Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-363-2017
https://doi.org/10.5194/tc-11-363-2017
Research article
 | 
01 Feb 2017
Research article |  | 01 Feb 2017

Generating synthetic fjord bathymetry for coastal Greenland

Christopher N. Williams, Stephen L. Cornford, Thomas M. Jordan, Julian A. Dowdeswell, Martin J. Siegert, Christopher D. Clark, Darrel A. Swift, Andrew Sole, Ian Fenty, and Jonathan L. Bamber

Related authors

Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology
Michael A. Cooper, Thomas M. Jordan, Dustin M. Schroeder, Martin J. Siegert, Christopher N. Williams, and Jonathan L. Bamber
The Cryosphere, 13, 3093–3115, https://doi.org/10.5194/tc-13-3093-2019,https://doi.org/10.5194/tc-13-3093-2019, 2019
Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0)
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis
Geosci. Model Dev., 11, 4317–4337, https://doi.org/10.5194/gmd-11-4317-2018,https://doi.org/10.5194/gmd-11-4317-2018, 2018
Short summary
A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes
Thomas M. Jordan, Christopher N. Williams, Dustin M. Schroeder, Yasmina M. Martos, Michael A. Cooper, Martin J. Siegert, John D. Paden, Philippe Huybrechts, and Jonathan L. Bamber
The Cryosphere, 12, 2831–2854, https://doi.org/10.5194/tc-12-2831-2018,https://doi.org/10.5194/tc-12-2831-2018, 2018
Short summary
Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland
Thomas M. Jordan, Michael A. Cooper, Dustin M. Schroeder, Christopher N. Williams, John D. Paden, Martin J. Siegert, and Jonathan L. Bamber
The Cryosphere, 11, 1247–1264, https://doi.org/10.5194/tc-11-1247-2017,https://doi.org/10.5194/tc-11-1247-2017, 2017
Short summary
An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data
T. M. Jordan, J. L. Bamber, C. N. Williams, J. D. Paden, M. J. Siegert, P. Huybrechts, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 10, 1547–1570, https://doi.org/10.5194/tc-10-1547-2016,https://doi.org/10.5194/tc-10-1547-2016, 2016
Short summary

Related subject area

Greenland
Firn seismic anisotropy in the Northeast Greenland Ice Stream from ambient-noise surface waves
Emma Pearce, Dimitri Zigone, Coen Hofstede, Andreas Fichtner, Joachim Rimpot, Sune Olander Rasmussen, Johannes Freitag, and Olaf Eisen
The Cryosphere, 18, 4917–4932, https://doi.org/10.5194/tc-18-4917-2024,https://doi.org/10.5194/tc-18-4917-2024, 2024
Short summary
First results of the polar regional climate model RACMO2.4
Christiaan T. van Dalum, Willem Jan van de Berg, Srinidhi N. Gadde, Maurice van Tiggelen, Tijmen van der Drift, Erik van Meijgaard, Lambertus H. van Ulft, and Michiel R. van den Broeke
The Cryosphere, 18, 4065–4088, https://doi.org/10.5194/tc-18-4065-2024,https://doi.org/10.5194/tc-18-4065-2024, 2024
Short summary
Post-depositional modification on seasonal-to-interannual timescales alters the deuterium-excess signals in summer snow layers in Greenland
Michael S. Town, Hans Christian Steen-Larsen, Sonja Wahl, Anne-Katrine Faber, Melanie Behrens, Tyler R. Jones, and Arny Sveinbjornsdottir
The Cryosphere, 18, 3653–3683, https://doi.org/10.5194/tc-18-3653-2024,https://doi.org/10.5194/tc-18-3653-2024, 2024
Short summary
Seasonal snow cover indicators in coastal Greenland from in-situ observations, a climate model and reanalysis
Jorrit van der Schot, Jakob Abermann, Tiago Silva, Kerstin Rasmussen, Michael Winkler, Kirsty Langley, and Wolfgang Schöner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1999,https://doi.org/10.5194/egusphere-2024-1999, 2024
Short summary
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024,https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary

Cited articles

Arndt, J. E., Jokat, W., Dorschel, B., Myklebust, R., Dowdeswell, J. A., and Evans, J.: A new bathymetry of the Northeast Greenland continental shelf: Constraints on glacial and other processes, Geochem. Geophy. Geosy., 16, 3733–3753, https://doi.org/10.1002/2015GC005931, 2015.
Bai, X., Latecki, L. J., and Liu, W. Y.: Skeleton pruning by contour partitioning with discrete curve evolution, IEEE T. Pattern Anal., 29, 449–462, https://doi.org/10.1109/TPAMI.2007.59, 2007.
Bamber, J. L., Layberry, R. L., and Gogineni, S. P.: A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors, J. Geophys. Res., 106, 33773–33780, https://doi.org/10.1029/2001JD900054, 2001.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013.
Batchelor, C. L. and Dowdeswell, J. A.: The physiography of High Arctic cross-shelf troughs, Quaternary Sci. Rev., 92, 68–96, https://doi.org/10.1016/j.quascirev.2013.05.025, 2014.
Download
Short summary
Knowledge of ice sheet bed topography and surrounding sea floor bathymetry is integral to the understanding of ice sheet processes. Existing elevation data products for Greenland underestimate fjord bathymetry due to sparse data availability. We present a new method to create physically based synthetic fjord bathymetry to fill these gaps, greatly improving on previously available datasets. This will assist in future elevation product development until further observations become available.