Articles | Volume 12, issue 2
https://doi.org/10.5194/tc-12-565-2018
https://doi.org/10.5194/tc-12-565-2018
Research article
 | 
20 Feb 2018
Research article |  | 20 Feb 2018

Greenland iceberg melt variability from high-resolution satellite observations

Ellyn M. Enderlin, Caroline J. Carrigan, William H. Kochtitzky, Alexandra Cuadros, Twila Moon, and Gordon S. Hamilton

Related authors

Automated snow cover detection on mountain glaciers using space-borne imagery
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
EGUsphere, https://doi.org/10.5194/egusphere-2024-548,https://doi.org/10.5194/egusphere-2024-548, 2024
Short summary
Improved records of glacier flow instabilities using customized NASA autoRIFT applied to PlanetScope imagery
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
EGUsphere, https://doi.org/10.5194/egusphere-2024-374,https://doi.org/10.5194/egusphere-2024-374, 2024
Short summary
A Frontal Ablation Dataset for 49 Tidewater Glaciers in Greenland
Dominik Fahrner, Donald Slater, Aman KC, Claudia Cenedese, David A. Sutherland, Ellyn Enderlin, Femke de Jong, Kristian K. Kjeldsen, Michael Wood, Peter Nienow, Sophie Nowicki, and Till Wagner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-411,https://doi.org/10.5194/essd-2023-411, 2023
Preprint withdrawn
Short summary
Brief communication: Is vertical shear in an ice shelf (still) negligible?
Chris Miele, Timothy C. Bartholomaus, and Ellyn M. Enderlin
The Cryosphere, 17, 2701–2704, https://doi.org/10.5194/tc-17-2701-2023,https://doi.org/10.5194/tc-17-2701-2023, 2023
Short summary
Sharp contrasts in observed and modeled crevasse patterns at Greenland's marine terminating glaciers
Ellyn M. Enderlin and Timothy C. Bartholomaus
The Cryosphere, 14, 4121–4133, https://doi.org/10.5194/tc-14-4121-2020,https://doi.org/10.5194/tc-14-4121-2020, 2020
Short summary

Related subject area

Ocean Interactions
Ice-shelf freshwater triggers for the Filchner–Ronne Ice Shelf melt tipping point in a global ocean–sea-ice model
Matthew J. Hoffman, Carolyn Branecky Begeman, Xylar S. Asay-Davis, Darin Comeau, Alice Barthel, Stephen F. Price, and Jonathan D. Wolfe
The Cryosphere, 18, 2917–2937, https://doi.org/10.5194/tc-18-2917-2024,https://doi.org/10.5194/tc-18-2917-2024, 2024
Short summary
The role of upper-ocean heat content in the regional variability of Arctic sea ice at sub-seasonal timescales
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024,https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
Fjord circulation induced by melting icebergs
Kenneth G. Hughes
The Cryosphere, 18, 1315–1332, https://doi.org/10.5194/tc-18-1315-2024,https://doi.org/10.5194/tc-18-1315-2024, 2024
Short summary
Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers
Alexander O. Hager, David A. Sutherland, and Donald A. Slater
The Cryosphere, 18, 911–932, https://doi.org/10.5194/tc-18-911-2024,https://doi.org/10.5194/tc-18-911-2024, 2024
Short summary
A method for constructing directional surface wave spectra from ICESat-2 altimetry
Momme C. Hell and Christopher Horvat
The Cryosphere, 18, 341–361, https://doi.org/10.5194/tc-18-341-2024,https://doi.org/10.5194/tc-18-341-2024, 2024
Short summary

Cited articles

Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot E.: Recent large increases in freshwater fluxes from Greenland in the North Atlantic, Geophys. Res. Lett., 39, L19501, https://doi.org/10.1029/2012GL052552, 2012. 
Bendtsen, J., Mortensen, J., Lennert, K., and Rysgaard, S.: Heat sources for glacial ice melt in a west Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge, Geophys. Res. Lett., 42, 4089–4095, https://doi.org/10.1002/2015GL063846, 2015. 
Bigg, G. R., Wadley, M. R., Stevens, D. P., and Johnson, J. A.: Modelling the dynamics and thermodynamics of icebergs, Cold Reg. Sci. Technol., 26, 113–135, 1997. 
Burton, J. C., Amundson, J. M., Abbot, D. S., Boghosian, A., Cathles, L. M., Correa-Legisos, S., Darnell, K. N., Guttenberg, N., Holland, D. M., and MacAyeal, D. R.: Laboratory investigations of iceberg capsize dynamics, energy dissipation and tsunamigenesis, J. Geophys. Res., 117, F01007, https://doi.org/10.1029/2011JF002055, 2012. 
Cowton, T., Slater, D., Sole, A., Goldberg, D., and Nienow, P.: Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes, J. Geophys. Res.-Oceans, 120, 796–812, https://doi.org/10.1002/2014JC010324, 2015. 
Download
Short summary
This paper aims to improve the understanding of variations in ocean conditions around the Greenland Ice Sheet, which have been called upon to explain recent glacier change. Changes in iceberg elevation over time, measured using satellite data, are used to estimate average melt rates. We find that iceberg melt rates generally decrease with latitude and increase with keel depth and can be used to characterize ocean conditions at Greenland's inaccessible marine margins.