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Abstract. This paper examines the ability of coupled global
climate models to predict decadal variability of Arctic and
Antarctic sea ice. We analyze decadal hindcasts/predictions
of 11 Coupled Model Intercomparison Project Phase 5
(CMIP5) models. Decadal hindcasts exhibit a large multi-
model spread in the simulated sea ice extent, with some
models deviating significantly from the observations as the
predicted ice extent quickly drifts away from the initial
constraint. The anomaly correlation analysis between the
decadal hindcast and observed sea ice suggests that in the
Arctic, for most models, the areas showing significant pre-
dictive skill become broader associated with increasing lead
times. This area expansion is largely because nearly all the
models are capable of predicting the observed decreasing
Arctic sea ice cover. Sea ice extent in the North Pacific has
better predictive skill than that in the North Atlantic (par-
ticularly at a lead time of 3–7 years), but there is a re-
emerging predictive skill in the North Atlantic at a lead time
of 6–8 years. In contrast to the Arctic, Antarctic sea ice
decadal hindcasts do not show broad predictive skill at any
timescales, and there is no obvious improvement linking the
areal extent of significant predictive skill to lead time in-
crease. This might be because nearly all the models predict
a retreating Antarctic sea ice cover, opposite to the observa-
tions. For the Arctic, the predictive skill of the multi-model
ensemble mean outperforms most models and the persistence

prediction at longer timescales, which is not the case for the
Antarctic. Overall, for the Arctic, initialized decadal hind-
casts show improved predictive skill compared to uninitial-
ized simulations, although this improvement is not present in
the Antarctic.

1 Introduction

Decadal climate prediction is a new and rapidly evolving re-
search area driven by societal demand for climate informa-
tion to inform climate adaptation strategies (e.g., Meehl et
al., 2009, 2013; Vera et al., 2010). As a boundary between the
ocean and atmosphere, sea ice plays an important role in the
climate system and acts as an important indicator of climate
change through dynamic and thermodynamic processes and
various feedbacks (i.e., albedo, insulation, and buoyancy).
Thus, sea ice simulation and prediction is one of the most
challenging and important issues in decadal climate predic-
tion (e.g., Meehl et al., 2009).

In the past few decades, Arctic sea ice has been declin-
ing (e.g., Serreze et al., 2007; Jeffries et al., 2015). Trends in
Arctic sea ice extent are negative for all months (e.g., Comiso
et al., 2008; Comiso, 2012; Cavalieri and Parkinson, 2012),
largely due to thinning and loss of the perennial sea ice cover
(Kwok et al., 2009), but are largest at the end of the summer
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Figure 1. Linear trends of September sea ice concentration for (a) Arctic and (b) Antarctic during the period of 1979–2014. The meshed
areas denote the trends above 95 % confidence level. Boxes indicate the areas used to generate the regional sea ice indices.

melt season. September Arctic sea ice extent has declined by
0.87×106 km2 for the period 1979–2014, with a pronounced
decreasing trend of sea ice concentrations in the arc extend-
ing from the Beaufort Sea to the Barents Sea (> 95 % signif-
icance, Fig. 1a). The possibility of an ice-free Arctic in the
coming decades (Stroeve et al., 2007, 2012; Boé et al., 2009;
Wang and Overland, 2009, 2012; Zhang, 2010; Massonnet et
al., 2012; Liu et al., 2013) would have profound impacts on
Arctic maritime activities (e.g., opening of shorter shipping
routes) and ecosystems (e.g., changing solar radiation in the
upper ocean and influencing primary productivity), and ex-
treme weather and climate at midlatitudes and high latitudes
(e.g., Liu et al., 2012; Francis and Vavrus, 2012; Smith and
Stephenson, 2013; Jung et al., 2013; Stroeve et al., 2014b).

By contrast, Antarctic sea ice has been expanding (e.g.,
Liu et al., 2004; Turner et al., 2009; Comiso et al., 2011;
Parkinson and Cavalieri, 2012). Trends in Antarctic sea ice
extent are positive for all months. Unlike the almost uni-
form Arctic sea ice decreases, the trends in Antarctic sea
ice concentrations show strong regional variations, although
NASA’s Ice, Cloud, and land Elevation Satellite showed that
Antarctic sea ice thickness had a small negative trend during
2003–2008 (Kurtz and Markus, 2012). September Antarctic
sea ice extent increased by 0.24× 106 km2 per decade dur-
ing 1979–2014, with a pronounced positive trend of sea ice
concentrations in the Ross Sea partially offset by a negative
trend in the Bellingshausen and Weddell seas (Fig. 1b). The
limited understanding of some of the mechanisms responsi-
ble for the observed decrease (increase) in Arctic (Antarctic)
sea ice makes sea ice prediction challenging (e.g., Kattsov et
al., 2010; Richter-Menge et al., 2012; Bindoff et al., 2013;
Goosse et al., 2015).

Most sea ice predictability studies have focused on the
Arctic and the seasonal to interannual timescale. An outlook
of September Arctic sea ice extent has been obtained from
the research community since 2008. Stroeve et al. (2014a)
showed that the median July (the same was true for June
and August) prediction value for September sea ice cover
was off by a large margin in 2009, 2012 (record low), and
2013. Koenigk and Mikolajewicz (2009) suggested sea ice
cover has low predictability in the central Arctic but some
predictability at sea ice edge zones in the MPI ECHAM5-
OM climate model. Holland et al. (2011) showed poten-
tial predictability of sea ice cover with a few months lead
time in the NCAR Community Climate System Model ver-
sion 3 (CCSM3). They also suggested that the persistence
of sea ice thickness anomalies is much higher than that of
sea ice extent anomalies, which might point to a pathway
towards greater predictability as models improve their sim-
ulation of sea ice thickness. Predictability of sea ice cover
with e-folding timescales of 2–5 months has been identified
in several climate models (Day et al., 2014a). A few mod-
eling studies also showed continuous predictability of sea
ice cover for 1–2 years, and intermittent predictability for
2–4 years (Blanchard-Wrigglesworth et al., 2011b; Day et
al., 2016; Tietsche et al., 2013, 2014; Guemas et al., 2016). In
contrast to the Arctic, there are limited efforts on examining
predictability of Antarctic sea ice. Using the NCAR CCSM3
model, Holland et al. (2013) showed initial-value predictabil-
ity of sea ice for a few months on the sea ice around Antarc-
tica.

To date, relatively little attention has been paid to assess-
ing the prediction skill of sea ice at decadal timescales for the
Arctic and Antarctic in present-day climate models. Decadal
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sea ice prediction entails a combination of initial value and
climate forcing issues. At decadal timescales, internal cli-
mate variability affects sea ice (i.e., some aspects of climate
internal variability may be predictable; Collins and Allen,
2002; Smith et al., 2007; Keenlyside et al., 2008; Meehl et
al., 2009; Pohlmann et al., 2009; Mochizuki et al., 2012), as
do prescribed external scenarios (e.g., greenhouse gases and
other radiatively important agents). Blanchard-Wriggleworth
et al. (2011b) suggested that predictability of Arctic sea ice
beyond 3 years is largely influenced by climate forcing rather
than initial values. The growing dominance of climate forc-
ings is likely to introduce some potential predictability since
it accounts for increasingly large portions of sea ice change
from present conditions (e.g., National Research Council,
2012). Guemas et al. (2016) also underlined that predicting
future change of Arctic sea ice on decadal timescales is chal-
lenging due to initialization problems (i.e., the initial shocks
due to sparse observations, limitations of reanalysis data, and
ensemble generation methods).

The recent Coupled Model Intercomparison Project
Phase 5 (CMIP5) has implemented an experimental frame-
work to simulate and predict decadal climate variability
(Meehl et al., 2009; Taylor et al., 2012) in support of the In-
tergovernmental Panel in Climate Change Fifth Assessment
Report. The evaluation of decadal hindcasts is an important
step for improving decadal predictions since it can elucidate
issues in initialization methods and model responses to nat-
ural variability and climate forcings. In this study, we exam-
ine the capability of CMIP5 decadal hindcasts to simulate the
mean and decadal variability of Arctic and Antarctic sea ice
extent.

2 Models and data

Eleven CMIP5 models are used to evaluate the decadal hind-
cast/prediction of sea ice in both the Arctic and Antarctic.
These 11 models provide a set of 10-year-long hindcast sim-
ulations, which was initialized every 5 years from 1981 to
2006. The purpose of initialization is to start coupled global
climate models close to the most realistic possible sea ice
state. In general, the initialization for the CMIP5 decadal
hindcast/prediction can be divided into two approaches, full
initialization and anomaly initialization. For the full initial-
ization approach, the initial model state is replaced by the
best available estimate of the observed sea ice state (i.e.,
satellite observation and ocean analysis). This efficiently re-
duces the initial error due to the systematic bias in the pres-
ence of model deficiencies. However, as the model is in-
tegrated for the decadal hindcast/prediction, the simulation
tends to drift away from the best-estimated sea ice state no
matter how small the initial error is. The anomaly initializa-
tion approach partly addresses this problem by assimilating
observed sea ice anomalies on the modeled sea ice state with
a focus on predicting future sea ice anomalies.

Table 1 provides a summary of the initialization ap-
proaches and data source of the initial sea ice state for
each individual model. We note that four models (CanCM4,
CFSv2, GEOS-5, and HadCM3) assimilate observed sea ice
concentrations from different resources into their sea ice ini-
tial conditions (hereafter referred to as direct sea ice initial-
ization), whereas the rest of the models constrain sea ice
initial conditions through assimilating observed ocean vari-
ables (i.e., temperature), in which the sea ice initial condi-
tion is indirectly influenced by different ocean assimilation
approaches (hereafter referred to as indirect sea ice initializa-
tion). Note that the direct vs. indirect initialization is different
from the aforementioned full-field vs. anomaly initialization.
More detailed information about the setup of the decadal ex-
periment can be found in Meehl et al. (2009) and Taylor et
al. (2012). For each individual model, all ensemble members
of the 10-year-long hindcast/prediction that are archived at
http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html are used
(see Table 1 for more information). Each ensemble mem-
ber was generated by slightly different initial conditions.
Here we focus on September Arctic (seasonal minimum) and
Antarctic (seasonal maximum) sea ice. The reasons that we
focus on September Antarctic sea ice, rather than the month
of seasonal minimum like the Arctic, are that (1) sea ice in
the Antarctic largely melts away (confined to coastal Antarc-
tica) during the seasonal minimum (i.e., February or March),
(2) previous studies (e.g., Turner et al., 2013; Meijers, 2014)
have shown that climate models poorly simulate the seasonal
minimum, and (3) September sea ice extent has a significant
increasing trend.

Satellite-derived sea ice extent and concentration in the
Arctic and Antarctic are used to evaluate the CMIP5 decadal
hindcast. They are obtained from the National Snow and Ice
Data Center, and are derived from the Nimbus-7 Scanning
Multichannel Microwave Radiometer (SSMR), DMSP Spe-
cial Sensor Microwave/Imager (SSM/I), and Special Sensor
Microwave Imager and Sounder (SSMIS) sensors (Comiso,
2015; Fetterer et al., 2002, 2010). Because the observation
and models have different horizontal resolution (see details
in Table 1), before performing the assessment we interpolate
all the data (satellite observation and model simulations) to a
horizontal resolution of 1◦. The multi-model ensemble mean
(MMEM) is calculated based on the equally weighted aver-
age of 69 total ensemble members (Table 1).

3 Prediction skill of CMIP5 decadal hindcasts

3.1 Arctic sea ice

We evaluate the model simulation and prediction skill by
comparing sea ice extent between each individual model
and satellite observations. Figure 2 shows the time series of
September Arctic sea ice extent from the simulation of the
10-year hindcast for each model and the observation from
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Table 1. Summary of initialization methods and data sources used for the CMIP5 decadal hindcast/prediction.

Model Resolution Ensemble Initialization Sea ice assimilation method
(sea ice model) members date and data source

BCC-CM1.1 1 long× 1–1/3 lat 4 1 January Indirect full-field sea ice initialization (the initial sea ice
indirectly influenced by nudging T to SODA ocean reanalysis)

CanCM4 ∼ 2.8 long× 2.8 lat 10 1 January Direct full-field sea ice initialization (SIC from HadISST1.1
and SIT from model-based climatology; Merryfield et al., 2013)

CCSM4 0.9 long× 1.25 lat 10 1 January Indirect full-field sea ice initialization (the initial sea ice indirectly
influenced by bias-corrected CORE2-forced ocean hindcast)

CFSv2 0.5 long× 0.5 lat 4 1 November Direct full-field sea ice initialization
(SIC from NCEP climate forecast system reanalysis)

FGOALS-g2 1 long× 1 lat 3 1 January Indirect full-field sea ice initialization (the initial sea ice indirectly
influenced by nudging T and S to an ocean reanalysis)

GEOS-5 1 long× 1 lat 3 1 January Direct full-field sea ice initialization
(SIC from GEOS-iODAS)

GFDL-CM2.1 ∼ 1 long× 0.75 lat 10 1 January Indirect full-field sea ice initialization (the initial sea ice indirectly
influenced by atmospheric and ocean data; Msadek et al., 2014)

HadCM3 1.25 long× 1.25 lat 10 1 November Direct anomaly sea ice initialization (SIC from
Met Office Hadley Centre sea ice data, HadISST)

IPSL-CM5A-LR ∼ 2 long× 2 lat 6 1 January Indirect anomaly sea ice initialization (the initial sea ice indirectly
influenced by the assimilation of T and S anomalies from observations)

MIROC5 1 long× 1 lat 6 1 January Indirect anomaly sea ice initialization (the initial sea ice is indirectly
influenced by the assimilation of T and S from an objective analysis of
Ishii and Kimoto, 2009)

MPI-ESM-MR ∼ 0.4 long× 0.4 lat 3 1 January Indirect anomaly sea ice initialization (the initial sea ice indirectly
influenced by the assimilation of T and S anomalies from a forced ocean
run using NCEP reanalysis; Müller et al., 2012)

SIC: sea ice concentration, SIT: sea ice thickness, T : ocean temperature, S: salinity.

1981 to 2015. It is immediately apparent that the models
exhibit very different magnitudes of September sea ice ex-
tent. CanCM4, CFSv2, GEOS-5, and GFDL-CM2.1 simulate
a smaller ice extent compared to the observation during the
entire period; CFSv2 has the least sea ice cover of any of the
models. By contrast, BCC-CSM1.1, CCSM4, FGOALS-g2,
and MIROC5 simulate a larger ice extent. The simulated ice
extent of HadCM3, IPSL-CM5A-LR, and MPI-ESM-MR is
comparable to the observations, but they cannot reproduce
the anomalously low sea ice cover since 2007 (i.e., record
lows in 2007 and 2012). We note that the models that are
initialized with values close to various estimates of sea ice
state (direct and indirect full-field initialization, see Table 1)
drift towards their modeled sea ice state within a few years of
integration, particularly BCC-CSM1.1, CanCM4, CCSM4,
CFSv2, and FGOALS-g2. Hence initializations with values
from various best estimates of sea ice state do not neces-
sarily mitigate drift, although they significantly reduce the
model bias at the initial step. By contrast, the models that are
initialized with various estimates of sea ice anomaly (direct
and indirect anomaly initialization) tend to have smaller drift
problems during the integration.

To quantify the skill of each individual model and MMEM
in predicting the evolution of sea ice, we calculate the
anomaly correlation coefficient (ACC) between the predicted
and observed September sea ice concentration anomaly in
each grid box as follows.

ACC=

n∑
i=1

[
P (i, t)−P (t)

]
·
[
O (i, t)− Ō (t)

]
√

n∑
i=1

[
P (i, t)−P (t)

]2
·

n∑
i=1

[
O (i, t)− Ō (t)

]2 , (1)

where P is the predicted sea ice concentration and P (t) is

calculated as
n∑

i=1
P (i, t) /n ; O is the observed sea ice concen-

tration and Ō (t) is calculated as Ō (t)=
n∑

i=1
O (i, t) /n . i is

the start year and t is the lead year. Here the ACCs of the en-
semble mean of each individual model and MMEM for lead
times of 1, 3–5, and 6–8 years are discussed. For example, for
the lead time of 3–5 years, the data for the 1981 initialization
are the average value of 1983–1985, the data for the 1986
initialization are the average value of 1988–1990, and so on.
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Figure 2. Time series of September Arctic sea ice extent (seasonal minimum) from the simulations of the 10-year hindcast for each ensemble
member of each individual model (thin gray line), the ensemble mean of each individual model (thick red line), and satellite observation
(black line) from 1981 to 2015.

This means the adjacent data points in the time series have a
time interval of 5 years, and this time series is compared to
the average of the same 3 years in the observations.

For the lead time of 1 year, for some models, only scattered
predictive skill (> 95 % significance) in forecasting Septem-
ber sea ice concentration anomalies is found, generally in the

arc around the periphery of the Arctic Basin, extending from
the north of Alaska to the northeast of Siberia (top panel of
Fig. 3). The MMEM shows small clustered areas of signifi-
cant ACCs between the Beaufort and eastern Siberian seas,
whereas areas near the central Arctic Ocean have the least
predictive skill (negative ACCs; Fig. 3l in the top panel). In
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Figure 3. Anomaly correlation coefficients between the simulated and observed Arctic September sea ice concentration anomalies for the
lead time of 1 year (top panel) and 3–5 years (bottom panel). The correlation coefficients of 0.61, 0.73, and 0.88 represent 90, 95, and 99 %
confidence levels, respectively. Horizontal lines depict the areas where the model simulation has sea ice, whereas the observation does not
have sea ice. The opposite is the case for vertical lines.

general, the areas of significant ACCs in CCSM4, MIROC5,
and MPI-ESM-MR are similar to that of the MMEM.

For the lead time of 3–5 years, the areas of significant
predictive skill become broader for the majority of the mod-

els compared to those of 1 year, covering large parts of the
northern Beaufort, Chukchi, eastern Siberian, and Laptev
seas (bottom panel of Fig. 3). The exceptions are CFSv2 and
GEOS-5. CFSv2 has too little sea ice cover in the Arctic
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Ocean due to the aforementioned drift problem. The ACCs
of GEOS-5 for the lead time of 3–5 year are even smaller
than those of 1 year for the area of ACCs exceeding the 95 %
confidence level. The MMEM shows large clustered areas of
significant ACCs in the arc around the Arctic Basin, extend-
ing from the north of Alaska to the north of Siberia (Fig. 3l
in the bottom panel). Again, the central Arctic Ocean to-
wards the Canadian Archipelago and northern Greenland Sea
shows the least predictive skill.

The results for the lead time of 6–8 years are broadly sim-
ilar to those of the lead time of 3–5 years, although the ar-
eas of significant predictive skill are relatively broader for
the majority of the models (not shown). The MMEM also
shows enlarged areas of significant ACCs relative to those
of 3–5 years, i.e., along the eastern coast of Greenland (not
shown). In general, the MMEM has better predictive skill
than the majority of the models for all lead times.

Figure 4 shows the predicted trend (slope of a linear re-
gression) as a function of lead times after applying a 3-year
average to filter out high-frequency variability. For each in-
dividual model, the trend is calculated based on its ensem-
ble mean (see no. of ensemble members in Table 1). All
the models reproduce the observed negative trend, except
that BCC-CSM1.1 has a positive trend at the lead time of
1–3 and 2–4 years. However, the simulated negative trends
show very different magnitude, ranging from about −0.2
to −0.9×106 km2 per decade. Compared to the observa-
tion, there is a systematic underestimation of the decreas-
ing trend throughout the integration period for all decadal
hindcasts. This is particularly true for the lead time of 6–
8 and 7–9 years (i.e., about −0.6×106 km2 per decade for
the MMEM vs. −1.2×106 km2 per decade for the observa-
tion) because those longer lead times are weighted towards
inclusion of more data points in recent years (the years with
accelerated decline of Arctic sea ice).

To figure out to what extent the identified areas with signif-
icant ACCs at different lead times are caused by the decadal
decreasing trend, we remove the linear trend in the predicted
and observed sea ice concentration in each grid box. As
shown in Fig. 5, after the trend is removed, the areas with
significant ACCs become much smaller relative to those of
Fig. 3, especially for the lead time of 3–5 and 6–8 years.
This suggests that high predictability found in Fig. 3 at longer
timescales is largely due to the decreasing Arctic sea ice in
recent decades. Thus the relatively long prediction skill over
the areas of the northern Beaufort, Chukchi, eastern Siberian,
and Laptev seas is influenced by long-term sea ice reduction.

To further examine the prediction skill of Arctic sea ice
variability in the context of regional climate variability, we
generate three sea ice extent indices: (1) the entire Arctic,
(2) the North Pacific, and (3) the North Atlantic. Sea ice vari-
ability in the North Pacific and North Atlantic is modulated
by different dominant decadal oscillations. Previous studies
suggested that sea ice in the Bering and Beaufort seas is cor-
related with the Pacific Decadal Oscillation (PDO), which

Figure 4. The predicted trends (slope of a linear regression) of
September Arctic sea ice extent (SIE) anomalies as a function of
the lead time after applying a 3-year average. The dots represent the
trends exceeding 95 % confidence level.

has undergone a transition from a dominantly positive phase
to a more negative phase in recent decades (Lindsay and
Zhang, 2005; Zhang et al., 2010; Wendler et al., 2014). Sea
ice in the North Atlantic, particularly the ice export through
the Fram Strait and import from the Barents Sea, is sig-
nificantly affected by the phases of the North Atlantic Os-
cillation (e.g., Kwok, 2000; Rigor and Wallace, 2004). En-
field et al. (2001) linked North Atlantic sea ice variability to
the Atlantic Multidecadal Oscillation (AMO) using the time
frequency analysis of historical and paleo records. Day et
al. (2012) suggested that up to 30 % of the North Atlantic
sea ice decline during 1979–2010 might be attributed to the
natural cycle of the AMO by analyzing five CMIP3 models.

In Fig. 3, horizontal lines denote the areas where the model
simulation has sea ice, whereas the observation does not have
sea ice. The opposite is the case for vertical lines. For the
Pacific sector of the Arctic, there is no sea ice in the Bering
Sea in September for any model simulations. The models that
are positively biased in September simulate too much sea ice
in the Barents Sea. Here we define the North Pacific sea ice
index as the total September sea ice extent in the Chukchi,
East Siberian, and Laptev seas (120◦ E–150◦W and 62.5–
80◦ N). The North Atlantic sea ice index is defined as the
total September sea ice extent in the Greenland, Norwegian,
and Barents seas (40◦W–80◦ E and 62.5–84◦ N; see boxes in
Fig. 1). A 3-year average is also applied to these indices.

The predictive skill for these indices is also measured by
the anomaly correlation coefficient between the model hind-
cast and observation. Figure 6 shows the ACC as a function
of lead times for the ensemble mean of each individual model
and MMEM. To provide additional perspective on the rela-
tive skill of the decadal experiments, the anomaly correla-
tion coefficient of the persistence prediction is also shown.

www.the-cryosphere.net/10/2429/2016/ The Cryosphere, 10, 2429–2452, 2016
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Figure 5. Same as Fig. 3, but for detrended September sea ice concentration anomalies.

Persistence prediction is the simplest way to produce a fore-
cast, which assumes sea ice state at the time of the forecast
will not change (that is the predicted sea ice extent for all
lead time equals the ice extent at lead time 0). The horizon-
tal lines in Fig. 6 represent different confidence levels. For

the entire Arctic (Fig. 6a), the anomaly correlation coeffi-
cient of most models exhibits certain predictive skill (> 95 %
significance), except BCC-CSM1.1 for the lead time of 1–3
and 2–4 years. Four models (CCSM4, FGOALS-g2, GFDL-
CM2.1, and MIROC5) show comparable or better predictive
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Figure 6. Anomaly correlation coefficients between the simulated and observed Arctic September sea ice extent anomalies for the three
regional indices (the entire Arctic, Pacific, and Atlantic) as a function of the lead time. The top and bottom panels are the original and
detrended time series, respectively. The horizontal dashed and solid lines represent 90, 95, and 99 % confidence levels. The thick gray line is
the persistence prediction.

skill relative to the persistence prediction for all the analyzed
lead times. The MMEM has more skillful results than most
of the individual model predictions during the entire period.
The North Pacific sea ice index has lower prediction skill
and larger inter-model spread compared to those of the entire
Arctic index (Fig. 6c). In the North Pacific, only two models
(GFDL-CM2.1 and MIROC5) show comparable skill to the
persistence prediction for the lead time of 1–3 and 2–4 years.
After 3–5 years, six models (CanCM4, CCSM4, FGOALS-
g2, GFDL-CM2.1, MIROC5, and MPI-ESM-MR) have bet-
ter skill than the persistence prediction, which is also the
case for the MMEM. In general, the predictive skill of the
North Atlantic sea ice index is poor compared to both the
entire Arctic and North Pacific indices, particularly for the
lead time from 3–5 to 5–7 years (insignificant ACCs). How-
ever, we note that in the North Atlantic sector all the models
show better predictive skill than the persistence prediction
for the first three lead times. Additionally, all the models, ex-
cept CanCM4, appear to have a re-emerging predictive skill
for sea ice in the North Atlantic after 6–8 years (Fig. 6e).
This might be associated with the influence of the Atlantic

Meridional Overturning Circulation (AMOC; see Sect. 4 for
details). Overall, the MMEM has more skillful results than
that of the persistence prediction.

After removing the linear trend (Fig. 6b, d, f), the predic-
tive skill of the above indices decreases dramatically with
very large inter-model spread. The MMEM only shows more
skillful results than the persistence prediction between 3–5
and 5–7 years for the North Pacific index.

3.2 Antarctic sea ice

Here we apply the same analysis in Sect. 3.1 for Antarctic sea
ice. Figure 7 shows the time series of September sea ice ex-
tent from the 10-year hindcast for each individual model and
the observations during 1981–2015. FGOALS-g2, GEOS-5,
and MIROC5 produce significantly less sea ice compared to
the observation for the entire period with GEOS-5, which
has the smallest sea ice extent of all the models. BCC-
CSM1.1, CanCM4, and HadCM3 produce more sea ice rel-
ative to the observations. The sea ice extent simulated by
CCSM4, CFSv2, GFDL-CM2.1, IPSL-CM5A-LR, and MPI-
ESM-MR is comparable to the observations, but they cannot
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Figure 7. Time series of September Antarctic sea ice extent (seasonal minimum) from the simulations of the 10-year hindcast for each
ensemble member of each individual model (thin gray line), the ensemble mean of each individual model (thick red line), and satellite
observation (black line) from 1981 to 2015.

reproduce the gradual increase of Antarctic sea ice in recent
years (e.g., Comiso et al., 2011). As in the Arctic, the mod-
els that use direct and indirect full-field initialization tend to
drift towards their modeled sea ice state within a few years
of initialization.

Figure 8 shows the anomaly correlation coefficient of each
individual model and MMEM for the lead time of 1 and
3–5 years. For the 1-year lead time, small scattered areas
with predictive skill greater than 95 % confidence level in the
Southern Ocean are found in most models. The location of
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Figure 8. Anomaly correlation coefficients between the simulated and observed Antarctic September sea ice concentration anomalies for the
lead time of 1 year (top panel) and 3–5 years (bottom panel). The correlation coefficients of 0.61, 0.73, and 0.88 represent 90, 95, and 99 %
confidence levels, respectively. Horizontal lines depict the areas where the model simulation has sea ice, whereas the observation does not
have sea ice. The opposite is the case for vertical lines.

these scattered areas differs by model, although the MMEM
shows small clustered areas of significant ACCs in the central
Weddell Sea (top panel of Fig. 8l). There is no improvement
for the predictive skill for most models and the MMEM as

the lead time increases to 3–5 years (bottom panel of Fig. 8)
and 6–8 years (not shown). Overall, the predictive skill of
the MMEM does not outperform most models for all the lead
times.
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Figure 9. The predicted trends (slope of a linear regression) of
September Antarctic sea ice extent (SIE) anomalies as a function
of the lead time after applying a 3-year average. The dots represent
the trends exceeding 95 % confidence level.

The observed and predicted trends for different lead times
are shown in Fig. 9. The observed trends are positive for
all the lead times, and increase to ∼ 0.35×106 km2 per
decade as recent years are considered. By contrast, most
models show negative trends; i.e., BCC-CSM1.1 has negative
trends ranging from −0.6×106 to −1×106 km2 per decade.
CCSM4 and FGOALS-g2 have increasing trends before 3–5
and 5–7-year leads, respectively, but decreasing trends there-
after. CFSv2 shows increasing trends after 2–4-year leads.
However, these three positive-trending models cannot simu-
late the magnitude of observed positive trends.

Again, we remove linear trends in both the model hind-
cast and observation, and then calculate the ACC. After the
linear trend is removed, the areas with significant predictive
skill become relatively broader for the majority of the mod-
els compared to those of the raw data at longer lead times;
i.e., the MMEM has relatively better predictive skill in the
northern Ross Sea and a large portion of the Weddell Sea at
the lead time of 3–5 years (Fig. 10 vs. Fig. 8).

Here we generate three regional sea ice extent indices:
(1) the entire Antarctic, (2) the central-eastern south Pa-
cific, and (3) the south Atlantic. We define the central-eastern
south Pacific index as the total September sea ice extent in
the eastern Ross, Bellingshausen, and Amundsen seas (165–
75◦W and 50–80◦ S) and the south Atlantic index as the total
September sea ice extent in the Weddell Sea (60–0◦W and
50–75◦ S; see boxes in Fig. 1).

Figure 11 shows the anomaly correlation coefficient as a
function of lead times for the ensemble mean of each indi-
vidual model, the MMEM, and the persistence prediction.
For the entire Antarctic, none of the models can predict the
observed sea ice variability (i.e., their simulations are nega-
tively correlated with the observations), except for CCSM4

and GFDL-CM2.1, which show significant prediction skill
(> 95 % significance) at the lead time of 1–3 years (Fig. 11a).
Moreover, the persistence prediction is superior to the pre-
diction of each individual model and the MMEM. For the
central-eastern south Pacific index, almost all the models
show poor predictive skill for almost all the lead times, al-
though CFSv2, GFLD-CM2.1, and HadCM3 exhibit signifi-
cant skill at 1–3, 2–4, and 4–6 years, respectively. Unlike the
entire Antarctic, the MMEM of the central-eastern south Pa-
cific shows better skill than that of the persistence prediction,
although neither is statistically significant (Fig. 11c). For the
south Atlantic index (Fig. 11e), almost all the models also
do not have predictive skill (the ACCs are not statistically
significant).

After removing linear trends in Fig. 11a, c, and e, we note
that there is no significant improvement in predictive skill for
the regional indices, although the MMEM shows better skill
than that of the persistence prediction at longer lead times,
and the inter-model spread is increased (Fig. 11b, d, f).

4 Discussion and conclusion

This assessment provides a snapshot of the interannual to
decadal predictability of sea ice in the Arctic and Antarctic
for the present-day coupled global climate models as part of
the CMIP5 decadal prediction experiment.

Our evaluation shows that for many models, there are sub-
stantial discrepancies between the decadal hindcast and ob-
served September sea ice extent. By performing the anomaly
correlation analysis, we found that in the Arctic, most models
only show small clustered areas with significant predictive
skill at the lead time of 1 year. As the lead time increases,
for most models, the areas with significant predictive skill
expand, covering much of the northern Beaufort, Chukchi,
eastern Siberian, and Laptev seas. Such expansion is largely
due to the fact that almost all the models can predict observed
negative trends of Arctic sea ice, although the magnitude of
the trend simulated by most models is still smaller than ob-
served. After the linear trend is removed, the areas with sig-
nificant predictive skill at longer timescales shrink greatly.
We further repeated the analysis for March Arctic sea ice
(not shown). It appears that all the models only show scat-
tered areas with significant predictive skill at the lead time
of 1 year, and no obvious expansion of areas with significant
predictive skill is found as the lead time increases. After the
trend is removed, there is not much change in the areas with
significant predictive skill compared to those of the raw data.
This is partly due to the fact that the observed and simulated
March sea ice extent trends are small.

The analysis of regional indices suggests that sea ice in
the Atlantic side has lower predictability than that of the Pa-
cific side. This is perhaps counterintuitive since the AMO
is well predicted compared to the PDO (Kim et al., 2012).
We note that, for the Atlantic side of the Arctic, most mod-
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Figure 10. Same as Fig. 8, but for detrended September sea ice concentration anomalies.

els show re-emerging predictive skill at the lead time of 6–
8 years. This might be associated with the existence of in-
terior Atlantic Meridional Overturning Circulation (AMOC)
pathways. A stronger (weaker) AMOC results in warming
(cooling) in the subpolar gyre after several years, contribut-

ing to enhanced decadal predictability of sea ice in the North
Atlantic sector (e.g., Mahajan et al., 2011; Zhang and Zhang,
2015). In contrast to September, the analysis of March re-
gional indices suggests that sea ice in the Atlantic side has
higher predictability than that of the Pacific side. Some ide-
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Figure 11. Anomaly correlation coefficients between the simulated and observed Antarctic September sea ice extent anomalies for the three
regional indices (the entire Antarctic, eastern Pacific, and Atlantic) as a function of the lead time. The top and bottom panels are the original
and detrended time series, respectively. The horizontal dashed and solid lines represent 90, 95, and 99 % confidence levels. The thick gray
line is the persistence prediction.

alized modeling studies (Koenigk and Mikolakewicz, 2009;
Koenigk et al., 2012), which assess predictive skills relative
to their model climate, suggested that annual and decadal
mean sea ice concentration has higher potential predictabil-
ity for the Atlantic side than that of the Pacific side. Germe
et al. (2014) showed that the potential predictability of the
winter Arctic sea ice extent comes mainly from the Atlantic
sector, while the Pacific sector seems unpredictable beyond
the first year. Zhang (2015) suggested that it is important to
monitor internal variability associated with the heat transport
into the Arctic from the Atlantic and Pacific, and the Arctic
dipole for predicting September Arctic sea ice extent vari-
ations. This study also pointed out all these processes are
important for low-frequency variability of summer sea ice
extent, while the Atlantic heat transport might be the prime
driver for winter Arctic sea ice extent variability at low fre-
quency.

By contrast, Antarctic sea ice does not show promising
predictive skills at longer timescales. Unlike its Arctic coun-
terpart, there is minimal change in the areas showing signifi-
cant predictive skill as the lead time increases. One possibil-

ity for the lack of predictive skill for Antarctic sea ice might
be that all the models were initialized on 1 January, except
CFSv2 and HadCM3 (see Table 1) since the low Antarc-
tic sea ice cover (confined to coastal Antarctica) of 1 Jan-
uary translates into little persistence, and little sea ice “in-
formation”. Although CFSv2 and HadCM3 were initialized
on 1 November, at a time of larger Antarctic sea ice cover,
they do not show better predictability than the models initial-
ized on 1 January. This suggests another possible explanation
for the lack of predictive skill: most models cannot predict
the observed increasing Antarctic sea ice in recent decades.
Instead, almost all decadal hindcasts predict a decrease of
Antarctic sea ice, which is also true for the simulations in re-
cent decades that include increased greenhouse gases in the
atmosphere (e.g., Liu and Curry, 2010; Turner et al., 2013;
Shu et al., 2015). The reasons behind the recent increase
of Antarctic sea ice are complex, and several recent stud-
ies show that scientists are still trying to understand it. The
possible mechanisms include variations in atmospheric cir-
culation linked to the Antarctic Oscillation, Amundsen Sea
low pressure system, stratospheric ozone depletion, and in-
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Figure 12. (a) Freshwater export through the Fram Strait (the cross
section along 74◦ N and between 30◦W and 10◦ E), (b) Atlantic
Ocean Meridional Overturning stream function in September aver-
aged for all decadal hindcasts from 1981 to 2015 for the CFSv2 and
(c) time series of stream function averaged over 40–55◦ N, 500–
1500 m as indicated by the black box in the middle panel. The thin
gray line represents each ensemble member, and the thick black line
represents the ensemble mean.

creased greenhouse gases, changes in zonal and meridional
near-surface winds, the increase in freshwater flux that sta-
bilizes the upper ocean layer, and the influence of internal
variability (e.g., Zhang, 2007; Turner et al., 2009; Sigmond
and Fyfe, 2010; Liu and Curry, 2010; Holland and Kwok,
2012; Zunz et al., 2013; Polvani and Smith, 2013). How-

Figure 13. Atlantic Ocean Meridional Overturning stream function
in September averaged for all decadal hindcasts from 1981 to 2015
for GEOS-5 (upper panel) and time series of stream function aver-
aged over 45–70◦ N, 500–2000 m as indicated by the black box in
the upper panel (lower panel). The thin gray line represents each
ensemble member, and the thick black line represents the ensemble
mean.

ever, it is not clear which is the dominant process. Further
investigating a range of other variables such as simulated sea
ice thickness, sea ice velocity, near-surface wind, and ocean
stratification will help elucidate the reasons why the trends in
these models are different from observations. However, after
the trend is removed, most models suggest relatively better
predictive skill in the northern Ross Sea and a large portion
of the Weddell Sea. Previous studies (e.g., Liu et al., 2002)
have shown that the intensification of the Hadley circulation
in the eastern equatorial Pacific during El Niño leads to an
equatorward shift of the storm track in the Ross Sea. This
leads to changes in the regional Ferrel circulation in the Ross
Sea, which cause an anomalous poleward mean meridional
heat flux into the sea ice zone in the Ross Sea and limit sea
ice growth. The opposite is the case for the Weddell Sea.
Thus, relatively better sea ice predictability in the northern
Ross Sea and a large portion of the Weddell Sea might be
related to the El Niño–Southern Oscillation (ENSO) telecon-
nection. Holland and Raphael (2006) have further shown that
a number of climate models have the ability to simulate the
observed ENSO teleconnection in sea ice in the eastern south
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Figure 14. Anomaly correlation coefficients between the simulated and observed Arctic September sea ice concentration anomalies for the
lead time of 1 year (left panel) and 3–5 years (right panel). The correlation coefficients of 0.61, 0.73, and 0.88 represent 90, 95, and 99 %
confidence levels, respectively. Horizontal lines depict the areas where the model simulation has sea ice, whereas the observation does not
have sea ice. The opposite is the case for vertical lines.

Pacific and Atlantic. The analysis of regional indices also
shows little predictive skill for Antarctic sea ice.

As mentioned earlier, some models tend to drift away
quickly from the initialized state. Here we use the bias-
correction method mentioned in Ham et al. (2014) to remove
the drift. This method removes the lead-time-dependent
mean bias based on the observation. The bias-corrected
decadal hindcast is calculated as

ˆYj t = Yj t −

∑N

k=1
(Ykt −Okt )

/
N , (2)

where Yj t and ˆYj t are the raw and bias-corrected predicted
sea ice state, at the initialized year j and lead year t . Oj t

is the observed sea ice state. We also apply this method to
re-calculate the anomaly correlation coefficient between the
observed and bias-corrected simulated regional sea ice in-
dices for the Arctic and Antarctic. The results for the bias-
corrected decadal hindcasts are similar to those with the sys-
tematic model drift (not shown). This is because the bias cor-
rection only minimally influences the variability of the time
series as reflected by the anomaly correlation coefficient.
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Figure 15. Same as Fig. 14 but for detrended September sea ice concentration anomalies.

Continued efforts are needed to identify, understand, and re-
duce model errors; i.e., Kharin et al. (2012) demonstrated
a technique to correct nonlinear drifts in decadal hindcasts.
Some multi-model studies have put effort in the investiga-
tion of this issue for some climate variables (e.g., Bellucci et
al., 2015; Doblas-Reyes et al., 2013; Goddard et al., 2013).

An issue with this assessment is the relatively small sam-
ple size because of the limited number of start years of the
decadal prediction experiment. To promote both the science
and practice of decadal prediction, the CMIP Phase 6 recom-
mends ensembles of 10-year hindcast/prediction for all years
from 1960 to the end of the CMIP6 period (10 members rec-
ommended), which will be helpful to obtain better statistics.

In our analysis, we note that CFSv2 dramatically underes-
timates September sea ice cover, leading to pronounced drift
in the first 3 years of the decadal hindcast. In contrast, CFSv2
simulates a larger March sea ice extent (2–3×106 km2 more
than the observation, not shown). Hence there is an exces-
sive melt of sea ice through the melting season, which is due
not only to the underestimation of observed September sea
ice cover, but also to the overestimation of observed March
sea ice cover (March–September). Such large errors have the
potential to propagate through other components of the cli-
mate system. This excessive melt greatly increases freshwa-
ter in the Arctic Ocean and the export of freshwater through
the Fram Strait into the North Atlantic. Following Koenigk

www.the-cryosphere.net/10/2429/2016/ The Cryosphere, 10, 2429–2452, 2016



2446 C.-Y. Yang et al.: Arctic and Antarctic sea ice predictability in CMIP5

Figure 16. Anomaly correlation coefficients between the simulated and observed Antarctic September sea ice concentration anomalies for
the lead time of 1 year (left panel) and 3–5 years (right panel). The correlation coefficients of 0.61, 0.73, and 0.88 represent 90, 95, and 99 %
confidence levels, respectively. Horizontal lines depict the areas where the model simulation has sea ice, whereas the observation does not
have sea ice. The opposite is the case for vertical lines.

et al. (2007), we calculate the freshwater export through the
Fram Strait using the following formula:

Q=

T∫
z=B

x1∫
x=x0

u

(
Sref− S

Sref

)
dxdz, (3)

where B is the bottom of the ocean layer (here B= 100 m),
T is the the top of the ocean layer; x0 and x1 are end
points of the selected cross section (here the cross section
is along 74◦ N and between 30◦W and 10◦ E); S, Sref are

salinity and reference salinity (Sref = 34.8 psu). As shown in
Fig. 12, there is a pronounced increase of the freshwater ex-
port through the Fram Strait into the North Atlantic during
the first 4 years of integration, although the amount of the
freshwater export decreases gradually after that. Such fresh-
water propagation into the North Atlantic results in a weak-
ening of deep water formation in the Greenland Sea. Also
shown in Fig. 12, the volume transport of the Atlantic Merid-
ional Overturning Circulation (AMOC) at 40◦ N in CFSv2
(which is too weak even at the beginning of the integration)
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Figure 17. Same as Fig. 16, but for detrended September sea ice concentration anomalies.

decreases substantially during the decadal hindcast (4 Sv af-
ter 10-year integration), which is a factor of 3–4 smaller than
the observation (18.7 Sv in Cunningham et al., 2007; 17.2 Sv
in Smeed et al., 2014; McCarthy et al., 2015). Thus, incorrect
prediction of sea ice in the Arctic could influence the AMOC
prediction, which is a key source of decadal predictability for
the European climate (Jackson et al., 2015), and has global
impacts at longer timescales.

It is well known that brine rejection during sea ice growth
strongly influences the formation of the Antarctic Bottom
Water (AABW). In the Antarctic, as mentioned previously,
GEOS-5 simulates much less September sea ice extent, a fac-
tor of about 6 less than the observation, which is also the

case for March sea ice extent (not shown). The underesti-
mation of sea ice coverage might result in insufficient brine
rejection through the freeze-up period in the GEOS-5. This
insufficient brine rejection is due not only to the underesti-
mation of observed September sea ice cover alone, but also
to the underestimation of observed March sea ice cover. Ex-
port of AABW constitutes a key component of the merid-
ional overturning circulation in the Southern Ocean (Lump-
kin and Speer, 2007). The systematic underestimation of sea
ice coverage results in a weaker Deacon cell in the Southern
Ocean (∼ 4 Sv, Fig. 13) compared to the estimation of 20 Sv
from Döös et al. (2008). Therefore, models that have large
biases in simulating sea ice extent (e.g., CFSv2 for the Arc-
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tic, GEOS-5 for the Antarctic) result in degraded predictive
skill in sea ice as well as other variables.

Recent studies have suggested that different initialization
approaches and the density of observations used in the initial-
ization significantly affect the predictability of sea ice. Zunz
et al. (2015) found that the spread of ensembles at decadal
timescales can be reduced when more complicated data as-
similation procedures and denser observations are used to
initialize the hindcasts. Here we also repeated the analysis
for the historical and RCP4.5 (Representative Concentration
Pathway 4.5) simulations of all the models (hereafter referred
to as uninitialized simulation), except CFSv2 and GEOS-5
(they did not provide historical and RCP4.5 simulations). For
the Arctic, the predictive skill of sea ice concentration is en-
hanced for the initialized hindcast compared to the uninitial-
ized simulation for most models. After the trend is removed,
there is no obvious difference between the initialized hind-
cast and the uninitialized simulation. For the Antarctic, there
is not much difference between the initialized hindcast and
the uninitialized simulation. However, after the linear trend
is removed, the area with significant predictive skill for the
initialized hindcast becomes relatively larger compared to
those of the uninitialized simulation (Figs. 14–17). Note that
Figs. 14 and 16 do not include CFSv2 and GEOS-5, which
have poor predictive skill in the initialized hindcast. It is pos-
sible that the predictive skill of MMEM for the uninitialized
simulation would be worse if CFSv2 and GEOS-5 were in-
cluded.

A recent study (Chevallier et al., 2016) showed that global
reanalyses that do not assimilate sea ice concentration gener-
ally overestimate sea ice concentration and have large biases
near the ice edge in the Arctic. They also pointed out that
none of the global reanalyses have assimilated sea ice thick-
ness data. To date, only limited models have implemented
initialization of sea ice concentration (Table 1). Based on Ta-
ble 1, 11 CMIP5 models can be separated into two groups:
direct and indirect sea ice initialization. The direct initial-
ization includes CanCM4, CFSv2, GEOS-5, and HadCM3.
Other models show indirect initialization. Based on this di-
vision, we cannot conclude that the models initialized di-
rectly show a better performance on predictive skills com-
pared to those initialized indirectly. CanCM4 has a broader
area with significant predictive skill at longer lead times
(Fig. 3). Its predictive skill is better than some models (e.g.,
BCC-CSM1.1, IPSL-CM5A-LR), comparable with CCSM4
and GFDL-CM2.1, but worse than MIROC5 and MMEM.
On the other hand, CFSv2 has strong model drift so that the
predicted sea ice is substantially less than the observations.
GEOS-5 and HadCM3 have nearly no skill in predicting ob-
served sea ice variability. From this comparison, it is not clear
whether direct sea ice initialization is better than indirect sea
ice initialization. To better predict sea ice, the accurate sea
ice initialization requires not only sea ice concentration, but
also variables (i.e., sea ice thickness) that influence surface
energy fluxes and, thereby, ocean–atmosphere interaction. At

seasonal timescales, the initialization of sea ice thickness has
been shown to be crucial for summer prediction (e.g., Day
et al., 2014b). Some studies (e.g., Blanchard-Wrigglesworth
et al., 2011a; Koenigk and Mikolajewicz, 2009) suggested
that the persistence of sea ice thickness anomalies is much
higher than that of sea ice concentration anomalies. Higher
predictability of Arctic sea ice thickness (volume) with re-
spect to that of Arctic sea ice cover has been found at longer
timescales (e.g., Guemas et al., 2016). However, sea ice
thickness has not yet been initialized in CMIP5 models be-
cause of sparse observations. Other processes important for
simulating sea ice evolution include the ocean below sea ice
(i.e., temperature and salinity), which, due to its long per-
sistence time, provides constraints on predictions of sea ice
at longer timescales. Thus, efforts should be devoted to fur-
ther development of initialization of the Arctic Ocean and
Southern Ocean, which requires sufficient observations and
improved assimilation methods.

5 Data availability

The satellite-derived sea ice extent and concentration used in
this study are obtained from the National Snow and Ice Data
Center (Fetterer et al., 2016; Cavalieri et al., 1996). All model
outputs used in this study are obtained from the Coupled
Model Intercomparison Project Phase 5 (CMIP5), which can
be downloaded from http://cmip-pcmdi.llnl.gov/cmip5/data_
portal.html. All results of analysis can be obtained by con-
tacting the corresponding author.
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