total 30 replicates) was generated by
perturbing the forcings to account for the state uncertainty
during forward propagation of the model. MERRA-2
(Gelaro et al., 2017) forcings were utilized with bilinear spa-
tial and linear temporal interpolation. The model was run on
an equidistant cylindrical grid with 0.25◦ spatial resolution
and a 15 min model time step. The spin-up time extended
from May 2002 to May 2016, while the study period was
from June 2016 to October 2018. The number of maximum
layers in the snowpack was three. Table A1 provides
details of the Noah-MP scheme options selected. Further
details regarding each scheme and relevant references can
be found at https://ral.ucar.edu/solutions/products/noah-
multiparameterization-land-surface-model-noah-mp-lsm
(last access: 15 May 2019).

A3 SNOWPACK

SNOWPACK v3.50 was run in research mode at a 15 min
time step, with hourly outputs for each of the AKAH stations.
Hourly forcings were computed by combining temporally
interpolated snow depth from the AKAH manual measure-
ments with air temperature, incoming shortwave, reflected
shortwave, incoming longwave, wind speed, and relative hu-
midity from the downscaled ParBal outputs, as described
in Sect. 5.2. SNOWPACK was only run for periods when
measurements from the AKAH stations were available in
November–December to April–May, depending on the year.

Plots were assumed to be level, so forcings without terrain
correction were applied, except for shading, when the sun
was below the local horizon, e.g., a mountain was blocking
the sun (Dozier and Frew, 1990). The wind direction, which

is not available in GLDAS-2, was fixed at the mean value
from the daily AKAH instantaneous values. The ground tem-
perature was set as the minimum of the air temperature or
−1.5 ◦C when snow cover was present.

Aside from setting required parameters and values for in-
puts and outputs, changes to default parameters that affected
model output are provided in Table A2.

A4 Alpine3D

Alpine3D version 3.10 was run using with the outputs pro-
duced by SNOWPACK as forcings for each of the AKAH
stations at 25 km resolution. The DEM and land cover (in-
correctly labeled land use in the Alpine3D documentation)
data were upscaled from the ParBal data. Alpine3D was run
at an hourly time step using hourly forcings, with daily out-
puts using the “enable-eb” switch. Other switches were set to
off, the defaults. The “enable-eb” switch computes the terrain
radiation with shading and terrain reflections (see Alpine3D
documentation at https://models.slf.ch (last access: 15 May
20019) for a description).

To extend the length of the model runs, for each AKAH
station, GLDAS-2 precipitation was appended to periods
prior to the first AKAH observation for the year and after
the last, as described in Sect. 5.5.

The forcings were hourly for the following measure-
ments: incoming shortwave, incoming longwave, air temper-
ature, relative humidity, wind speed, wind direction, reflected
shortwave, accumulated precipitation, and ground tempera-
ture.

Critical to Alpine3D are the interpolation methods from
MeteoIO to spatially distribute precipitation and other forc-
ings. We found the modeled SWE to be highly dependent
on the spatial interpolation of precipitation. Our initial ap-
proach was to explore local (i.e., with a given radius from
a station) and regional (i.e., all AKAH stations) lapse rates
in the measured snow depth and modeled precipitation from
SNOWPACK. We found almost no correlation in many of
the measurements, which was not surprising given the com-
plexity of the terrain and likely existence of microclimates
with substantial influence on precipitation. Without having a
good validation source for spatial precipitation (as is the case
for all of High Mountain Asia), we selected an interpolation
method that yielded relatively smooth results but showed in-
creases in precipitation with elevation.

Ultimately, we decided to use an inverse distance weight-
ing scheme with elevation detrending (IDW_LAPSE) and a
multilinear option. For this method, the input data are de-
trended, and then the residuals are spatially interpolated ac-
cording to an inverse distance weighting scheme. The de-
trending uses a multiple linear regression with northing,
easting, and altitude. The linear regression has an iterative
method for removing outliers. Finally, values at each cell are
retrended using the multiple linear regression and added to
the interpolated residuals.
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Table A1. Noah-MP v3.6 physical parametrization scheme options utilized in this study.

Physical process and/or parameter Scheme used

Elevation data SRTM Native
Land cover data MODIS Native (IGBPNCEP)
Slope, albedo and greenness data NCEP Native
Bottom temperature (lapse-rate correction) ISLSCP1
Vegetation Dynamic
Canopy stomatal resistance Ball–Berry
Runoff and groundwater SIMGM
Surface layer drag coefficient M–O (General Monin–Obukhov similarity theory)
Supercooled liquid water and frozen soil permeability NY06
Radiation transfer gap=F (3-D; cosz)
Snow surface albedo BATS (biosphere–atmosphere transfer scheme)
Rainfall and snowfall Jordan91
Snow and soil temperature time Semi-implicit
Lower boundary of soil temperature Noah

Table A2. Model parameters for SNOWPACK.

Parameters Value Description

TS_DAYS_BETWEEN 0.014666 d Output hourly values

PRECIP_RATES FALSE Output is provided as a summed precip-
itation over the output time step (1 h)

SW_MODE BOTH Both incoming and reflected (incoming
times albedo) are provided

HEIGHT_OF_METEO_VALUES 2 m Height of meteorological
measurements

HEIGHT_OF_WIND_VALUE 2 m Height of wind measurements

ENFORCE_MEASURED_SNOW_HEIGHTS TRUE Precipitation is calculated using HS

ATMOSPHERIC_STABILITY NEUTRAL Neutral conditions are often present
in moderate to high wind speeds for
mountain terrain (Lehning et al., 2002a;
Mitterer and Schweizer, 2013)

MEAS_INCOMING_LONGWAVE TRUE Default is to estimate emissivity of the
air and incoming longwave from other
measured parameters (FALSE). Here
we provide longwave forcings (TRUE).
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A summary of the interpolation methods, all of which are
defined in the MeteoIO documentation (Bavay and Egger,
2014), is given in Table A3.

The same parameters as in Table A2 for SNOWPACK
were used in Alpine3D, with changes shown in Table A4.
Other parameters were defaults.

Table A3. Spatial interpolation methods for Alpine3D.

Forcing Spatial interpolation method Description and notes

Air temperature IDW_LAPSE Inverse distance weighting with
elevation detrending.

Accumulated
precipitation

IDW_LAPSE with multilinear
option set to TRUE

See notes above

Relative
humidity

LISTON_RH See Liston and Elder (2006)

Precipitation
phase

PPHASE Simple splitting at 274.35 K

Wind speed IDW_LAPSE See above

Incoming long-
wave radiation

AVG_LAPSE Average filling with elevation
lapse rate

Wind direction CST Constant, fixed at average value
from AKAH station instanta-
neous measurements

Pressure STD_PRESS Standard atmospheric pressure
with elevation

Table A4. Model parameter changes for Alpine3D from Table A2.

Parameters Value Description

CALCULATION_STEP_LENGTH 60 min 1 h model time step

ENFORCE_MEASURED_SNOW_HEIGHTS FALSE Use accumulated pre-
cipitation estimate from
SNOWPACK

www.the-cryosphere.net/14/331/2020/ The Cryosphere, 14, 331–347, 2020



344 E. H. Bair et al.: Snow properties in Afghanistan, Pakistan, and Tajikistan

Code and data availability. The code for ParBal is accessible at
https://github.com/edwardbair/ParBal (Bair et al., 2019a).

The codes for MeteoIO (https://models.slf.ch/p/meteoio/, Bavay
et al., 2015a), SNOWPACK (https://models.slf.ch/p/snowpack/,
Bavay et al., 2015b), and Alpine3D (https://models.slf.ch/p/
alpine3d/, Bavay et al., 2015c) are accessible at https://models.slf.
ch/.

The code for Noah-MP is accessi-
ble at https://ral.ucar.edu/solutions/products/
noah-multiparameterization-land-surface-model-noah-mp-lsm
(Niu and Yange, 2015).

The GLDAS-2 (https://doi.org/10.5067/L0JGCNVBNRAX,
Beaudoing and Rodell, 2015) and MERRA-2
(https://doi.org/10.5067/VJAFPLI1CSIV, GMAO, 2015) forc-
ings are accessible at https://disc.gsfc.nasa.gov/.

The reconstructed SWE and melt cubes are accessible at
ftp://ftp.snow.ucsb.edu/pub/org/snow/products/reconstruction/
h23v05/500m/ (Bair, 2019).

Unfortunately, the AKAH measurements are not publicly avail-
able due to security concerns. Requests for the dataset should be
made through the Aga Khan Agency for Habitat (https://www.akdn.
org, last access: May 2019).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-14-331-2020-supplement.
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