Articles | Volume 10, issue 5
The Cryosphere, 10, 2429–2452, 2016
https://doi.org/10.5194/tc-10-2429-2016
The Cryosphere, 10, 2429–2452, 2016
https://doi.org/10.5194/tc-10-2429-2016
Research article
21 Oct 2016
Research article | 21 Oct 2016

Assessment of Arctic and Antarctic sea ice predictability in CMIP5 decadal hindcasts

Chao-Yuan Yang et al.

Related authors

The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica
Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han
The Cryosphere, 16, 1873–1887, https://doi.org/10.5194/tc-16-1873-2022,https://doi.org/10.5194/tc-16-1873-2022, 2022
Short summary
An improved regional coupled modeling system for Arctic sea ice simulation and prediction: a case study for 2018
Chao-Yuan Yang, Jiping Liu, and Dake Chen
Geosci. Model Dev., 15, 1155–1176, https://doi.org/10.5194/gmd-15-1155-2022,https://doi.org/10.5194/gmd-15-1155-2022, 2022
Short summary
A 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observations
Mengzhen Qi, Yan Liu, Jiping Liu, Xiao Cheng, Yijing Lin, Qiyang Feng, Qiang Shen, and Zhitong Yu
Earth Syst. Sci. Data, 13, 4583–4601, https://doi.org/10.5194/essd-13-4583-2021,https://doi.org/10.5194/essd-13-4583-2021, 2021
Short summary
Sensitivity of Northern Hemisphere climate to ice–ocean interface heat flux parameterizations
Xiaoxu Shi, Dirk Notz, Jiping Liu, Hu Yang, and Gerrit Lohmann
Geosci. Model Dev., 14, 4891–4908, https://doi.org/10.5194/gmd-14-4891-2021,https://doi.org/10.5194/gmd-14-4891-2021, 2021
Short summary
Distorted Pacific–North American teleconnection at the Last Glacial Maximum
Yongyun Hu, Yan Xia, Zhengyu Liu, Yuchen Wang, Zhengyao Lu, and Tao Wang
Clim. Past, 16, 199–209, https://doi.org/10.5194/cp-16-199-2020,https://doi.org/10.5194/cp-16-199-2020, 2020
Short summary

Related subject area

Arctic (e.g. Greenland)
Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022,https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Brief communication: Preliminary ICESat-2 (Ice, Cloud and land Elevation Satellite-2) measurements of outlet glaciers reveal heterogeneous patterns of seasonal dynamic thickness change
Christian J. Taubenberger, Denis Felikson, and Thomas Neumann
The Cryosphere, 16, 1341–1348, https://doi.org/10.5194/tc-16-1341-2022,https://doi.org/10.5194/tc-16-1341-2022, 2022
Short summary
Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020
Yu Liang, Haibo Bi, Haijun Huang, Ruibo Lei, Xi Liang, Bin Cheng, and Yunhe Wang
The Cryosphere, 16, 1107–1123, https://doi.org/10.5194/tc-16-1107-2022,https://doi.org/10.5194/tc-16-1107-2022, 2022
Short summary
The importance of freeze–thaw cycles for lateral tracer transport in ice-wedge polygons
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022,https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Uncertainties in projected surface mass balance over the polar ice sheets from dynamically downscaled EC-Earth models
Fredrik Boberg, Ruth Mottram, Nicolaj Hansen, Shuting Yang, and Peter L. Langen
The Cryosphere, 16, 17–33, https://doi.org/10.5194/tc-16-17-2022,https://doi.org/10.5194/tc-16-17-2022, 2022
Short summary

Cited articles

Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, S., Mokhov, I. I., Overland, J., Perlwitz, J., Sebbari, R., and Zhang, X.: Detection and attribution of climate change: From global to regional, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Doschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, 867–952, https://doi.org/10.1017/CBO9781107415324.022, 2013.
Blanchard-Wrigglesworth, E., Armour, K., Bitz, C. M., and deWeaver, E.: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations, J. Climate, 24, 231–250, https://doi.org/10.1175/2010JCLI3775.1, 2011a.
Blanchard-Wrigglesworth, E., Bitz, C. M., and Holland, M. M.: Influence of initial conditions and climate forcing on predicting Arctic sea ice, Geophys. Res. Lett., 38, L18503, https://doi.org/10.1029/2011GL048807, 2011b.
Boé, J. L., Hall, A., and Qu, X.: September sea-ice cover in the Arctic Ocean projected to vanish by 2100, Nat. Geosci., 2, 341–343, 2009.
Download
Short summary
The anomaly correlation analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, the areas showing significant predictive skill become broader associated with increasing lead times. This area expansion is largely because nearly all the models are capable of predicting the observed decreasing Arctic sea ice cover. Antarctic sea ice decadal hindcasts do not show broad predictive skill at any timescales.