Research article
15 Aug 2019
Research article
| 15 Aug 2019
Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions
Jie Deng et al.
Related authors
Yanxing Hu, Tao Che, Liyun Dai, Yu Zhu, Lin Xiao, Jie Deng, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-63, https://doi.org/10.5194/essd-2022-63, 2022
Preprint withdrawn
Short summary
Short summary
We propose a data fusion framework based on the random forest regression algorithm to derive a comprehensive snow depth product for the Northern Hemisphere from 1980 to 2019. This new fused snow depth dataset not only provides information about snow depth and its variation over the Northern Hemisphere but also presents potential value for hydrological and water cycle studies related to seasonal snowpacks.
Tao Che, Xin Li, Shaomin Liu, Hongyi Li, Ziwei Xu, Junlei Tan, Yang Zhang, Zhiguo Ren, Lin Xiao, Jie Deng, Rui Jin, Mingguo Ma, Jian Wang, and Xiaofan Yang
Earth Syst. Sci. Data, 11, 1483–1499, https://doi.org/10.5194/essd-11-1483-2019, https://doi.org/10.5194/essd-11-1483-2019, 2019
Short summary
Short summary
The paper presents a suite of datasets consisting of long-term hydrometeorological, snow cover and frozen ground data for investigating watershed science and functions from an integrated, distributed and multiscale observation network in the upper reaches of the Heihe River Basin in China. These data are expected to serve as a testing platform to provide accurate forcing data and validate and evaluate remote-sensing products and hydrological models in cold regions for a broader community.
Yanxing Hu, Tao Che, Liyun Dai, Yu Zhu, Lin Xiao, Jie Deng, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-63, https://doi.org/10.5194/essd-2022-63, 2022
Preprint withdrawn
Short summary
Short summary
We propose a data fusion framework based on the random forest regression algorithm to derive a comprehensive snow depth product for the Northern Hemisphere from 1980 to 2019. This new fused snow depth dataset not only provides information about snow depth and its variation over the Northern Hemisphere but also presents potential value for hydrological and water cycle studies related to seasonal snowpacks.
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-45, https://doi.org/10.5194/tc-2022-45, 2022
Preprint under review for TC
Short summary
Short summary
The geographically and temporally weighted neural network (GTWNN) model is constructed for estimating large-scale daily snow density by integrating satellite, ground, and reanalysis data, which addresses the importance of spatiotemporal heterogeneity and nonlinear relationship between snow density and impact variables, as well as allows us understanding the spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China from 2013 to 2020.
Liyun Dai, Tao Che, Yang Zhang, Zhiguo Ren, Junlei Tan, Meerzhan Akynbekkyzy, Lin Xiao, Shengnan Zhou, Yuna Yan, Yan Liu, Hongyi Li, and Lifu Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-68, https://doi.org/10.5194/essd-2022-68, 2022
Revised manuscript under review for ESSD
Short summary
Short summary
An Integrated Microwave Radiometry Campaign for snow (IMCS) was conducted to collect ground-based passive microwave and optical remote sensing data, snow pit and underlying soil data, and meteorological parameters. The dataset is unique in providing continuously electromagnetic and physical features of snow pack and environment. The dataset is expected to serve for the evaluation and development of the microwave and optical radiative transfer models and snow evolution process models.
Donghang Shao, Hongyi Li, Jian Wang, Xiaohua Hao, Tao Che, and Wenzheng Ji
Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022, https://doi.org/10.5194/essd-14-795-2022, 2022
Short summary
Short summary
The temporal series and spatial distribution discontinuity of the existing snow water equivalent (SWE) products in the pan-Arctic region severely restricts the use of SWE data in cryosphere change and climate change studies. Using a ridge regression machine learning algorithm, this study developed a set of spatiotemporally seamless and high-precision SWE products. This product could contribute to the study of cryosphere change and climate change at large spatial scales.
Wei Wan, Jie Zhang, Liyun Dai, Hong Liang, Baojian Liu, Zhizhou Guo, Heng Hu, Ting Yang, and Limin Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-432, https://doi.org/10.5194/essd-2021-432, 2021
Revised manuscript under review for ESSD
Short summary
Short summary
The GSnow-CHINA data set is a snow depth data set developed using the two Global Navigation Satellite System station networks in China. It includes snow depth of 24-, 12-, and 2-hour records, if possible, for 80 sites from 2013–2020 over northern China (25–55° N, 70–140° E). The footprint of the data set is ~1000 m2, and it can be used as an independent data source for validation purposes. It is also useful for regional climate research and other meteorological and hydrological applications.
Xiaohua Hao, Guanghui Huang, Tao Che, Wenzheng Ji, Xingliang Sun, Qin Zhao, Hongyu Zhao, Jian Wang, Hongyi Li, and Qian Yang
Earth Syst. Sci. Data, 13, 4711–4726, https://doi.org/10.5194/essd-13-4711-2021, https://doi.org/10.5194/essd-13-4711-2021, 2021
Short summary
Short summary
Long-term snow cover data are not only of importance for climate research. Currently China still lacks a high-quality snow cover extent (SCE) product for climate research. This study develops a multi-level decision tree algorithm for cloud and snow discrimination and gap-filled technique based on AVHRR surface reflectance data. We generate a daily 5 km SCE product across China from 1981 to 2019. It has high accuracy and will serve as baseline data for climate and other applications.
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
Tao Che, Xin Li, Shaomin Liu, Hongyi Li, Ziwei Xu, Junlei Tan, Yang Zhang, Zhiguo Ren, Lin Xiao, Jie Deng, Rui Jin, Mingguo Ma, Jian Wang, and Xiaofan Yang
Earth Syst. Sci. Data, 11, 1483–1499, https://doi.org/10.5194/essd-11-1483-2019, https://doi.org/10.5194/essd-11-1483-2019, 2019
Short summary
Short summary
The paper presents a suite of datasets consisting of long-term hydrometeorological, snow cover and frozen ground data for investigating watershed science and functions from an integrated, distributed and multiscale observation network in the upper reaches of the Heihe River Basin in China. These data are expected to serve as a testing platform to provide accurate forcing data and validate and evaluate remote-sensing products and hydrological models in cold regions for a broader community.
Hewen Niu, Shichang Kang, Hailong Wang, Rudong Zhang, Xixi Lu, Yun Qian, Rukumesh Paudyal, Shijin Wang, Xiaofei Shi, and Xingguo Yan
Atmos. Chem. Phys., 18, 6441–6460, https://doi.org/10.5194/acp-18-6441-2018, https://doi.org/10.5194/acp-18-6441-2018, 2018
Short summary
Short summary
Deposition of light-absorbing carbonaceous aerosol on the surface of glaciers can greatly alter the energy fluxes of glaciers. Two years of continuous observations of carbonaceous aerosols in a glacierized region are analyzed. We mainly studied the light absorption properties of carbonaceous aerosol and have employed a global aerosol–climate model to estimate source attributions of atmospheric black carbon.
Haipeng Wang, Jianhui Chen, Shengda Zhang, David D. Zhang, Zongli Wang, Qinghai Xu, Shengqian Chen, Shijin Wang, Shichang Kang, and Fahu Chen
Clim. Past, 14, 383–396, https://doi.org/10.5194/cp-14-383-2018, https://doi.org/10.5194/cp-14-383-2018, 2018
Short summary
Short summary
The chironomid-inferred temperature record from Gonghai Lake exhibits a stepwise decreasing trend since 4 ka. A cold event in the Era of Disunity, the Sui-Tang Warm Period, the Medieval Warm Period and the Little Ice Age can all be recognized in our record, as well as in many other temperature reconstructions in China. Local wars in Shanxi Province, documented in the historical literature during the past 2700 years, are statistically significantly correlated with changes in temperature.
Liyun Dai, Tao Che, Yongjian Ding, and Xiaohua Hao
The Cryosphere, 11, 1933–1948, https://doi.org/10.5194/tc-11-1933-2017, https://doi.org/10.5194/tc-11-1933-2017, 2017
Short summary
Short summary
Snow depth over QTP plays a very important role in the climate and hydrological system, but there are uncertainties on the snow depth products derived from passive microwave remote sensing data. In this study, we evaluated the ability of passive microwave to detect snow cover and snow depth over QTP, presented the accuracy of passive microwave snow cover and snow depth products over QTP, and analyzed the possible reasons causing the uncertainties.
Wang Shijin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2016-300, https://doi.org/10.5194/nhess-2016-300, 2016
Manuscript not accepted for further review
Short summary
Short summary
GLOF is low-frequency event, but it often causes enormous loss and damage of life, property and human environment in downstream regions. The economic losses caused by GLOF are much higher than the project costs to early consolidate moraine dam and release flood waters. Glacial lake outbursts can be very difficult and expensive to control, but regional exposure and vulnerability of exposed elements downstream can be reduced by improving adaptation capacity and risk management level.
C. Xiao, R. Li, S. B. Sneed, T. Dou, and I. Allison
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-3611-2013, https://doi.org/10.5194/tcd-7-3611-2013, 2013
Revised manuscript not accepted
Related subject area
Discipline: Snow | Subject: Remote Sensing
Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation
Snow water equivalent change mapping from slope-correlated synthetic aperture radar interferometry (InSAR) phase variations
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland
Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Mapping liquid water content in snow at the millimeter scale: an intercomparison of mixed-phase optical property models using hyperspectral imaging and in situ measurements
Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow & Ice Monitoring Service
Review Article: Global Monitoring of Snow Water Equivalent using High Frequency Radar Remote Sensing
Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas
Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements
Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy
The retrieval of snow properties from SLSTR Sentinel-3 – Part 1: Method description and sensitivity study
The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation
Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning
Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States
Mapping avalanches with satellites – evaluation of performance and completeness
Estimating fractional snow cover from passive microwave brightness temperature data using MODIS snow cover product over North America
Snow depth time series retrieval by time-lapse photography: Finnish and Italian case studies
Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping
Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain
Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data
Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques
Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions
Comparison of modeled snow properties in Afghanistan, Pakistan, and Tajikistan
Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals
Regional influence of ocean–atmosphere teleconnections on the timing and duration of MODIS-derived snow cover in British Columbia, Canada
Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network
Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards
Monitoring snow depth change across a range of landscapes with ephemeral snowpacks using structure from motion applied to lightweight unmanned aerial vehicle videos
Repeat mapping of snow depth across an alpine catchment with RPAS photogrammetry
On the reflectance spectroscopy of snow
On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Jayson Eppler, Bernhard Rabus, and Peter Morse
The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022, https://doi.org/10.5194/tc-16-1497-2022, 2022
Short summary
Short summary
We introduce a new method for mapping changes in the snow water equivalent (SWE) of dry snow based on differences between time-repeated synthetic aperture radar (SAR) images. It correlates phase differences with variations in the topographic slope which allows the method to work without any "reference" targets within the imaged area and without having to numerically unwrap the spatial phase maps. This overcomes the key challenges faced in using SAR interferometry for SWE change mapping.
Sebastian Buchelt, Kirstine Skov, Kerstin Krøier Rasmussen, and Tobias Ullmann
The Cryosphere, 16, 625–646, https://doi.org/10.5194/tc-16-625-2022, https://doi.org/10.5194/tc-16-625-2022, 2022
Short summary
Short summary
In this paper, we present a threshold and a derivative approach using Sentinel-1 synthetic aperture radar time series to capture the small-scale heterogeneity of snow cover (SC) and snowmelt. Thereby, we can identify start of runoff and end of SC as well as perennial snow and SC extent during melt with high spatiotemporal resolution. Hence, our approach could support monitoring of distribution patterns and hydrological cascading effects of SC from the catchment scale to pan-Arctic observations.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022, https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary
Short summary
The amount of water within a snowpack is important information for predicting snowmelt and wet-snow avalanches. From within a controlled laboratory, the optimal method for measuring liquid water content (LWC) at the snow surface or along a snow pit profile using near-infrared imagery was determined. As snow samples melted, multiple models to represent wet-snow reflectance were assessed against a more established LWC instrument. The best model represents snow as separate spheres of ice and water.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward J. Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, and Xiaolan Xu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-295, https://doi.org/10.5194/tc-2021-295, 2021
Revised manuscript accepted for TC
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles, but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X and Ku-band can address this gap. This review will serve to inform the broad snow research, monitoring, and applications communities on the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, and Stefan Wunderle
The Cryosphere, 15, 4261–4279, https://doi.org/10.5194/tc-15-4261-2021, https://doi.org/10.5194/tc-15-4261-2021, 2021
Short summary
Short summary
We performed a comprehensive accuracy assessment of an Advanced Very High Resolution Radiometer global area coverage snow-cover extent time series dataset for the Hindu Kush Himalayan (HKH) region. The sensor-to-sensor consistency, the accuracy related to snow depth, elevations, land-cover types, slope, and aspects, and topographical variability were also explored. Our analysis shows an overall accuracy of 94 % in comparison with in situ station data, which is the same with MOD10A1 V006.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Pinja Venäläinen, Kari Luojus, Juha Lemmetyinen, Jouni Pulliainen, Mikko Moisander, and Matias Takala
The Cryosphere, 15, 2969–2981, https://doi.org/10.5194/tc-15-2969-2021, https://doi.org/10.5194/tc-15-2969-2021, 2021
Short summary
Short summary
Information about snow water equivalent (SWE) is needed in many applications, including climate model evaluation and forecasting fresh water availability. Space-borne radiometer observations combined with ground snow depth measurements can be used to make global estimates of SWE. In this study, we investigate the possibility of using sparse snow density measurement in satellite-based SWE retrieval and show that using the snow density information in post-processing improves SWE estimations.
Linlu Mei, Vladimir Rozanov, Christine Pohl, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2757–2780, https://doi.org/10.5194/tc-15-2757-2021, https://doi.org/10.5194/tc-15-2757-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 1 of two companion papers and shows the method description and sensitivity study. The paper investigates the major factors, including the assumptions of snow optical properties, snow particle distribution and atmospheric conditions (cloud and aerosol), impacting snow property retrievals from satellite observation.
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021, https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 2 of two companion papers and shows the results and validation. The paper performs the new retrieval algorithm on the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument and compares the retrieved snow properties with ground-based measurements, aircraft measurements and other satellite products.
Ahmad Hojatimalekshah, Zachary Uhlmann, Nancy F. Glenn, Christopher A. Hiemstra, Christopher J. Tennant, Jake D. Graham, Lucas Spaete, Arthur Gelvin, Hans-Peter Marshall, James P. McNamara, and Josh Enterkine
The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021, https://doi.org/10.5194/tc-15-2187-2021, 2021
Short summary
Short summary
We describe the relationships between snow depth, vegetation canopy, and local-scale processes during the snow accumulation period using terrestrial laser scanning (TLS). In addition to topography and wind, our findings suggest the importance of fine-scale tree structure, species type, and distributions on snow depth. Snow depth increases from the canopy edge toward the open areas, but wind and topographic controls may affect this trend. TLS data are complementary to wide-area lidar surveys.
Jennifer M. Jacobs, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, Elizabeth A. Burakowski, Christina Herrick, and Eunsang Cho
The Cryosphere, 15, 1485–1500, https://doi.org/10.5194/tc-15-1485-2021, https://doi.org/10.5194/tc-15-1485-2021, 2021
Short summary
Short summary
This pilot study describes a proof of concept for using lidar on an unpiloted aerial vehicle to map shallow snowpack (< 20 cm) depth in open terrain and forests. The 1 m2 resolution snow depth map, generated by subtracting snow-off from snow-on lidar-derived digital terrain models, consistently had 0.5 to 1 cm precision in the field, with a considerable reduction in accuracy in the forest. Performance depends on the point cloud density and the ground surface variability and vegetation.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Marco Bongio, Ali Nadir Arslan, Cemal Melih Tanis, and Carlo De Michele
The Cryosphere, 15, 369–387, https://doi.org/10.5194/tc-15-369-2021, https://doi.org/10.5194/tc-15-369-2021, 2021
Short summary
Short summary
The capability of time-lapse photography to retrieve snow depth time series was tested. We demonstrated that this method can be efficiently used in three different case studies: two in the Italian Alps and one in a forested region of Finland, with an accuracy comparable to the most common methods such as ultrasonic sensors or manual measurements. We hope that this simple method based only on a camera and a graduated stake can enable snow depth measurements in dangerous and inaccessible sites.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Maxim Lamare, Marie Dumont, Ghislain Picard, Fanny Larue, François Tuzet, Clément Delcourt, and Laurent Arnaud
The Cryosphere, 14, 3995–4020, https://doi.org/10.5194/tc-14-3995-2020, https://doi.org/10.5194/tc-14-3995-2020, 2020
Short summary
Short summary
Terrain features found in mountainous regions introduce large errors into the calculation of the physical properties of snow using optical satellite images. We present a new model performing rapid calculations of solar radiation over snow-covered rugged terrain that we tested over a site in the French Alps. The results of the study show that all the interactions between sunlight and the terrain should be accounted for over snow-covered surfaces to correctly estimate snow properties from space.
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Veit Helm, Evelyn Jäkel, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 14, 3959–3978, https://doi.org/10.5194/tc-14-3959-2020, https://doi.org/10.5194/tc-14-3959-2020, 2020
Short summary
Short summary
The angular reflection of solar radiation by snow surfaces is particularly anisotropic and highly variable. We measured the angular reflection from an aircraft using a digital camera in Antarctica in 2013/14 and studied its variability: the anisotropy increases with a lower Sun but decreases for rougher surfaces and larger snow grains. The applied methodology allows for a direct comparison with satellite observations, which generally underestimated the anisotropy measured within this study.
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Short summary
We evaluate a recent method to map snow depth based on satellite photogrammetry. We compare it with accurate airborne laser-scanning measurements in the Sierra Nevada, USA. We find that satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountains.
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Short summary
Unmanned-aerial-vehicle-based (UAV) structure-from-motion (SfM) techniques have the ability to map snow depths in open areas. Here UAV lidar and SfM are compared to map sub-canopy snowpacks. Snow depth accuracy was assessed with data from sites in western Canada collected in 2019. It is demonstrated that UAV lidar can measure the sub-canopy snow depth at a high accuracy, while UAV-SfM cannot. UAV lidar promises to quantify snow–vegetation interactions at unprecedented accuracy and resolution.
Carlo Marin, Giacomo Bertoldi, Valentina Premier, Mattia Callegari, Christian Brida, Kerstin Hürkamp, Jochen Tschiersch, Marc Zebisch, and Claudia Notarnicola
The Cryosphere, 14, 935–956, https://doi.org/10.5194/tc-14-935-2020, https://doi.org/10.5194/tc-14-935-2020, 2020
Short summary
Short summary
In this paper, we use for the first time the synthetic aperture radar (SAR) time series acquired by Sentinel-1 to monitor snowmelt dynamics in alpine regions. We found that the multitemporal SAR allows the identification of the three phases that characterize the melting process, i.e., moistening, ripening and runoff, in a spatial distributed way. We believe that the presented investigation could have relevant applications for monitoring and predicting the snowmelt progress over large regions.
Edward H. Bair, Karl Rittger, Jawairia A. Ahmad, and Doug Chabot
The Cryosphere, 14, 331–347, https://doi.org/10.5194/tc-14-331-2020, https://doi.org/10.5194/tc-14-331-2020, 2020
Short summary
Short summary
Ice and snowmelt feed the Indus River and Amu Darya, but validation of estimates from satellite sensors has been a problem until recently, when we were given daily snow depth measurements from these basins. Using these measurements, estimates of snow on the ground were created and compared with models. Estimates of water equivalent in the snowpack were mostly in agreement. Stratigraphy was also modeled and showed 1 year with a relatively stable snowpack but another with multiple weak layers.
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Short summary
Impact of natural variability in Arctic tundra snow microstructural characteristics on the capacity to estimate snow water equivalent (SWE) from Ku-band radar was assessed. Median values of metrics quantifying snow microstructure adequately characterise differences between snowpack layers. Optimal estimates of SWE required microstructural values slightly less than the measured median but tolerated natural variability for accurate estimation of SWE in shallow snowpacks.
Alexandre R. Bevington, Hunter E. Gleason, Vanessa N. Foord, William C. Floyd, and Hardy P. Griesbauer
The Cryosphere, 13, 2693–2712, https://doi.org/10.5194/tc-13-2693-2019, https://doi.org/10.5194/tc-13-2693-2019, 2019
Short summary
Short summary
We investigate the influence of ocean–atmosphere teleconnections on the start, end, and duration of snow cover in British Columbia, Canada. We do this using daily satellite imagery from 2002 to 2018 and assess the accuracy of our methods using reported snow cover at 60 weather stations. We found that there are very strong relationships that vary by region and elevation. This improves our understanding of snow cover distribution and could be used to predict snow cover from ocean–climate indices.
Anne Braakmann-Folgmann and Craig Donlon
The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019, https://doi.org/10.5194/tc-13-2421-2019, 2019
Short summary
Short summary
Snow on sea ice is a fundamental climate variable. We propose a novel approach to estimate snow depth on sea ice from satellite microwave radiometer measurements at several frequencies using neural networks (NNs). We evaluate our results with airborne snow depth measurements and compare them to three other established snow depth algorithms. We show that our NN results agree better with the airborne data than the other algorithms. This is also advantageous for sea ice thickness calculation.
Isobel R. Lawrence, Michel C. Tsamados, Julienne C. Stroeve, Thomas W. K. Armitage, and Andy L. Ridout
The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, https://doi.org/10.5194/tc-12-3551-2018, 2018
Short summary
Short summary
In this paper we estimate the thickness of snow cover on Arctic sea ice from space. We use data from two radar altimeter satellites, AltiKa and CryoSat-2, that have been operating synchronously since 2013. We produce maps of monthly average snow depth for the four growth seasons (October to April): 2012–2013, 2013–2014, 2014–2015, and 2015–2016. Snow depth estimates are essential for the accurate retrieval of sea ice thickness from satellite altimetry.
Richard Fernandes, Christian Prevost, Francis Canisius, Sylvain G. Leblanc, Matt Maloley, Sarah Oakes, Kiyomi Holman, and Anders Knudby
The Cryosphere, 12, 3535–3550, https://doi.org/10.5194/tc-12-3535-2018, https://doi.org/10.5194/tc-12-3535-2018, 2018
Short summary
Short summary
The use of lightweight UAV-based surveys of surface elevation to map snow depth and weekly snow depth change was evaluated over five study areas spanning a range of topography and vegetation cover. Snow depth was estimated with an accuracy of better than 10 cm in the vertical and 3 cm in the horizontal. Vegetation in the snow-free elevation map was a major source of error. As a result, the snow depth change between two dates with snow cover was estimated with an accuracy of better than 4 cm.
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
The Cryosphere, 12, 3477–3497, https://doi.org/10.5194/tc-12-3477-2018, https://doi.org/10.5194/tc-12-3477-2018, 2018
Short summary
Short summary
A remotely piloted aircraft system (RPAS) is evaluated for mapping seasonal snow depth across an alpine basin. RPAS photogrammetry performs well at providing maps of snow depth at high spatial resolution, outperforming field measurements for resolving spatial variability. Uncertainty and error analysis reveal limitations and potential pitfalls of photogrammetric surface-change analysis. Ultimately, RPAS can be a useful tool for understanding snow processes and improving snow modelling efforts.
Alexander Kokhanovsky, Maxim Lamare, Biagio Di Mauro, Ghislain Picard, Laurent Arnaud, Marie Dumont, François Tuzet, Carsten Brockmann, and Jason E. Box
The Cryosphere, 12, 2371–2382, https://doi.org/10.5194/tc-12-2371-2018, https://doi.org/10.5194/tc-12-2371-2018, 2018
Short summary
Short summary
This work presents a new technique with which to derive the snow microphysical and optical properties from snow spectral reflectance measurements. The technique is robust and easy to use, and it does not require the extraction of snow samples from a given snowpack. It can be used in processing satellite imagery over extended fresh dry, wet and polluted snowfields.
Stefan Härer, Matthias Bernhardt, Matthias Siebers, and Karsten Schulz
The Cryosphere, 12, 1629–1642, https://doi.org/10.5194/tc-12-1629-2018, https://doi.org/10.5194/tc-12-1629-2018, 2018
Short summary
Short summary
The paper presents an approach which can be used to process satellite-based snow cover maps with a higher-than-today accuracy at the local scale. Many of the current satellite-based snow maps are using the NDSI with a threshold as a tool for deciding if there is snow on the ground or not. The presented study has shown that, firstly, using the standard threshold of 0.4 can result in significant derivations at the local scale and that, secondly, the deviations become smaller for coarser scales.
Cited articles
Bark, R. H., Colby, B. G., and Dominguez, F.: Snow days? Snowmaking
adaptation and the future of low latitude, high elevation skiing in Arizona,
USA, Clim. Change, 102, 467–491, https://doi.org/10.1007/s10584-009-9708-x, 2010.
Bednarik, M., Magulova, B., Matys, M., and Marschalko, M.: Landslide
susceptibility assessment of the Kralovany–Liptovsky Mikulaš railway
case study, Phys. Chem. Earth, 35, 162–171,
https://doi.org/10.1016/j.pce.2009.12.002, 2010.
Bian, Z., Xu, Z., Xiao, L., Dong, H., and Xu, Q.: Selection of optimal
access point for offshore wind farm based on multi-objective decision
making, Int. J. Elec. Power, 103, 43–49,
https://doi.org/10.1016/j.ijepes.2018.05.025, 2018.
Brambilla, M., Pedrini, P., Rolando, A., and Chamberlain, D. E.: Climate
change will increase the potential conflict between skiing and
high-elevation bird species in the Alps, J. Biogeogr., 43, 2299–2309,
https://doi.org/10.1111/jbi.12796, 2016.
Buhalis, D.: Marketing the competitive destination of the future, Environ.
Manag., 21, 97–116, https://doi.org/10.1016/S0261-5177(99)00095-3, 2000.
Burt, J. W.: Developing restoration planting mixes for active ski slopes: A
multi-site reference community approach, Environ. Manage., 49, 636–648,
https://doi.org/10.1007/s00267-011-9797-y, 2012.
Burt, J. W. and Rice, K. J.: Not all ski slopes are created equal:
Disturbance intensity affects ecosystem properties, Ecol. Appl., 19,
2242–2253, https://doi.org/10.1890/08-0719.1, 2009.
Cai, W. Y., Di, H., and Liu, X. P.: Estimation of the spatial suitability of
winter tourism destinations based on copula functions, Int. J. Env. Res.
Pub. He., 16, 2–18, https://doi.org/10.3390/ijerph16020186, 2019.
Che, T., Li, X., Jin, R., Armstrong, R., and Zhang, T.: Snow depth derived
from passive microwave remote-sensing data in China, Ann. Glaciol., 49,
145–154, https://doi.org/10.3189/172756408787814690, 2008.
Crowe, R. B., McKay, G. A., and Baker, W. M.: The tourist and outdoor
recreation climate of Ontario, Vol. 1. Objectives and definitions of seasons
Atmospheric Environment Service, Environment Canada, Toronto, Canada, 1973.
Damm, A., Koeberl, J., and Prettenthaler, F.: Does artificial snow
production pay under future climate conditions? – A case study for a
vulnerable ski area in Austria, Tour. Manag., 43, 8–21,
https://doi.org/10.1016/j.tourman.2014.01.009, 2014.
Damm, A., Greuell, W., Landgren, O., and Prettenthaler, F.: Impacts of +2 ∘C global warming on winter tourism demand in Europe, Clim. Serv., 7, 31–46,
https://doi.org/10.1016/j.cliser.2016.07.003, 2017.
Dawson, J., Scott, D., and McBoyle, G.: Climate change analogue analysis of
ski tourism in the northeastern USA, Clim. Res., 39, 1–9,
https://doi.org/10.3354/cr00793, 2009.
De Freitas, C. R.: The climate-tourism relationship and its relevance to
climate change impact assessment, in: Tourism,
Recreation and Climate Change: International Perspectives, edited by: Hall, C. M. and Higham, J., Channelview
Press, UK, 2005.
Delgado, R., Sánchez-Marañón, M., Martín-García, J.
M., Aranda, V., Serrano-Bernardo, F., and Rosúa, J. L.: Impact of ski
pistes on soil properties: A case study from a mountainous area in the
Mediterranean region, Soil Use Manage., 23, 269–277,
https://doi.org/10.1111/j.1475-2743.2007.00093.x, 2007.
Dezsi, S., Nistor, M. M., Man, T., and Rusu, R.: The GIS assessment of a
winter sports resort location. Case study: Beliş District, Western
Carpathians, Carpath. J. Earth Env., 10, 223–230, 2015.
Doll, C. H., Muller, J.-P., and Elvidge, C. D.: Night-time imagery as a tool
for global mapping of socioeconomic parameters and greenhouse gas emissions,
Ambio, 29, 157–162, https://doi.org/10.1579/0044-7447-29.3.157, 2000.
Duglio, S. and Beltramo, R.: Environmental management and sustainable
labels in the ski industry: A critical review, Sustainability, 8, 1–13,
https://doi.org/10.3390/su8090851, 2016.
Eadington, W. R. and Redman, M.: Economics and tourism, Ann. Tour. Res.,
18, 41–56, https://doi.org/10.1016/0160-7383(91)90038-D, 1991.
Fukushima, T., Kureha, M., Ozaki, N., Fujimori, Y., and Harasawa, H.:
Influences of air temperature change on leisure industries: Case study on
ski activities, Mitig. Adapt. Strat. Clim. Chang., 7, 173–189,
https://doi.org/10.1023/A:1022803405470, 2002.
Geneletti, D.: Impact assessment of proposed ski areas: A GIS approach
integrating biological, physical and landscape indicators, Environ. Impact
Assess., 28, 116–130, https://doi.org/10.1016/j.eiar.2007.05.011, 2008.
Gilaberte-Búrdalo, M., López-Moreno, J. I., Morán-Tejeda, E.,
Jerez, S., Alonso-González, E., López-Martín, F., and
Pino-Otín, M. R.: Assessment of ski condition reliability in the
Spanish and Andorran Pyrenees for the second half of the 20th century, Appl.
Geogr., 79, 127–142, https://doi.org/10.1016/j.apgeog.2016.12.013, 2017.
Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., and Bayr, K.
J.: MODIS snow-cover products, Remote Sens. Environ., 83, 181–194,
https://doi.org/10.1016/s0034-4257(02)00095-0, 2002.
Hanzer, F., Marke, T., and Strasser, U.: Distributed, explicit modeling of
technical snow production for a ski area in the Schladming region (Austrian
Alps), Cold Reg. Sci. Tech., 108, 113–124,
https://doi.org/10.1016/j.coldregions.2014.08.003, 2014.
Hennessy, K. J., Whetton, P. H., Walsh, K., Smith, I. N., Bathols, J. M.,
Hutchinson, M., and Sharples, J.: Climate change effects on snow conditions
in mainland Australia and adaptation at ski resorts through snowmaking,
Clim. Res., 35, 255–270, https://doi.org/10.3354/cr00706, 2008.
Huang, X., Deng, J., Ma, X., Wang, Y., Feng, Q., Hao, X., and Liang, T.: Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China, The Cryosphere, 10, 2453–2463, https://doi.org/10.5194/tc-10-2453-2016, 2016.
Ji, Z. and Kang, S.: Projection of snow cover changes over china under RCP
scenarios, Clim. Dynam., 41, 589–600, https://doi.org/10.1007/s00382-012-1473-2, 2013.
Kaenzig, R., Rebetez, M., and Serquet, G.: Climate change adaptation of the
tourism sector in the Bolivian Andes, Tour. Geogr., 18, 111–128,
https://doi.org/10.1080/14616688.2016.1144642, 2016.
Lasanta, T., Laguna, M., and Vicente-Serrano, S. M.: Do tourism-based ski
resorts contribute to the homogeneous development of the Mediterranean
mountains? A case study in the Central Spanish Pyrenees, Tour. Manag., 28,
1326–1339, https://doi.org/10.1016/j.tourman.2007.01.003, 2007.
McKercher, B.: The impact of distance on tourism: a tourism geography law,
Tour. Geogr., 20, 905–909, https://doi.org/10.1080/14616688.2018.1434813, 2018.
Morales, L., Lang, F., and Mattar, C.: Mesoscale wind speed simulation using
CALMET model and reanalysis information: An application to wind potential,
Renew. Energ., 48, 57–71, https://doi.org/10.1016/j.renene.2012.04.048, 2012.
Morey, E.: The choice of ski areas: estimation of a generalized CES
preference ordering with characteristics, Rev. Econ. Stat., 66, 584–590,
https://doi.org/10.2307/1935982, 1984.
Morey, R.: Characteristics, consumer surplus, and new activities: A proposed
ski area, J. Pub. Econ., 26, 221–236, https://doi.org/10.1016/0047-2727(85)90006-4,
1985.
Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown, R.: Characterization
of northern hemisphere snow water equivalent datasets, 1981–2010, J. Climate, 28, 8037–8051, https://doi.org/10.1175/JCLI-D-15-0229.1,
2015.
Pons, M., López-Moreno, J. I., Rosas-Casals, M., and Jover, È.: The
vulnerability of Pyrenean ski resorts to climate-induced changes in the
snowpack, Clim. Change, 131, 591–605, https://doi.org/10.1007/s10584-015-1400-8, 2015.
Pons-Pons, M., Johnson, P. A., Rosas-Casals, M., Sureda, B., and Jover, E.:
Modeling climate change effects on winter ski tourism in Andorra, Clim.
Res., 54, 197–207, https://doi.org/10.3354/cr01117, 2012.
Pourghasemi, H. R., Mohammady, M., and Pradhan, B.: Landslide susceptibility
mapping using index of entropy and conditional probability models in GIS:
Safarood Basin, Iran, Catena, 97, 71–84, https://doi.org/10.1016/j.catena.2012.05.005,
2012.
Ristić, R., Kašanin-Grubin, M., Radić, B., Nikić, Z., and
Vasiljević, N.: Land degradation at the Stara Planina ski resort,
Environ. Manag., 49, 580–592, https://doi.org/10.1007/s00267-012-9812-y, 2012.
Rutty, M. and Andrey, J.: Weather forecast use for winter recreation,
Weather Clim. Soc., 6, 293–306, https://doi.org/10.1175/WCAS-D-13-00052.1, 2014.
Rutty, M., Scott, D., Johnson, P., Pons, M., Steiger, R., and Vilella, M.:
Using ski industry response to climatic variability to assess climate change
risk: An analogue study in Eastern Canada, Tour. Manag., 58, 196–204,
https://doi.org/10.1016/j.tourman.2016.10.020, 2017.
Rybnikova, N. A. and Portnov, B. A.: Using light-at-night (LAN) satellite
data for identifying clusters of economic activities in Europe, Curr. Issues
Tour., 8, 307–334, https://doi.org/10.1007/s12076-015-0143-5, 2015.
Sato, C. F., Wood, J. T., Schroder, M., Michael, D. R., Osborne, W. S.,
Green, K., and Lindenmayer, D. B.: Designing for conservation outcomes: The
value of remnant habitat for reptiles on ski runs in subalpine landscapes,
Landscape Ecol., 29, 1225–1236, https://doi.org/10.1007/s10980-014-0058-3, 2014.
Scott, D., McBoyle, G., and Mills, B.: Climate change and the skiing
industry in southern Ontario (Canada): Exploring the importance of
snowmaking as a technical adaptation, Clim. Res., 23, 171–181,
https://doi.org/10.3354/cr023171, 2003.
Scott, D., Steiger, R., Rutty, M., Pons, M., and Johnson, P.: The
differential futures of ski tourism in Ontario (Canada) under climate
change: the limits of snowmaking adaptation, Curr. Issues Tour., 22, 1327–1342,
https://doi.org/10.1080/13683500.2017.1401984, 2017.
Scott, D., Steiger, R., Dannevig, H., and Aall, C.: Climate change and the
future of the Norwegian alpine ski industry, Curr. Issues Tour.,
https://doi.org/10.1080/13683500.2019.1608919, online first, 2019.
Silberman, J. A. and Rees, P. W.: Reinventing mountain settlements: A GIS
model for identifying possible ski towns in the U.S. Rocky Mountains, Appl.
Geogr., 30, 36–49, https://doi.org/10.1016/j.apgeog.2009.10.005, 2010.
Spandre, P., François, H., Thibert, E., Morin, S., and George-Marcelpoil, E.: Determination of snowmaking efficiency on a ski slope from observations and modelling of snowmaking events and seasonal snow accumulation, The Cryosphere, 11, 891–909, https://doi.org/10.5194/tc-11-891-2017, 2017.
Spulerova, J., Gajdoš, P., Matušicová, N., Krnáčová,
Z., and Kenderessy, P.: Sustainable tourism development in a selected area
of the low tatras national park – landscape planning versus urban planning,
Carpath. J. Earth Envi., 11, 485–496, 2016.
Srdjevic, B., Medeiros, Y. D. P., and Faria, A. S.: An Objective
Multi-Criteria Evaluation of Water Management Scenarios, Water Resour.
Manag., 18, 35–54, https://doi.org/10.1023/b:warm.0000015348.88832.52, 2004.
Steiger, R.: The impact of climate change on ski season length and
snowmaking requirements in Tyrol, Austria, Clim. Res., 43, 251–262,
https://doi.org/10.3354/cr00941, 2010.
Steiger, R.: Scenarios for skiing tourism in Austria: Integrating
demographics with an analysis of climate change, J. Sustain. Tour., 20,
867–882, https://doi.org/10.1080/09669582.2012.680464, 2012.
Steiger, R. and Abegg, B.: Ski areas' competitiveness in the light of
climate change: Comparative analysis in the Eastern Alps, in: Tourism in
Transitions, edited by: Müller, D. K. and Więckowski, M., Springer
International Publishing, Cham, Switzerland, 187–199, 2018.
Steiger, R. and Stötter, J.: Climate change impact assessment of ski
tourism in Tyrol, Tour. Geogr., 15, 577–600,
https://doi.org/10.1080/14616688.2012.762539, 2013.
Steiger, R., Scott, D., Abegg, B., Pons, M., and Aall, C.: A critical review
of climate change risk for ski tourism, Curr. Issues Tour., 22, 1343–1379,
https://doi.org/10.1080/13683500.2017.1410110, 2017.
Tang, Z.: An integrated approach to evaluating the coupling coordination
between tourism and the environment, Tour. Manag., 46, 11–19,
https://doi.org/10.1016/j.tourman.2014.06.001, 2015.
Tervo, K.: The operational and regional vulnerability of winter tourism to
climate variability and change: The case of the Finnish nature-based tourism
entrepreneurs, Scand. J. Hosp. Tour., 8, 317–332,
https://doi.org/10.1080/15022250802553696, 2008.
Tervo-Kankare, K., Kaján, E., and Saarinen, J.: Costs and benefits of
environmental change: tourism industry's responses in Arctic Finland, Tour.
Geogr., 20, 202–223, https://doi.org/10.1080/14616688.2017.1375973, 2017.
Tolvanen, A. and Kangas, K.: Tourism, biodiversity and protected areas –
Review from northern Fennoscandia, J. Environ. Manag., 169, 58–66,
https://doi.org/10.1016/j.jenvman.2015.12.011, 2016.
Tsuyuzaki, S.: Environmental deterioration resulting from ski-resort
construction in Japan, Environ. Conserv., 21, 121–125,
https://doi.org/10.1017/S0376892900024541, 1994.
Vanat, L.: 2018 International Report on Snow & Mountain Tourism: Overview
of the key industry figures for ski resorts, Genève, available at:
https://www.thebookedition.com/fr/2018-international-report-on-snow-p-357878.html, last access: 17 May 2019.
Verfaillie, D., Lafaysse, M., Déqué, M., Eckert, N., Lejeune, Y., and Morin, S.: Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps, The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, 2018.
Vranešević, M., Belić, S., Kolaković, S., Kadović, R.,
and Bezdan, A.: Estimating Suitability of Localities for Biotechnical
Measures on Drainage System Application in Vojvodina, Irrig. Drain., 66,
129–140, https://doi.org/10.1002/ird.2024, 2016.
Wemple, B., Shanley, J., Denner, J., Ross, D., and Mills, K.: Hydrology and
water quality in two mountain basins of the northeastern US: assessing
baseline conditions and effects of ski area development, Hydrol. Process.,
21, 1639–1650, https://doi.org/10.1002/hyp.6700, 2007.
Wilson, G., Green, M., and Mack, K.: Historical Climate warming in the White
Mountains of New Hampshire (USA): Implications for snowmaking water needs at
ski areas, Mt. Res. Dev., 38, 164–171, https://doi.org/10.1659/MRD-JOURNAL-D-17-00117,
2018.
Wipf, S., Rixen, C., Fischer, M., Schmid, B., and Stoeckli, V.: Effects of
ski piste preparation on alpine vegetation, J. Appl. Ecol., 42, 306–316,
https://doi.org/10.1111/j.1365-2664.2005.01011.x, 2005.
Wu, J. and Gao, X.: A gridded daily observation dataset over China region and
comparison with the other datasets, Chinese J. Geophys.-CH, 56, 1102–1111,
https://doi.org/10.6038/cjg20130406, 2013 (in Chinese).
Young, I.: Public-private sector cooperation: Enhancing tourism
competitiveness, Ann. Tour. Res., 29, 573–574,
https://doi.org/10.1016/S0160-7383(01)00056-1, 2002.
Zhao, N., Currit, N., and Samson, E.: Net primary production and gross domestic product in China derived from satellite imagery, Ecol. Econ., 70, 921–928, https://doi.org/10.1016/j.ecolecon.2010.12.023, 2011.
Zhao, N., Liu, Y., Cao, G., Samson, E. L., and Zhang, J.: Forecasting
China's GDP at the pixel level using nighttime lights time series and
population images, GISci. Remote Sens., 54, 407–425,
https://doi.org/10.1080/15481603.2016.1276705, 2017.
Zhou, B., Wang, Z., Shi, Y., Xu, Y., and Han, Z.: Historical and Future
Changes of Snowfall Events in China under a Warming Background, J. Climate,
31, 5873–5889, https://doi.org/10.1175/jcli-d-17-0428.1, 2018.
Short summary
The Chinese ski industry is rapidly booming driven by enormous market demand and government support with the coming 2022 Beijing Winter Olympics. We evaluate the locational suitability of ski areas in China by integrating the natural and socioeconomic conditions. Corresponding development strategies for decision-makers are proposed based on the multi-criteria metrics, which will be extended to incorporate potential influences from future climate change and socioeconomic development.
The Chinese ski industry is rapidly booming driven by enormous market demand and government...